Reduction of CuO in H₂: in situ time-resolved XRD studies

José A. Rodriguez^{a,*}, Jae Y. Kim^a, Jonathan C. Hanson^a, Manuel Pérez^b, and Anatoly I. Frenkel^c

^a Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA ^b Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela

^c Department of Physics, Yeshiva University, New York, NY 10016, USA

Received 16 August 2002; accepted 8 November 2002

CuO is used as a catalyst or catalyst precursor in many chemical reactions that involve hydrogen as a reactant or product. A systematic study of the reaction of H₂ with pure powders and films of CuO was carried out using *in situ* time-resolved X-ray diffraction (XRD) and surface science techniques. Oxide reduction was observed at atmospheric H₂ pressures and elevated temperatures (150–300 °C), but only after an induction period. High temperature or H₂ pressure and a large concentration of defects in the oxide substrate lead to a decrease in the magnitude of the induction time. Under normal process conditions, *in situ* time-resolved XRD shows that Cu^{1+} is not a stable intermediate in the reduction of CuO. Instead of a sequential reduction (CuO \Rightarrow Cu₄O₃ \Rightarrow Cu₂O \Rightarrow Cu), a direct CuO \Rightarrow Cu transformation occurs. To facilitate the generation of Cu¹⁺ in a catalytic process one can limit the supply of H₂ or mix this molecule with molecules that can act as oxidant agents (O₂, H₂O). The behavior of CuO-based catalysts in the synthesis of methanol and methanol steam reforming is discussed in the light of these results.

KEY WORDS: copper oxide; copper; hydrogen; methanol synthesis; methanol steam reforming; reduction of oxides; X-ray diffraction.

1. Introduction

CuO is used as a catalyst or catalyst precursor in many chemical reactions that involve hydrogen as a reactant or a product: methanol synthesis from CO (CO + 2H₂ \Rightarrow CH₃OH) or CO₂ (CO₂ + 3H₂ \Rightarrow CH₃OH + H₂O) [1–3], the water-gas shift reaction $(CO + H_2O \Rightarrow CO_2 + H_2)$ [4], methanol steam reforming $(CH_3OH + H_2O \Rightarrow$ $CO_2 + 3H_2$) [5], oxidative methanol reforming $(CH_3OH + \frac{1}{4}O_2 + \frac{1}{2}H_2O \Rightarrow CO_2 + \frac{5}{2}H_2)$ [6], NO reduction $(NO + H_2 \Rightarrow \frac{1}{2}N_2 + H_2O)$ [1,7], etc. It has been proposed that in several of these catalytic processes CuO undergoes a complete reduction and metallic copper or Cu^0 is the real active phase [8–12]. For example, after CuO is exposed to mixtures of CO/H₂, measurements using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) show a $Cu^{2+} \Rightarrow Cu^{0}$ transformation [8]. Single-crystal surfaces of metallic copper give reaction rates and kinetic parameters that match those obtained for the water-gas shift reaction on CuO/ZnO catalysts [9,10], suggesting that during reaction an active Cu⁰ phase is produced. It was thought that the same was valid for the methanol-steam reforming reaction [11,12], but recent studies using in situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XANES/EXAFS) show Cu^{1+} during the reduction of CuO [13]. Time-resolved XANES also shows Cu^{1+} as a transient species in the reduction of CuO/ZnO catalysts during the oxidative reforming of methanol [14]. For years, there has been a controversy about the relative

importance of Cu^{1+} and Cu^{0} centers in the methanol synthesis reaction [1–3,10]. In order to solve some of these issues, one needs a fundamental understanding of the reaction of H₂ with CuO and the microscopic mechanism for the reduction of the oxide.

