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Pt nanoparticles dispersed on γ-alumina is one of the most widely used heterogeneous 
catalysis systems used in commercial chemical and energy industries, including 
petroleum refining[1]and, hence, has been investigated extensively as a model catalyst 
system to elucidate structure-catalytic activity and selectivity relationships.  
Our specific research interest is to understand γ-Al2O3 support affects on the structure 
and chemistry of the Pt catalyst. Several recent researchers reported that the support 
determines the structure of the metal catalysts, including size, uniformity and 
3-dimensional morphology.  For example, recent theoretical simulations revealed that 
defects in the γ-Al2O3 stabilize the Pt nanoparticles. These simulations are conducted 
on ideal single crystal γ-Al2O3, whereas commercial γ-Al2O3 is polycrystalline, 
irregular in shape, and contains impurities (Fig. 1).  In order to directly link 
experiments with theory necessitates the creation of a well-defined, single crystal 
gamma alumina film. Oxide terraces can be obtained and used as support for metal 
clusters in model catalytic systems[2]. Previous investigators demonstrated that 
epitaxial γ-Al2O3 thin film forms on single crystal β–NiAl by oxidation [3], Fig.1b.In 
this research, NiAl alloys are used to grow ultrathin γ-Al2O3 layers under 
well-controlled oxidation conditions. Morphology becomes flatter but more 
discontinuous during temperature decreasing. Here, we present our results of the 
oxidation of β–NiAl(110) as a function of oxidation temperature (750-950°C), time 
and air flow. The oxide films were characterized by transmission electron microscopy 
(TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and 
X-ray diffraction (XRD). Plan-view TEM samples were prepared by scratching the 
oxide off of the surface and placed onto a holey C grid. Fig. 2 and 3 are the TEM 
results after NiAl was oxidized for 1 hr at 950 and 850 �, respectively. The selected 
area electron diffraction pattern (SAED) confirmed that the oxide is γ- Al2O3, not 
another phase of alumina (e.g. theta, delta, alpha).  The XRD results confirm that 
epitaxial (111) γ-Al2O3 plane grows on (110)NiAl substrates (Fig.4). The surface 
morphology of the oxide films has been examined by SEM (Fig.5). With decreasing 
temperature, the morphology of the γ- Al2O3 film has become flatter but more 
discontinuous. The transformation kinetics is accelerated with higher air flowrate. A 
peculiar ridge network morphology is created which is believed to be a vestige of high 
diffusivity paths of oxides growth.  
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We will deposit Pt particles directly onto γ- Al2O3 surface to examine the interface of 
Pt/γ- Al2O3 by cross-sectional TEM methods. 
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Fig.5 SEM images of γ-Al2O3 on NiAl surface oxidized at 750,850,950°C for 1hour 
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Fig.1 TEM images: a. commercial  

γ-Al2O3. polycrystalline b. γ-

Al2O3(110) epitaxial growth on

NiAl(100) [3] 

Fig 2 TEM images of 950�
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Fig 3 TEM images of 850�
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Fig.4 XRD of 950� 1hour
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