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ABSTRACT: In this work we describe a multimodal exploration of the atomic
structure and chemical state of silica-supported palladium nanocluster catalysts
during the hydrogenation of ethylene in operando conditions that variously
transform the metallic phases between hydride and carbide speciations. The work
exploits a microreactor that allows combined multiprobe investigations by high-
resolution transmission electron microscopy (HR-TEM), X-ray absorption fine
structure (XAFS), and microbeam IR (μ-IR) analyses on the catalyst under
operando conditions. The work specifically explores the reaction processes that
mediate the interconversion of hydride and carbide phases of the Pd clusters in
consequence to changes made in the composition of the gas-phase reactant feeds,
their stability against coarsening, the reversibility of structural/compositional
transformations, and the role that oligomeric/waxy byproducts (here forming under hydrogen-limited reactant compositions)
might play in modifying activity. The results provide new insights into structural features of the chemistry/mechanisms of Pd
catalysis during the selective hydrogenation of acetylene in ethylenea process simplified here in the use of binary ethylene/
hydrogen mixtures. These explorations, performed in operando conditions, provide new understandings of structure−activity
relationships for Pd catalysis in regimes that actively transmute important attributes of electronic and atomic structures.

■ INTRODUCTION

The hydrogenation of unsaturated hydrocarbons is one of the
most widely used industrial catalytic processes.1−3 Whether in
the production of fuels or large volume chemicals (e.g., low
molecular weight olefins) from oil feedstocks, numerous
catalytic reforming and (de)hydrogenation steps are required
to effect these conversions.4,5 There has been considerable
attention given in research to the discovery of new catalysts that
can efficiently and cost-effectively mediate the conversions of
C−H bonds as are required by such processes. Specific to
hydrogenation reactions, a wide variety of catalyst materials
have been studied under a broad range of experimental
conditions.6−8 For the high temperature and pressure ambients
associated with many large-scale industrial processes, the use of
supported noble metal nanoparticle (NP) catalysts predom-
inates due to their high activity, good long-term stability, and
ease of regeneration and recovery.9−11 Hydrogenation
processes can also contribute other benefits (as well
complications) to the conversions occurring in process streams
beyond those suggested abovecases where the dominant
mechanisms of action involve selective, and variously reversible,
forms of C−H and/or C−C bond transformations. Highly
active catalysts, for example, might also promote the reductive

cleavage of C−C sigma bonds (hydrogenolysis), which is not
desirable when it leads to an inefficient utilization of the
hydrocarbon resource of the process feed. Catalytic hydro-
genation chemistries also play a critical role in purification
processes used in the industrial production fuels and chemicals,
using them to selectively remove/convert impurities that would
otherwise interfere with subsequent conversion steps. An
important exemplar of the latter is catalytic hydrodesulfuriza-
tion, which is used to remove S heteroatoms from oil prior to
its conversion to useful products.12 Another interesting example
is one related to a selective chemistry for the addition of
dihydrogen to unsaturated C−C bonds, specifically the
selective catalytic hydrogenation of acetylene as an impurity
in ethylene.13,14 The presence of acetylene, formed as an
impurity during hydrocracking, poisons the downstream
Ziegler−Natta catalysts used to polymerize ethylene and has
to be removed using a selective hydrogenation process. High
selectivity for its conversion to ethylene under hydrocarbon-
rich process conditions is important to prevent deleterious
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coproduction of ethane. Given the large global production of
polyethylene, the complex interplay of activity and selectivity
becomes a critical metric for evaluating catalyst performance.
As noted above, supported Pd catalysts, and a number of

