Enhanced Electrokinetics of C—C Bond Splitting during Ethanol Oxidation by using a Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO₂ Shell

Guangxing Yang,^[a] Anatoly I. Frenkel,^[b, c] Dong Su,^[d] and Xiaowei Teng^{*[a]}

Direct ethanol fuel cells (DEFCs) are a promising technology for generating electricity through the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO₂ and yielding 12-electron transfer through breaking the C-C bond of ethanol. Here, we presented comprehensive studies of the electrokinetics of CO₂ generation on Pt/Rh/Sn ternary catalysts. Our studies showed that the triphasic $PtRhO_x$ -SnO₂ catalysts with a partially oxidized Pt and Rh core and a SnO₂ shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scans, coincided with a 2.5-fold increase in the CO₂ generation rate towards ethanol oxidation reaction, compared with the biphasic PtRh-SnO₂ catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight into the design of a new genre of electrocatalysts with a partially oxidized noble metal.

Energy demands coupled with concerns over environmental pollution have created a great need for clean and efficient power sources. Fuel cells that enable the direct conversion of chemical energy to electricity with over 90% thermodynamic efficiency become viable alternative power devices to internal combustion engines where thermodynamic efficiency is subject to the Carnot cycle limitation (typically <35%). Ethanol, recognized as a substantial energy source in the green technologies, has many advantages over hydrogen gas as a fuel in fuel cells: ethanol has a lower toxicity, a high boiling point for

[a]	G. Yang, Prof. X. Teng			
	Department of Chemical Engineering			
	University of New Hampshire			
	NH 03824 (USA)			
	E-mail: xw.teng@unh.edu			
[b]	Prof. A. I. Frenkel			
	Department of Physics			
	Yeshiva University			
	NY 10016 (USA)			
[c]	Prof. A. I. Frenkel			
	Present address: Department of Materials Science and Chemical			
	Engineering			
	Stony Brook University			
	NY 11794 (USA)			
[d]	Dr. D. Su			
	Center for Functional Nanomaterials			
	Brookhaven National Laboratory			
	NY 11973 (USA)			
	Supporting information and the ORCID identification number(s) for the			
D	author(s) of this article can be found under http://dx.doi.org/10.1002/			

ChemCatChem 2016, 8, 1–6 Wiley Online Library

cctc 201600429

These are not the final page numbers! 77

1

safer storage in transportation applications, a great availability from fermenting sugar-containing and/or cellulose-containing raw materials, and the established infrastructure for production and distribution. In recent years, direct ethanol fuel cells (DEFCs) have been extensively studied, with peculiar attention to their anode reactions, namely the ethanol oxidation reaction (EOR). Ethanol is the simplest molecule containing C-C, C-H, C-O, and O-H bonds, and the selective cleavage of these bonds determines the reaction pathways and relative selectivity of products. For example, EOR through the C–C bond-cleavage pathway leads to the production of CO₂ through a complete oxidation of ethanol with a twelve-electron transfer, whereas cleavage of the C-H, O-H, and/or C-O bonds without the C-C bonds lead to incomplete oxidation with production of acetaldehyde (two-electron transfer) or acetic acid (fourelectron transfer).^[1-6]

Biphasic PtRh–SnO₂ materials with a PtRh alloy and a segregated SnO₂ phase have been considered as the best catalyst for EOR owing to their high reactivity for adsorption, dehydrogenation, and oxidation of ethanol by C-C splitting, as well as plausible chemical stability.^[7-14] The superiority of Pt and Rh towards C--C splitting has been demonstrated by density functional theory (DFT) calculations, showing that Pt-Rh help cleave the C–H bond of the terminal methyl group (β -carbon dehydrogenation) and form oxometallate intermediates (M-CH₂-CH₂-O-M).^[15] Oxophilic Sn, on the other hand, interacts with water strongly to form an oxygenated species on the catalyst surface (OH_{ads}), which helps oxidize the reaction intermediates (e.g., CH_x and CO) generated on adjacent Pt or Rh sites.^[16,17] Attributed to this bifunctional effect, Pt/Rh/Sn ternary catalysts have been generally considered as the most effective materials for the EOR, especially at higher overpotentials. However, fuel cells generally tend to operate at an external potential close to their equilibrium potential. At low overpotentials at the anode, the Pt/Rh/Sn components have a weak dissociative adsorption of water, and the resulting low OH_{ads} coverage on the catalyst surface may not be adequate to remove the strongly adsorbed reaction intermediates, especially CO, which poisons the active sites. Therefore, finding an optimal catalytic structure that can effectively dissociate ethanol by C–C splitting at low overpotentials and consequently remove the CO intermediates is of great importance for the implementation of DEFC technology.