CuO, Cu₄O₃ and Cu₂O are oxides of copper with welldefined crystal structures [15-17]. Thus, a sequential oxide $(CuO \Rightarrow Cu_4O_3 \Rightarrow$ reduction of copper $Cu_2O \Rightarrow Cu)$ upon reaction with H₂ could occur. The data reported in the literature do not agree on this point. Experiments of H₂ temperature-programmed reduction (TPR) show that the reduction of CuO occurs in one, two or even three steps [18-20]. XANES points to the existence of Cu¹⁺ as a transient species in the reduction of Cu^{2+} to Cu^{0} [13,14,21], but such an intermediate was not detected in XRD measurements [22]. These discrepancies could be a consequence of the different conditions used in the reduction experiments, or they could originate from differences in the preparation of the samples with CuO deposited on different supports (Al₂O₃, ZnO, Y-ZrO₂, ZSM-5). Therefore, we decided to perform a systematic study of the reaction of H₂ with pure powders and films of CuO using in situ time-resolved XRD and surface science techniques.

It is very important to examine the reduction of CuO with H_2 *in situ*, because for this system *ex situ* investigations may not represent the "real" state of the copper phase under reduction conditions [13,14]. Nowadays the combination of the high intensity of synchrotron radiation with new data collection devices makes it possible to conduct sub-minute, time-resolved XRD experiments under a wide variety of temperature and

^{*}To whom correspondence should be addressed.

pressure conditions ($-190 \degree C < T < 900 \degree C$; P < 45 atm) [23]. Recently, time-resolved XRD has been successfully used to study the reduction of MoO₃ [24] and NiO [25] *in situ* under atmospheric pressures of H₂.

2. Experimental

2.1. Time-resolved XRD studies

High-purity (99.995%) powders of CuO were acquired from commercial sources. These powders exhibited the typical Cu 2p XPS [8,26], Cu L₃VV Auger [26,27] and O K-edge XANES [28] spectra of pure CuO. The time-resolved XRD data were collected on beam line X7B of the National Synchrotron Light Source (NSLS) [23]. Samples of CuO were loaded in an open sapphire capillary attached to a flow-reaction cell similar to those described previously [29,30]. The capillary was connected to 1/16 in. Swagelok style fittings with Vespel ferrules. A 0.010 in. chromel-alumel thermocouple was inserted straight into the capillary near the oxide sample [29]. The oxide sample was heated using a small resistance heater wrapped around the capillary. Diffraction patterns ($\lambda = 0.9036$ or 0.9201 Å) were recorded at temperatures in the range 150-300 °C under a 5% H₂ (99.9999% purity) and 95% He (99.9999% purity) gas mixture (flow rate ~ 1 or 20 cm³/min) using a MAR345 detector. The typical time required for collecting an individual diffraction pattern was in the range 1–3 min. The powder rings were integrated using the FIT2D code [31].

2.2. XPS and AES studies

The experiments for the reaction of H₂ with CuO films were performed in a standard ultrahigh-vacuum (UHV) system, base pressure $\sim 2 \times 10^{-10}$ torr, with instrumentation for XPS, AES, low-energy electron diffraction (LEED) and thermal desorption mass spectroscopy (TDS) [25]. The XPS spectra were taken employing Al or MgK α radiation. Attached to the UHV system was a reaction cell [10,25] that was used to expose CuO films to sub-atmospheric pressures of hydrogen. In a typical experiment, the CuO sample was initially cleaned and characterized in the UHV system and subsequently transferred into the reaction cell, where it was exposed to a mixture of H₂ (5 torr, 99.9999% purity) and He (95 torr, 99.9999% purity) at 150-250 °C for a given amount of time. Then, the gases were pumped out and the sample was moved back into the UHV system for surface characterization.

To prepare the CuO films we followed a methodology similar to that described elsewhere [8]. Thick films of metallic copper (99.999% purity) were vapor-deposited on a clean Mo substrate [32]. Then, the metallic Cu was transformed into copper oxide by oxidation with 50 torr of O₂ (5–10 min) at elevated temperatures (400– 500 °C) in the reaction cell attached to the UHV chamber [8,26]. These copper oxide films showed the O 1s XPS, Cu 2p XPS and Cu L₃VV Auger spectra expected for CuO [26,27].