bimetallic compositions (notably, Pd−Ag), afford good
activities and selectivities for the selective hydrogenation of
acetylene in ethylene-rich environments and have been much
studied for this reason.15−21 Important understandings of the
mechanisms of action by these materials have been developed
as a result, although important questions still remain as to the
nature and compositional fluxionality of the structures that
might result as a consequence of the precise conditions present
in the environments of their use. Issues of particular interest are
the sensitivities of the catalyst’s structure and composition to
the attributes of the gas-phase species contacting them and the
influences that variables such as temperature and absolute
pressure might engender. Are the atomic and electronic structures
of these catalysts f ixed, or can they in fact be transmuted in
reaction conditions (notably in ways that vary more broadly f rom
the well-characterized parent metallic and various hydride phases of
Pd)? A second, and perhaps more overarching, question relates
to how the structural/compositional fluxionality, as might be
present, acts to impact selectivity, where the concern for most
Pd-based catalysts remains activities that lead to both the
overhydrogenation of an alkyne/alkene feed (producing
alkanes) and a correlated activity yielding a complex mixture
of oligomeric hydrocarbons.22−26 The impacts of the latter
species (which we show in this work present in part a rich
speciation of even chain hydrocarbonsalkanes, alkenes, and
polyenesanalogous to the “Green Oils” noted in industrial
processes) on the catalyst’s structure and function are not
understood.13,27−29 Could these species, in terms of the bonding
interactions and other physical associations they might have with
the metal clusters’ surfaces, lead to modif ications of bonding that
could impact activity?
There exists a body of literature that provides insight into the

structural attributes of these catalysts as it might relate to their
sensitivities in operando conditions. It is now well established
that an active (indeed the most active) form of a supported Pd
hydrogenation catalyst is a hydride phase that forms within
hydrogen-rich ambients. Recent reports further suggest that
supported Pd NPs can also form a phase with subsurface
carbona Pd carbidein olefin-rich ambients,30,31 a speci-
ation that has very different adsorption affinities for C2H2/C2H4
than does either Pd metal or its hydride.25,32,33 Such an
intercalation of carbon would likely modify selectivity in the
hydrogenation process by weakening the adsorption of
C2H4.

25,26,34 The reactivity and structural dynamics of a
putative Pd carbide phase remain poorly understood other
that it is likely to be less active but more selective than a
hydride speciation.30,35−40 It is also suggested in the literature
that the Pd metal/Pd carbide/Pd hydride structural forms can
dynamically interchange in processes driven by the catalytic
reaction conditions.30,35−40 Recent experimental and theoretical
results further show that bound C atoms, once formed on the
catalyst, are preferentially absorbed by (not adsorbed on) the
clustera preference for the placement of the C atoms in the
subsurface layers of a supported cluster.26,33,40−42 The activated
absorption of carbon atoms within the metal lattice would
presumably yield at its end point a palladium carbide phase.
The latter species, a metastable phase (PdCx; 0 < x ≤ 0.15)
with carbon atoms residing at the interstitial sites of an
otherwise face-centered cubic (fcc) Pd lattice,31 forms within

specific operando conditions of hydrogenation processes.43 In
order to better understand the structure−activity relationships
that underpin the mechanisms of catalysis a more compre-
hensive picture of the dynamical attributes of atomic bonding
of supported Pd clusters, especially those associated with the
metal−carbon interactions that contribute to catalyst speci-
ations in olefin-rich environments, will be required.
In this report, we describe the results of a multimodal

operando study of the hydrogenation of ethylene over a silica-
supported nanoscale Pd catalyst (Pd-SiO2). The work
specifically explores the reaction processes that mediate the
interconversion of hydride and carbide phases of the Pd
clusters, their stability against coarsening, the reversibility of
these transformations, and the role that oligomeric products
might play in the mechanisms of the selective hydrogenation of
C2H2 in C2H4a chemistry simplified here via the use of
binary ethylene/hydrogen mixtures. The present multimodal
exploration of the atomic structure and chemical state of the
Pd-SiO2 materials exploits a “portable microreactor” that allows
combined multiprobe investigations by high-resolution trans-
mission electron microscopy (HRTEM), X-ray absorption
spectroscopy (XAS), and microbeam IR (μ-IR) analyses under
operando conditions (herein catalytic conversions carried out at
ambient temperature and 1 atm pressure of various H2 and
ethylene mixtures).44−46 These measurements are further
correlated with measurements of reaction kinetics and
conversion product speciation made by in-line gas chromatog-
raphy−mass spectrometry (GC-MS). Additional MS measure-
ments were made to characterize hydrocarbon products formed
during the reaction that were retained within the reactor via
physical interactions with the silica support. The data, when
taken together, show a rich interplay of operando structural
dynamics that mediate a variety of bond activation (H−H, C−
H, CC) and formation (C−H, C−C, CC, M-H, M-C)
processes. The data notably proscribe the features of predictive
compositional and structural models of nanoscale Pd-hydride
and Pd-carbide phases formed by the conversion of the starting
Pd-SiO2 catalyst on stream and the facility of adsorption
processes that subsequently modify and transform them. These
dynamic changes illustrate a rich structural and compositional
fluxionality that likely influences the chemistries of industrially
relevant selective hydrogenation catalysts.