In the past decade, studies have shown that the kinetics of the CO oxidation reaction on surfaces of Ru, Pt, Pd, Rh, and PtRh increases significantly in conjunction with the formation of a thin oxide film on the surface of the metal or alloy

catalysts.^[18–22] It has been found that the active phase for CO oxidation is oxidized rather than metallic. Although these results obtained from solid/gas-phase reactions are expected to be relevant for general heterogeneous catalysis, the reactivity of noble metal oxides towards electrocatalysis, especially EOR, has not been well studied. Particularly, most of the studies on Pt-based EOR catalysts have only been focused on non-noble metal oxides, such as SnO₂ and CeO₂.^[17,23] However, the role of Pt or Rh oxides on the electrokinetics of EOR, especially the C–C splitting, has not been reported.

In this study, we synthesized two types of carbon supported $Pt/Rh-SnO_2$ core-shell nanoparticles: one was triphasic $PtRhO_x-SnO_2$ with a partially oxidized Pt and Rh core (segregated Pt and Rh phases) and a SnO_2 shell, and the other was biphasic $PtRh-SnO_2$ with a PtRh alloy core and a SnO_2 shell. By using our newly designed four-electrode electrochemical cell equipped with a CO_2 microelectrode, we comprehensively studied the electrokinetics of CO_2 generation, including the CO_2 generation rate and CO_2 selectivity, with both types of catalysts. Our studies showed that, for the first time, although the $PtRh-SnO_2$ with a PtRh alloy core was still active, the formation of a partially oxidized Pt and Rh core coincides with a 2.5-fold increase in the CO_2 generation rate for EOR.

Carbon-supported PtRhO_x–SnO₂ nanoparticles with a partially oxidized Pt and Rh core and SnO₂ shell were synthesized by a "surfactant-free" polyol process using NaPtCl₄·xH₂O, K₃RhCl₆·xH₂O, and SnCl₂ as precursors in an ethylene glycol solution (see the Supporting Information). PtRh–SnO₂ nanoparticles with a PtRh alloy core and a SnO₂ shell were synthesized by heating PtRhO_x–SnO₂ nanoparticles under a reducing atmosphere at an elevated temperature. The molar ratio between Pt and SnO₂ was kept as 1:1, while the ratio between Pt and Rh was varied from 2:1 to 4:1. Table S1 (in the Supporting Information) summarizes the results from energy-dispersive X-ray spectroscopy measurements of the resulting catalysts, confirming the atomic ratio of Pt/Rh/Sn as 37:20:43 and 39:12:49.

Figure 1 shows transmission electron microscopy (TEM) images of the as-made and reduced carbon-supported $Pt_{37}/Rh_{20}/Sn_{43}$ nanoparticles with average sizes of 2.8 ± 0.9 nm and 6.5 ± 0.9 nm, respectively. TEM images of the as-made and reduced Pt₃₉/Rh₁₂/Sn₄₉ nanoparticles are shown in Figure S1 in the Supporting Information. The large size of the reduced samples was a result of coalescence of nanoparticles during the thermal treatment (H₂/Ar at 250 $^{\circ}$ C). Figures 1 c and d show the scanning transmission electron microscope-electron energy loss spectroscopy (STEM-EELS) line scans of a typical as-made Pt₃₇/Rh₂₀/Sn₄₃ particle. The data show that Sn displayed a strong signal at the edges of the particle, whereas Pt displayed a strong signal in the center. The data provide unambiguous evidence for the core-shell structure with a Pt-rich core and Sn-rich shell in a heterogeneous structure on the atomic scale. The ionization energy of the Rh M_{4/5}-edge is in the range 307-312 eV energy loss, which is unfortunately overlapped by the residual signal from carbon K-edge. Therefore, the EELS line scan was unable to measure the distribution of Rh within the catalysts, though the EDS spectra showed the