3. Results

3.1. Reaction of H_2 with CuO powders

In our experiments with pure powders of CuO, we found reaction with H₂ and reduction to metallic copper at temperatures between 150 and 300 °C. A similar fact has been found in H2-TPR experiments for the reduction of CuO supported on Al₂O₃ [18] or mixed with ZnO [13]. Figure 1 shows time-resolved XRD data for the isothermal reduction of CuO at 240 °C under a 5% H₂/95% He mixture (gas flow $\sim 20 \,\mathrm{cm^3/min}$). These experimental conditions (i.e. temperature, H₂ concentration, flow rate) are similar to those used in many catalytic processes [1,3,10]. In the first 15 min of the experiment, no change is seen in the diffraction pattern for CuO. After this induction time, lines for metallic copper start to appear (direct $Cu^{2+} \Rightarrow Cu^0$ transformation) and the evolution of water is detected at the exit of the reaction cell with a mass spectrometer. This experiment was repeated many times and no diffraction lines for Cu₄O₃ [16] or Cu₂O [17] were seen during the reduction. We also investigated the reduction process at lower temperatures, as shown in figure 2. The decrease in reaction temperature led to an increase in the magnitude of the induction time, but still there was a direct $Cu^{2+} \Rightarrow Cu^0$ transformation without any stable intermediate.

It could be argued that the induction time in figures 1 and 2 is associated with the formation of an amorphous phase of Cu₂O, which may not be detectable with XRD. This possibility was examined using X-ray absorption spectroscopy. Our XANES/EXAFS data indicate that under the experimental conditions of figures 1 and 2 neither Cu_4O_3 nor Cu_2O is formed [33]. In order to see the formation of Cu₂O as a stable intermediate, we had to substantially decrease the flow rate of hydrogen. Figure 3 displays data for the isothermal reduction of CuO powders at 210, 270 and 300 °C under a 5% H₂/95% He mixture and a flow rate of $\sim 1 \text{ cm}^3/\text{min}$. In these experiments diffraction lines for Cu₂O (see arrows) clearly appear. The higher the temperature, the larger the amount of Cu¹⁺ produced. An analysis of the relative intensities of the diffraction lines indicates that two reduction mechanisms seem to compete and occur simultaneously. These are sequential reduction:

$$2CuO + H_2 \Rightarrow Cu_2O + H_2O$$
(1a)

$$Cu_2O + H_2 \Rightarrow 2Cu + H_2O \tag{1b}$$

Figure 1. Left: time-resolved XRD data for the reduction of CuO under a 5% $H_2/95\%$ He mixture (flow rate $\sim 20 \text{ cm}^3/\text{min}$) at 240 °C. Right: evolution of water during the reduction process.

and direct reduction:

$$CuO + H_2 \Rightarrow Cu + H_2O.$$
 (2)

Reaction (2) is clearly dominant at 210 and 270 °C, but at 300 °C reaction (1) becomes important. High reaction temperatures and a limited supply of H_2 favor the appearance of Cu¹⁺ as an intermediate in the reduction process.

3.2. Reaction of H_2 with CuO films

In agreement with previous studies [8,34], we found that CuO has a very low chemical reactivity under UHV conditions. Figure 4 shows O 1s XPS data for the reduction of CuO films at a temperature of 200 °C with H₂ pressures that range from 10^{-8} to 5 torr. For a very low H₂ pressure of 10^{-8} torr, there is no reaction after 60 min of exposure to the gas. In the case of 10^{-4} torr of H₂, the removal of oxygen from the oxide surface (i.e. drop in O 1s signal) becomes significant after an induction time of ~22 min. Finally, under a H₂ pressure of 5 torr the reduction reaction starts very fast. Thus, high H₂ pressure leads to a decrease in the magnitude of the induction time. The same occurs when defects are introduced in the oxide. For highly defective non-stoichiometric CuO_x films, we found no induction time for reduction under 10^{-4} or 5 torr of H₂ at 200 °C.

Figure 2. Left: time-resolved XRD data for the reduction of CuO under a 5% $H_2/95\%$ He mixture (flow rate $\sim 20 \text{ cm}^3/\text{min}$) at 200 °C. Right: amounts of CuO and Cu present as a function of time.