■ EXPERIMENTAL SECTION
Two types of reactors were used in the work reported below.
These systems have been described in detail in earlier
publications.44,45 A Clausen cell, a plug-flow reactor, was used
for the GC-MS and XAFS measurements.47 A multimodal
microreactor was used for the μ-IR and TEM measure-
ments.44,45 Catalyst samples comprised of ∼1.6 nm diameter
Pd particles supported on SiO2 (Sigma (10−20 nm TEM),
99.5%) were prepared (1 wt % loading) and utilized within the
catalysis experiments as described in earlier reports.43 To
minimize heat effects due to the exothermic reaction, the
catalyst sample used in the Clausen cell was diluted by a factor
of 20 by mixing it with Pd-free silica powder.

GC-MS. An in-line GC-MS system (Agilent 7890A GC
equipped with 5975c MS and TCD detector) joined with a GS-
GasPro column (Agilent 60 m × 0.32 mm) was used to
quantify reaction rates and product identities within an effluent
stream. The small level of self-hydrogenation activity was
specifically monitored via the ethane product. A feed gas flow
rate of 20 sccm and the aforementioned Clausen cell was used
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in these experiments. The effluent gas was sampled after 2 h for
every time the reactor was switched to the next regimes.
Postreaction MS. Hydrocarbon products retained on the

support were extracted for experimental analysis following an
extended reaction run at several selected gas compositions (see
below). To carry out these analyses, the Clausen cell was
flushed with 0.5 mL of methylene chloride. This liquid was then
used to treat the MS probe for analysis. Electron impact (EI)
mass spectra were measured using a VG 70-VSE mass
spectrometer, with the probe temperature held at 60 °C.
Catalyst samples were collected after being run at 1 atm gas
flow for 2 h.
TEM. Transmission electron microscopy experiments were

conducted using a Titan 80−300 environmental transmission
electron microscope at the Center for Functional Nanomateri-
als, Brookhaven National Laboratory. Annular dark-field
scanning transmission electron microscopy images were
acquired at a constant image magnification of 640 000×
operating at 300 keV. All images were taken after each
programmed reaction regime reached a steady state condition
after 2 h. Multiple STEM images were acquired at each
condition.
Micro-IR. IR microspectroscopy experiments were per-

formed using the N2-purged Thermo Nicolet Magna 860 Step-
Scan FT-IR and Spectra Tech Continuμm IR Microscope at
beamline 1.4.4 at the Advanced Light Source, Lawrence
Berkeley National Laboratory. The IR spectra were recorded
under conditions of continuous gas flow with 4 cm−1

spectroscopic resolution and 256 coaveraged scans.
XAFS. X-ray absorption fine structure data were collected at

Beamline 2−2, Stanford Synchrotron Radiation Lightsource,
SLAC National Accelerator Laboratory. Measurements were
performed in fluorescence mode. The incident X-ray intensity
was recorded by using a 15 cm ionization chamber filled with
100% Ar and the fluorescence signal monitored by a 13-channel

Ge detector. Detailed data processing and fitting procedure are
included in the SI, page S6.

■ RESULTS AND DISCUSSION

The in situ experiment was performed with a series of reactant
gas mixtures (hydrogen/ethylene) of different ratios (10%
increments), as well as additional measurements made under
pure hydrogen and ethylene. The “forward sequence” denotes
the experiment stage with increasing C2H4 concentration and
the “backward sequence” the stage with decreasing C2H4
concentration. These ranges were selected to bracket ranges
for the mixture of the major components (C2H4 and H2)
present in the feed gas of industrial selective hydrogenation
processes and further test the reversibility of structural
modifications found in operando conditions. The hydrogenation
process was carried out at room temperature and 1 atm total
pressure with products monitored by MS (using the Clausen
cell) or in the microreactor, as described in earlier reports.44