CHEMCATCHEM Communications

Figure 1. TEM images of (a) $Pt_{37}Rh_{20}O_x$ -(SnO₂)₄₃/C and (b) $Pt_{37}Rh_{20}$ -(SnO₂)₄₃/C. (d) EELS line scan across $Pt_{37}Rh_{20}O_x$ -(SnO₂)₄₃ particle as indicated by the arrow in (c).

existence of Rh with appropriate chemical composition close to the ratio of the precursors. The X-ray diffraction (XRD) patterns of the as-made and reduced Pt/Rh/Sn samples are shown in Figure S2 in the Supporting Information. All the diffraction peaks could be assigned to the (111), (200), (220), (311), and (222) planes of a face centered cubic (fcc) structure. Diffraction peaks of SnO₂ were not observed in the as-made or reduced samples, although the STEM-EELS line scan showed Sn-rich shells in both samples. This could be attributed to the fact that Sn or SnO₂ existed in the form of very small nanoparticles or as an amorphous phase.

X-ray absorption (XAS) measurements were used to investigate the electronic states and local atomic environment of the Pt, Rh, and Sn in the as-made and reduced $Pt_{37}/Rh_{20}/Sn_{43}$ catalysts. Figure S3 (in the Supporting Information) shows the XAS data of the K-edges of Sn and Rh, and L₃-edge of Pt of the Pt/Rh/Sn catalysts, together with the standard materials such as metallic Sn, Pt, and Rh foils, as well as their oxides SnO₂, PtO₂, and Rh₂O₃. Figure S3 a shows that the Sn K-edge data of the as-made and reduced Pt/Rh/Sn were very similar to those of SnO₂, suggesting that Sn was predominantly oxidized in all Pt/Rh/Sn samples. Combined with the structural information obtained by STEM-EELS, it has been suggested that SnO₂ primarily existed as a shell in both the as-made and reduced samples. On the other hand, the Pt $\mathsf{L}_{3^{-}}$ and Rh K-edge absorption data suggested that Pt and Rh had very different electronic structures between the reduced and as-made samples (Figures S3b and c). For the reduced samples, Pt and Rh existed as predominantly metallic phase, evident from the similar white line (the intense peak at the K absorption edge) compared with their metal foil counterparts. For the as-made catalysts, Pt and Rh data resembled those of PtO₂ and Rh₂O₃,

indicating the existence of oxidized phases, although there were still discernable metallic Pt and Rh phases observed in both the as-made samples.

The Fourier transform magnitudes of extended X-ray absorption fine structure (EXAFS) data and theoretical fits for Pt, Sn, and Rh of Pt/Rh/Sn catalysts are shown in Figure S3 and Table S3 in the Supporting Information. The best-fit values of coordination numbers of $Pt_{37}/Rh_{20}/Sn_{43}$ are summarized in Table 1. For the reduced sample, the obtained first-nearest-

Table 1. EXAFS fitting results of Pt/Rh/Sn.						
	Pt foil	Rh foil	$Pt_{37}Rh_{20}-(SnO_2)_{43}$	Pt ₃₇ Rh ₂₀ O _x -(SnO ₂) ₄₃		
N _{Pt-Pt}	12		3.7±0.5	7.4±1.5		
N _{Pt-Rh}			2.5	0		
N _{Pt-M}			6.2 ± 0.5			
N _{Pt-O}			0	1.2 ± 0.5		
N _{Rh-Rh}		12	4.7 ± 1.1	1.7 ± 1.1		
N _{Rh-Pt}			4.6±0.6	0		
N _{Rh-M}			9.3 ± 1.6			
N _{Rh-O}			0.9 ± 0.6	2.2 ± 0.6		
N _{Sn-Sn}			5.8 ± 2.5	0		
N _{Sn-O}			3.3±0.4	4.9±0.5		