Figure 3. Time-resolved XRD data for the reduction of CuO under a 5% H₂/95% He mixture (flow rate $\sim 1 \text{ cm}^3/\text{min}$) at three different temperatures: (a) 210, (b) 270 and (c) 300 °C. The arrows indicate the main diffraction line for Cu₂O. (d) Intensity of the main diffraction line for Cu₂O in each case.

Figure 5 displays Cu 2p and O 1s XPS spectra acquired before and after partial reduction of a CuO film. In the Cu 2p spectrum of CuO strong satellites are observed between 940 and 945 eV [8,26,27]. These satellites are not seen for Cu₂O or metallic Cu [26,27], and are thus a convenient way to monitor the disappearance of CuO during reduction. The Cu L₃VV Auger spectra of CuO, Cu₂O and Cu have distinctive features [26,27], but since they are very broad and close in energy, these Auger spectra have a limited utility when trying to quantify the amount of Cu²⁺, Cu¹⁺ and Cu⁰ present in a partially reduced sample of copper oxide. In this respect, the Cu 2p_{3/2} peak position also does not allow a clear distinction of Cu₂O and Cu [26].

As shown in figure 4, the overall rate of reduction is faster under 5 torr of H₂ than under 10^{-4} torr. An important issue here is how the decrease in the CuO Cu 2p satellite signal compares with the decrease in the total O 1s signal. In principle, if a sequential reduction such as reaction (1) occurs, then the CuO satellite signal should drop faster than the O 1s signal. On the other hand, for a direct reduction like reaction (2), the CuO satellite and O 1s signals should drop in a proportional way. The XPS data in figure 6 show that for a similar drop in the total O 1s signal (i.e. same degree of sample reduction at 10^{-4} and 5 torr), the drop in the CuO satellite signal is larger for the experiment with an H₂ pressure of 10^{-4} torr. These trends point to the existence of a sequential reduction at low H₂ pressure, and a direct reduction at high pressure. This is consistent with the behavior seen above for the reaction of H₂ with CuO powders.

3.3. Reaction of O_2 with CuO_x and Cu

We also investigated the full reoxidation of CuO_x or oxidation of Cu using time-resolved XRD. To compare with the chemistry observed for the reduction of CuO, it is interesting to establish if the oxidation of metallic copper occurs sequentially:

$$2\mathrm{Cu} + \frac{1}{2}\mathrm{O}_2 \Rightarrow \mathrm{Cu}_2\mathrm{O} \tag{3a}$$

$$Cu_2O + \frac{1}{2}O_2 \Rightarrow 2CuO \tag{3b}$$

Figure 4. Variation of the O 1s signal as a function of time for the reduction of CuO films at 200 °C under different pressures of H₂.

Figure 5. Cu 2p (top panel) and O 1s (bottom panel) XPS spectra taken before and after partial reduction of a CuO film with H2 at 200 °C.

Figure 6. Relationships between the decreases in the CuO Cu 2p satellite area and total O 1s signal for the reduction of CuO under 10^{-4} and 5 torr of H₂.

or through a direct transformation:

$$2Cu + O_2 \Rightarrow 2CuO. \tag{4}$$

Figure 7 shows time-resolved XRD results for the oxidation of pure Cu in a stream of 5% $O_2/95\%$ He (flow rate ~20 cm³/min) at 300 °C. At this temperature, the full reduction of CuO occurs rapidly under normal conditions (see above). We found that the reverse oxidation of copper is a more difficult process. In figure 7, the diffraction lines for Cu partially disappear, while lines for Cu₂O and a minor amount of CuO appear. After exposing the system for 140 min to O₂, one has a mixture of Cu, Cu₂O (dominant oxide) and CuO.

Complete oxidation of Cu was observed at very high temperatures. Figure 8 displays time-resolved XRD data for the oxidation reaction starting at 30 °C and ending at 600 °C. Here, the lines for metallic Cu decrease in intensity, simultaneously Cu₂O appears, and at the end only CuO is observed at 600 °C.

All our XRD data for the reaction of O_2 with Cu indicate that the oxidation process always follows a sequential pathway as shown in reaction (3). In clear contrast to the behavior observed for the reduction of CuO, Cu¹⁺ is a stable intermediate in the oxidation process.

4. Discussion

One method frequently employed for the preparation of active oxide catalysts involves partial reduction with hydrogen at elevated temperatures [1,35]. In general, there is a need to get a fundamental understanding of the reduction/activation process [1,35], and timeresolved XRD can be useful in this respect [24,25,36]. Two different kinetic models have been proposed for the reduction of oxides [1,35]: the "nucleation model" and the "interface-controlled model". In the "nucleation

Figure 7. Time-resolved XRD data for the oxidation of Cu under a 5% $O_2/95\%$ He mixture (flow rate $\sim 20 \text{ cm}^3/\text{min}$) at 300 °C. In the right-hand-side graph is shown the variation of the main diffraction lines for Cu, Cu₂O and CuO as a function of time.

Figure 8. Time-resolved XRD data for the oxidation of Cu under a 5% $O_2/95\%$ He mixture (flow rate ~20 cm³/min) at 25–600 °C and constant 600 °C (30 min). The arrow indicates the main diffraction line for Cu₂O. In the right-hand-side graph is shown the variation of the main diffraction lines for Cu₂O and Cu₂O and Cu₂O as a function of temperature.

(N) model", the generation of small aggregates of active sites for the dissociation of H₂ or clusters of the new phase (i.e. the reduced oxide) is the rate-determining step. According to this model there are two main characteristics in the kinetics for oxide reduction: the existence of an induction period, and the possibility for autocatalysis [1,35]. In the "interface-controlled (IC) model", the rapid formation of a uniform layer of the reduced oxide takes place [35]. A continuous reducedphase/oxide interface entirely covers the solid reactant, and the rate of oxide reduction is proportional to the area of such interface [35]. In the IC model, the fraction of reduced oxide increases in a non-linear fashion as a function time, without the presence of an induction time or substantial autocatalysis [1,35]. The trends seen in figures 1-4 for the reduction of CuO fit well the nucleation model. The existence of an induction time has also been observed in reduction studies for NiO [25,37,38]. In our experiments with CuO films, we found that the magnitude of the induction time could be reduced substantially by the introduction of defects in the oxide. Thus, the induction time could be associated with the production of sites on the oxide substrate with a high efficiency for the adsorption and dissociation of H₂ [25]. This alone can explain the autocatalytic nature of the reduction process. Once a large coverage of H is available on the surface, then the efficient removal of O from the bulk or the nucleation of the new Cu phase can become rate-limiting factors [35,37].

Under a normal supply of H_2 , our results show that Cu^{1+} is not a stable intermediate in the reduction of CuO. It is an open question as to how the system can evolve directly from CuO to Cu without passing through Cu_4O_3 or Cu_2O as intermediates. To address this issue we are currently studying the reduction process using

XANES/EXAFS and diffraction with higher energy $(\lambda \sim 0.15 \text{ Å})$ X-rays [33]. To faciliate the generation of Cu¹⁺ in a catalytic process one can limit the supply of H_2 or mix this molecule with molecules that can act as oxidant agents. We have found that CO also leads to a direct $CuO \Rightarrow Cu$ transformation [39], making difficult the generation of Cu¹⁺ during the synthesis of methanol $(CO + 2H_2 \Rightarrow CH_3OH)$ on copper oxide-based catalysts. But molecules like H₂O and O₂ can contribute to the generation of Cu¹⁺ during methanol steam reforming $(CH_3OH + H_2O \Rightarrow CO_2 + 3H_2)$ [13] and oxidative methanol reforming $(CH_3OH + \frac{1}{4}O_2 + \frac{1}{2}H_2O \Rightarrow CO_2 + \frac{1}{2}$ $\frac{5}{2}$ H₂) [14]. For the reaction of CuO with H₂/O₂/H₂O gas mixtures, time-resolved XRD showed a combination of Cu₂O/Cu as the final product [39]. This is consistent with XANES studies [13,14], which show Cu¹⁺ formation during the reforming of methanol over CuO/ZnO catalysts.