neighbor Pt-metal $(N_{Pt-M} = N_{Pt-Pt} + N_{Pt-Rh})$ and Rh-metal $(N_{\rm Rh-M} = N_{\rm Rh-Rh} + N_{\rm Rh-Pt})$ coordination numbers all had reasonably similar values within the uncertainties (6.2 \pm 0.5 and 9.3 \pm 1.6, respectively). That fact, and the other observation that the Pt-Rh and Rh-Pt contributions were required for both Pt and Rh edge analyses, in addition to the Pt-Pt and Rh-Rh contributions, respectively, demonstrated unambiguously the formation of a Pt-Rh alloy. For the as-made sample, however, Pt and Rh appeared to be the segregated phases without alloy formation, as evident from the fact that only Pt–Pt ($N_{Pt-Pt} = 7.4 \pm 1.5$) and Rh-Rh ($N_{\text{Rh-Rh}} = 1.7 \pm 1.1$) coordination was observed without any Pt-Rh and Rh-Pt coordination. Moreover, discernable Pt-O and Rh-O coordination indicated the existence of oxidized Pt and Rh phases. Strong Pt-Pt and Rh-Rh coordination, weak but discernable Pt-O and Rh-O coordination, and nondetectable Pt-Sn and Rh-Sn coordination corroborated well with the XANES analyses, concluding that the as-made Pt₃₇/Rh₂₀/Sn₄₃ catalysts were comprised of partially oxidized Pt and Rh cores.

Independent evidence towards similar conclusions could be concluded from the bond lengths. Table S3 indicates that Pt and Rh exist mainly in the metallic phase in the reduced $Pt_{37}/Rh_{20}/Sn_{43}$ sample, compared with as-made one. In the former sample, the Pt–Pt bond length (2.73 ± 0.01 Å) and Rh–Rh bond length (2.68 ± 0.01 Å) are similar to that in pure Pt (2.764 ± 0.003 Å) and Rh (2.685 ± 0.002 Å). In the as-made sample, the Pt–Pt bond length (2.67 ± 0.01 Å) and Rh–Rh bond length (2.80 ± 0.03 Å) are rather different from pure metallic Pt and Rh. In addition, the strong Sn–O coordination from both the as-made and reduced samples suggested the formation of tin oxide clusters, which is confirmed by the results obtained independently from STEM-EELS and XANES. Therefore, we concluded the coexistence of the biphase throughout the reduced

Pt₃₇/Rh₂₀/Sn₄₃ catalyst, expressed as Pt₃₇Rh₂₀–(SnO₂)₄₃: a homogenous alloy core containing Pt and Rh, and SnO₂ clusters segregated on the shell; whereas the as-made sample showed a triphase feature expressed as Pt₃₇–Rh₂₀–O_x–(SnO₂)₄₃: a partially oxidized Pt and Rh core with segregated Pt and Rh phases, and SnO₂ clusters on the shell. Similar structural details can also be found in as-made and reduced Pt₃₉/Rh₁₂/Sn₄₉ catalysts (Figure S3, Table S3). Moreover, the degree of oxidation (value of *x*) for both Pt and Rh components in Pt₃₇-Rh₂₀–O_x–(SnO₂)₄₃: catalysts can be estimated by following equation:

$$x = \frac{N_{\rm Pt-O} + N_{\rm Rh-O}}{N_{\rm Pt-Pt} + N_{\rm Rh-Rh}} \times (37 + 20) = \frac{1.2 + 2.2}{7.4 + 1.7} \times 57 = 21$$
(1)

Figure 2. Electrochemical performance of carbon-supported $Pt_{37}Rh_{20}O_x-(SnO_2)_{437}$, $Pt_{37}Rh_{20}-(SnO_2)_{43}$, and Pt (ETEK) catalysts from (a, b) CVs and (c, d) CAs measurements.

Therefore, the exact formula of partially oxidized catalysts can be expressed as $Pt_{37}Rh_{20}O_{21}-(SnO_2)_{43}$.

The electrochemical activities of carbon-supported as-made $Pt_{37}Rh_{20}O_x$ -(SnO₂)₄₃, its reduced counterpart $Pt_{37}Rh_{20}$ -(SnO₂)₄₃, and commercial Pt/C were tested in a half-cell. Figure S4a (in the Supporting Information) shows the cyclic voltammograms (CVs) for the catalysts measured in $0.5\,\,\text{m}$ $\,\text{H}_2\text{SO}_{4^{\prime}}$ from which the hydrogen absorption region was used to calculate the electrochemically active surface area (ECASA; Table S2 in the Supporting Information). Figure 2a shows the CV analyses of various catalysts measured in $0.5 \text{ M} \text{ H}_2\text{SO}_4$ and 0.5 M ethanol electrolyte at a scan rate of 50 mV s⁻¹ in the half-cell. The reduced catalyst exhibited superior current density, normalized by its ECASA. The current densities at 0.35 V obtained from CVs measurement are shown in Figure 2b; these follow the order: $Pt_{37}Rh_{20}-(SnO_2)_{43} > Pt_{37}Rh_{20}O_{21}-(SnO_2)_{43} > Pt$. The same order was also observed from chronoamperometry measurements (CAs) as shown in Figures 2c and d. These results indicated that Pt₃₇Rh₂₀-(SnO₂)₄₃ with a metallic PtRh alloy core increased the overall charge-transfer kinetics of the EOR. The high current density observed for the