Another way to stabilize Cu¹⁺ could involve the deposition of CuO on an interacting oxide support. In our H₂-TPR experiments we found desorption of water in a single peak (figure 1), whereas two or even three water desorption peaks have been observed during the reduction of supported CuO [18-20]. Thus, interactions with an oxide support can accelerate or decrease the rate for CuO reduction. It has been proposed that in CuO/ZnO catalysts for the synthesis of methanol, the intermixing of the oxides eventually facilitates the formation of Cu1+ under reaction conditions [2,3,40]. This requires very strong CuO-ZnO interactions, because both H₂ and CO [39] have a tendency to induce a direct $CuO \Rightarrow Cu$ transformation. The simple deposition of CuO on ZnO is not enough to stabilize Cu^{1+} species and prevent a $CuO \Rightarrow Cu$ conversion [8,39].

5. Conclusions

A systematic study of the reaction of H_2 with pure powders and films of CuO was carried out using *in situ* time-resolved XRD and surface science techniques. At elevated temperatures (150–300 °C), oxide reduction was observed at low (10⁻⁴ torr) and atmospheric pressures of H_2 , but there was an induction period of negligible chemical activity. After the induction period, the reduction process became autocatalytic. A high hydrogen pressure and a large concentration of defects in the oxide substrate led to a decrease in the size of the induction period. The induction period is probably associated with the production (or nucleation) of adsorption sites with a high efficiency for the activation or dissociation of H_2 .

Under normal process conditions, *in situ* timeresolved XRD shows that Cu^{1+} is not a stable intermediate in the reduction of CuO. Instead of a sequential reduction (CuO \Rightarrow Cu₄O₃ \Rightarrow Cu₂O \Rightarrow Cu), a direct CuO \Rightarrow Cu transformation occurs. To facilitate the generation of Cu¹⁺ in a catalytic process one can limit the supply of H₂ or mix this molecule with molecules that can act as oxidant agents (O₂, H₂O).

XRD data for the reaction of O_2 with metallic Cu at 400–600 °C show a sequential oxidation process: $Cu \Rightarrow Cu_2O \Rightarrow CuO$. In clear contrast to the behavior observed for the reduction of CuO, Cu^{1+} is a stable intermediate in the oxidation reaction.

Acknowledgments

The authors would like to thank E. Iglesia, D. Buttrey, and P.J. Lee for interesting conversations about the reduction of CuO. The research carried out at the Chemistry Department of Brookhaven National Laboratory was financed through contract DE-AC02-98CH10086 with the US Department of Energy (Division of Chemical Sciences). A.F. acknowledges the support of the Yeshiva University Research Funds. The NSLS is supported by the Divisions of Materials and Chemical Sciences of the DOE.

References

- H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, New York, 1989).
- [2] K. Klier, Adv. Catal. 31 (1982) 243.
- [3] J.-L. Li, T. Takeguchi and T. Inui, Appl. Catal. A 139 (1996) 97.
- [4] D.S. Newsome, Catal. Rev. Sci. Eng. 21 (1980) 275.

- [5] B.A. Peppley, J.C. Amphlett, L.M. Kearns and R.F. Mann, Appl. Catal. A 179 (1999) 31.
- [6] T.L. Reitz, P.L. Lee, K.F. Czaplewski, J.C. Lang, K.E. Popp and H. Kung, J. Catal. 199 (2001) 193.
- [7] W.-P. Dow and T.-J. Huang, Appl. Catal. A 141 (1996) 17.
- [8] C.T. Campbell, K.A. Daube and J.M. White, Surf. Sci. 182 (1987) 458.
- [9] J. Nakamura, J.M. Campbell and C.T. Campbell, J. Chem. Soc. Faraday Trans. 86 (1990) 2725.
- [10] C.T. Campbell, Adv. Catal. 36 (1989) 1.
- [11] C.J. Giang, D.L. Trimm, M.S. Wainwright and N.W. Cant, Appl. Catal. 97 (1993) 145.
- [12] B.A. Peppley, J.C. Amphlett, L.M. Kearns and R.F. Mann, Appl. Catal. A 179 (1999) 31.
- [13] M.M. Günter, T. Ressler, R.E. Jentoft and B. Bems, J. Catal. 203 (2001) 133.
- [14] T.L. Reitz, P.L. Lee, K.F. Czaplewski, J.C. Lang, K.E. Popp and H.H. Kung, J. Catal. 199 (2001) 193.
- [15] PDF # 41-0254, JCPDS Powder Diffraction File, Int. Center for Diffraction Data, Swarthmore, PA, 1989.
- [16] PDF # 33-0480, JCPDS Powder Diffraction File, Int. Center for Diffraction Data, Swarthmore, PA, 1989.
- [17] PDF # 05-0667, JCPDS Powder Diffraction File, Int. Center for Diffraction Data, Swarthmore, PA, 1989.
- [18] W.-P. Dow, Y.-P. Wang and T.J. Huang, J. Catal. 160 (1996) 155.
- [19] W.-P. Dow and T.J. Huang, Appl. Catal. A 141 (1996) 17.
- [20] M. Fernández-García, I. Rodríguez-Ramos, P. Ferreira-Aparicio and A. Guerro-Ruiz, J. Catal. 178 (1998) 253.
- [21] M.K. Neylon, C. Marshall and J. Kropf, to be published.
- [22] M.S.W. Vong, P.A. Sermon and K. Grant, Catal. Lett. 4 (1990) 15.
- [23] P. Norby and J. Hanson, Catal. Today, 39 (1998) 301; and references therein.
- [24] T. Ressler, R.E. Jentoft, J. Wienold, M.M. Günter and O. Timpe, J. Phys. Chem. B 104 (2000) 6360.
- [25] J.A. Rodriguez, J.C. Hanson, A. Frenkel, J.-Y. Kim and M. Perez, J. Am. Chem. Soc. 124 (2002) 346.
- [26] S. Poulston, P.M. Parlett, P. Stone and M. Bowker, Surf. Interf. Anal. 24 (1996) 811.
- [27] J.A. Rodriguez and J. Hrbek, J. Vac. Sci. Technol. A 12 (1994) 2140.
- [28] J.G. Chen, Surf. Sci. Reports 30 (1997) 1.
- [29] P.J. Chupas, M.F. Ciraolo, J.C. Hanson and C.P. Grey, J. Am. Chem. Soc. 123 (2001) 1694.
- [30] B.S. Clausen, G. Steffensen, B. Fabius, J. Villadsen, R. Freidenhans and H. Topsoe, J. Catal. 132 (1991) 524.
- [31] A.P. Hammersely, S.O. Svensson and A. Thompson, Nucl. Instrum. Methods Phys. Res. 346 (1994) 321.
- [32] J.A. Rodriguez and M. Kuhn, J. Phys. Chem. 99 (1995) 9567.
- [33] J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel and P.L. Lee, to be published.
- [34] V.E. Henrich and P.A. Cox, *The Surface Science of Oxides* (Cambridge University Press, Cambridge, UK, 1994).
- [35] B. Delmon in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knözinger and J. Weitkamp (VCH-Wiley, New York, 1997) p. 264.
- [36] J.A. Rodriguez, J.-Y. Kim, J.C. Hanson and J.L. Brito, Catal. Lett. 82 (2002) 103.
- [37] R.P. Furstenau, G. McDougall and M.A. Langell, Surf. Sci. 150 (1985) 55.
- [38] J.G. Chen, D.A. Fischer, J. Hardenbergh and R.B. Hall, Surf. Sci. 279 (1992) 13.
- [39] To be published.
- [40] R.G. Herman, K. Klier, G.W. Simmons, B.P. Finn, J.B. Bulko and T.P. Kobylinski, J. Catal. 56 (1979) 407.