 $Pt_{37}Rh_{20}$ -(SnO₂)₄₃ catalysts could be attributed to the bifunctional effect as the Pt/Rh atoms provide active sites for dehydrogenation of ethanol, whereas Sn provides oxygenated species to oxidize the intermediates. Such synergistic interactions make $Pt_{37}Rh_{20}$ -(SnO₂)₄₃ a better catalyst with fast kinetics for adsorption and dehydrogenation of ethanol molecule.

To better understand the reaction mechanism, especially CO₂ generation by C–C splitting of ethanol during the EOR, we designed a four-electrode electrochemical cell (see the schematic of the cell in Figure S5 in the Supporting Information), including reference, working, and counter electrodes, and a CO₂ microelectrode. CV measurements with a scan rate of 0.5 mV s⁻¹ were conducted for the EOR by using the four-electrode cell (Figure S6 a in the Supporting Information). In addition, the CO₂ partial pressure (P_{CO2}) was measured simultaneously by the CO₂ microelectrode (Figure S6 b). The total amount of CO₂ generation N_{CO2} was then calculated, as well as the generation rate of CO₂. The current density resulting from the generation of CO₂ (j_{CO2}) is expressed as:

$$j_{\rm CO2} = \frac{{\rm d}N_{\rm CO2}}{{\rm d}t} \times 6 \times F \tag{2}$$

where *F* is the Faraday constant, and 6 represents the number of electrons transferred upon forming one CO_2 molecule. Finally, the selectivity of CO_2 generation versus byproduct generation (e.g., CH₃CHO, CH₃COOH) is calculated by:

$$CO_2 \text{ selectivity} = \frac{j_{CO_2}}{j_{Total} - j_{CO_2}}$$
(3)

where j_{Total} is the total current, obtained from CV measurements, which represents the current resulting from the formation of all products.

Many studies have been reported on the CO₂ generation in situ by using Fourier transform infrared spectroscopy, differential electrochemical mass spectrometry, or gas chromatography,^[24,25] from which the concentrations of CO₂ as a function of potential were presented. However, to the best of our knowledge, the electrokinetic details of CO₂ formation, such as CO₂ generation rate and/or selectivity of CO₂ generation have not been reported. Thanks to the high sensitivity (towards CO₂ concentration of $0.2 \ \mu M$) and short data acquisition time (five seconds) of the CO₂ microelectrode, in this study we were able to provide comprehensive electrokinetic details of CO₂ generation by C-C splitting, which has never been reported before. Figure 3 a shows the partial pressure of CO₂ recorded simultaneously during the CV measurements by using CO₂ microelectrode. Pt37Rh20O21-(SnO2)43 showed 2.2 and 3.3 times higher P_{CO2} , as well as a 2.5 times higher CO₂ generation rate than Pt₃₇Rh₂₀-(SnO₂)₄₃ and commercial Pt at 0.35 V as shown in Figure 3 b. Also, the onset potential of CO₂ generation for

CHEMCATCHEM Communications

Figure 3. CO₂ generation by carbon-supported $Pt_{37}Rh_{20}O_x$ –(SnO₂)₄₃, $Pt_{37}Rh_{20}$ –(SnO₂)₄₃, $Pt_{37}Rh_{20}$ –(SnO₂)₄₃, and Pt (ETEK) catalysts during CV measurements, including (a) partial pressure (P_{CO2}), (b) current density resulting from CO₂ generation (j_{CO2}), (c) onset potential for CO₂ generation, and (d) CO₂ selectivity.

Pt₃₇Rh₂₀O₂₁-(SnO₂)₄₃, calculated through fitting Figure 3 b (see details in Figure S8 in the Supporting Information), was about 37 and 61 mV lower than that of Pt₃₇Rh₂₀-(SnO₂)₄₃ and commercial Pt as shown in Figure 3 c. Figure 3 d shows that Pt₃₇Rh₂₀O₂₁-(SnO₂)₄₃ displayed higher CO₂ selectivity than Pt₃₇Rh₂₀-(SnO₂)₄₃ from 0.2 V to 0.35 V, demonstrating 2.8 times higher CO₂ selectivity at 0.35 V. These results showed that CO₂ generation by C–C bond splitting of ethanol was enhanced on the triphasic Pt₃₇Rh₂₀O₂₁-(SnO₂)₄₃ with a partially oxidized Pt and Rh core. Notably, although Pt₃₇Rh₂₀O₂₁-(SnO₂)₄₃ displayed a superior CO₂ generation rate, commercial Pt has the highest CO₂ selectivity, largely owing to the low overall current density (j_{Total}).

In addition to the discovery of an unexpected promotional effect of the partially oxidized Pt and Rh core on the CO₂ generation, we also found that the chemical composition of Pt and Rh played a role in electrokinetics of CO₂ generation. Pt/Rh/Sn materials with different Pt and Rh compositions were synthesized, indexed as $Pt_{39}/Rh_{12}/Sn_{49}$. Our electrochemical data showed similar results: in terms of CO₂ generation, $Pt_{39}/Rh_{12}/Sn_{49}$ underperforms $Pt_{37}/Rh_{20}/Sn_{43}$ (Figure S6, Figure S7, Table S2 in the Supporting Information), but triphasic $Pt_{39}Rh_{12}O_{21}$ -(SnO₂)₄₉ with a partially oxidized Pt and Rh core indeed outperformed biphasic $Pt_{39}Rh_{12}$ -(SnO₂)₄₉ with a PtRh alloy core. The former suggests a Pt to Rh ratio of nearly 2:1 was the optimal composition for CO₂ generation, and the latter confirms that a partially oxidized Pt and Rh core has better CO₂ generation kinetics than the PtRh alloy core.

The exact mechanism of the promotional effect of the partially oxidized Pt and Rh core found in $Pt_{37}Rh_{20}O_{21}-(SnO_2)_{43}$ on the CO₂ generation kinetics by C–C splitting is still under investigation. However, it is clear that the ensemble effect, associated with the particular arrangements of the Pt, Rh, and

www.chemcatchem.org

O constituents, plays an important role in the C-C splitting of ethanol. In lieu of ethanol dissociation, co-existing metallic and oxidized Pt and Rh might show a special advantage for C-C splitting. According to DFT calculations conducted on the process of $CO + \frac{1}{2}O_2 \rightarrow CO_2$, the reaction barrier to CO_2 formation is significantly lower if O atoms from the edge of the surface oxide are involved in the CO oxidation, compared with the reaction only involving chemisorbed O atoms.^[22] Thus, co-existence of metallic and oxidized Pt and Rh on the surface is expected to facilitate CO₂ formation, whereas the metallic phase provides a large and available site for dissociative adsorption of ethanol by C-C splitting and the oxidized Pt and Rh phases provide mobile O atoms for the oxidation of reaction intermediates such as CO and CH_x. Our findings for the partially oxidized core-shell catalysts, Pt₃₇Rh₂₀O₂₁-(SnO₂)₄₃, are of major importance for understanding the complete electro-oxidation of ethanol on a fundamental level, and will aid in the design of a new genre of electrocatalysts that have a partially oxidized noble metal core for various reactions.

Acknowledgments

This material is based upon work supported by the National Science Foundation (CHE 1152771). Use of the NSLS was supported by the U.S. Department of Energy. The authors acknowledge the facilities support provided at the Synchrotron Catalysis Consortium (U.S. Department of Energy, Grant No. DE-SC0012335). STEM-EELS was carried out at the Center for Functional Nanomaterial at Brookhaven National Laboratory supported by U.S. Department of Energy, Office of Basic Energy Sciences.

Keywords: core-shell structures · electrocatalysis · ethanol · platinum · rhodium

- [1] X. H. Xia, H. D. Liess, T. Iwasita, J. Electroanal. Chem. 1997, 437, 233.
- [2] M. H. Shao, R. R. Adzic, Electrochim. Acta 2005, 50, 2415.
- [3] H. Hitmi, E. M. Belgsir, J. M. Leger, C. Lamy, R. O. Lezna, *Electrochim. Acta* 1994, 39, 407.

- [5] H. Wang, Z. Jusys, R. J. Behm, J. Phys. Chem. B 2004, 108, 19413.
- [6] G. A. Camara, T. Iwasita, J. Electroanal. Chem. 2005, 578, 315.
- [7] W. X. Du, Q. Wang, C. A. LaScala, L. H. Zhang, D. Su, A. I. Frenkel, V. K. Mathur, X. W. Teng, J. Mater. Chem. 2011, 21, 8887.

CHEMCATCHEM

mmunications

- [8] A. Kowal, M. Li, M. Shao, K. Sasaki, M. B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, R. R. Adzic, *Nat. Mater.* **2009**, *8*, 325.
- [9] M. Li, D. A. Cullen, K. Sasaki, N. S. Marinkovic, K. More, R. R. Adzic, J. Am. Chem. Soc. 2013, 135, 132.
- [10] M. Li, W. P. Zhou, N. S. Marinkovic, K. Sasaki, R. R. Adzic, *Electrochim. Acta* 2013, 104, 454.
- [11] N. Erini, R. Loukrakpam, V. Petkov, E. A. Baranova, R. Z. Yang, D. Teschner, Y. H. Huang, S. R. Brankovic, P. Strasser, ACS Catal. 2014, 4, 1859.
- [12] E. A. de Souza, M. J. Giz, G. A. Camara, E. Antolini, R. R. Passos, *Electro-chim. Acta* 2014, 147, 483.
- [13] L. C. Silva-Junior, G. Maia, R. R. Passos, E. A. de Souza, G. A. Camara, M. Janete Giz, *Electrochim. Acta* 2013, *112*, 612.
- [14] A. Bach Delpeuch, F. Maillard, M. Chatenet, P. Soudant, C. Cremers, Appl. Catal. B 2016, 181, 672.
- [15] T. Sheng, W. F. Lin, C. Hardacre, P. Hu, Phys. Chem. Chem. Phys. 2014, 16, 13248.
- [16] J. M. Jin, T. Sheng, X. Lin, R. Kavanagh, P. Hamer, P. J. Hu, C. Hardacre, A. Martinez-Bonastre, J. Sharman, D. Thompsett, W. F. Lin, *Phys. Chem. Chem. Phys.* 2014, *16*, 9432.
- [17] W. X. Du, G. X. Yang, E. Wong, N. A. Deskins, A. I. Frenkel, D. Su, X. W. Teng, J. Am. Chem. Soc. 2014, 136, 10862.
- [18] K. Qadir, S. H. Joo, B. S. Mun, D. R. Butcher, J. R. Renzas, F. Aksoy, Z. Liu, G. A. Somorjai, J. Y. Park, *Nano Lett.* **2012**, *12*, 5761.
- [19] M. E. Grass, Y. Zhang, D. R. Butcher, J. Y. Park, Y. Li, H. Bluhm, K. M. Bratlie, T. Zhang, G. A. Somorjai, *Angew. Chem. Int. Ed.* **2008**, *47*, 8893; *Angew. Chem.* **2008**, *120*, 9025.
- [20] Z. Duan, G. Henkelman, ACS Catal. 2014, 4, 3435.
- [21] M. D. Ackermann, T. M. Pedersen, B. L. M. Hendriksen, O. Robach, S. C. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, J. W. M. Frenken, *Phys. Rev. Lett.* **2005**, *95*, 255505.
- [22] R. Westerström, J. G. Wang, M. D. Ackermann, J. Gustafson, A. Resta, A. Mikkelsen, J. N. Andersen, E. Lundgren, O. Balmes, X. Torrelles, J. W. M. Frenken, B. Hammer, J. Phys. Condens. Matter 2008, 20, 184018.
- [23] R. F. B. De Souza, J. C. M. Silva, M. H. M. T. Assumpção, A. O. Neto, M. C. Santos, *Electrochim. Acta* **2014**, *117*, 292.
- [24] J. Gomes, D. Profeti, L. J. Deiner, ChemElectroChem 2014, 1, 655.
- [25] J. Yin, S. Shan, M. S. Ng, L. Yang, D. Mott, W. Fang, N. Kang, J. Luo, C.-J. Zhong, *Langmuir* **2013**, *29*, 9249.

Received: April 13, 2016 Published online on ■■ ■, 0000

COMMUNICATIONS

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim **K** These are not the final page numbers!