As shown in Figure 1, several different products were
identified by GC-MS in the effluent stream, ones whose relative
concentrations vary with the feed composition. The dominant
product formed in all regimes is ethane. We also found a small
but appreciable amount of different C4 hydrocarbons in the
gaseous product stream that arise as a consequence of the
dimerization of ethylene. The latter include butane and 1-
butene along with a lesser quantity of butadiene. One notes in
these data several interesting trends. The reaction reaches a
maximum production of ethane at a hydrogen to ethylene ratio
of 1:1 (for this microreactor under the conditions of this
experiment this corresponds to 1.4% C2H4 converted). As the
composition of the feed becomes richer in ethylene, the
reaction becomes limited by the hydrogen content. It is
interesting to note that the product yield of ethane is not zero
when only ethylene is present in the feed. The latter self-
hydrogenation reactions (presumably with a correlated
production of acetylene) yield a quantity of ethane that is

Figure 1. Ethylene conversion in a differential plug-flow microreactor loaded with a 1% Pd-SiO2 catalyst in different gas composition regimes
monitored by the product concentrations in the effluent gas. The feed gas (H2 and C2H4) composition was gradually switched as specified by the
horizontal axis with step size of 10% for each (the maximum conversion of the ethylene occurs at 1:1 composition with a conversion of 1.4%
ethylene).
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limited to about 1% of that seen at the maximum conversion
conditions (4.7 × 10−6 mol/L vs 2.9 × 10−4 mol/L in product).
These observations correlate well with the results of past
studies reported in the literature.48−50 The production of C4
products shows some interesting trends. The production of
butane (which at its maximum only reaches levels of about 1%
relative to ethane) reaches a maximum at essentially the same
feed compositions where the ethane yield is maximized. The
conversion to this product is most efficient in the first cycle and
noticeably diminished (poisoned) in the second. The yields of
1-butene are notably larger than those of butane and reach
maximum production levels at feed compositions with higher
ethylene contents. Unlike butane, the activity for its production
is essentially unchanged in the replicate cycle. While uniformly
low, the processes yielding butadiene appear to be most
efficient under conditions where self-hydrogenation predom-
inates.
In previously reported studies of Pt/SiO2 by correlative use

of operando STEM and XAFS, we observed morphological
changes of the metal catalyst particles during ethylene
hydrogenation reaction.44 Intriguingly, STEM images obtained
for Pd NPs (Figure 2a with additional data given in Figure S1)
in operando conditions for the same reaction regimes show very
different trends than was found in the earlier work for Pt. The
current data show that the Pd NPs do not undergo any
significant degree of agglomeration on stream over the full
experimental run (Figure 2b). What is evident, however, is a
pronounced broadening of the distribution of Pd cluster sizes
relative to the freshly prepared/activated sample. All the same,
the mean metal-cluster sizes and their distributions of mass
remain in a range where previous studies have established that
XAFS data analyses and modeling yield a good description of
catalyst structure in the context of a picture of a
“representative/average” nanoparticle in the ensemble.44

These analyses follow below.
The Pd K-edge XAFS data provide information about

electronic structure and bonding characteristics (coordination
numbers, bond lengths, and their variances) for Pd atoms and
their nearest environments. It is important to note that, due to
the large penetration depth of hard X-rays, XAFS spectra are
generated from all the Pd sites in the sample. When one is
dealing with small nanoparticles, the surface atoms of the
nanoparticles contribute much more compared to those in the
inner part, as well as changing a lot the mean coordination
numbers. It is this feature that makes this technique particularly
powerful for analyzing catalysts with metal particle sizes in the
range of 1−3 nm in diameter. The current X-ray absorption
near-edge structure (XANES) data (Figure S2) reveal that clear
electronic structural changes are occurring in operando
conditions, ones that follow and characterize dynamical features
of structure in the different reaction regimes. There is useful
literature to guide the interpretations that follow, ones that
track the conversion of metallic Pd clusters through a sequence
of hydride and carbide structural transformations and
subsequent (and incompletely reversible) reconversion.51−54

In the current data, one sees a conversion of the initial state of
the XANES as the sample cycles toward a more hydrocarbon-
rich reactor feed in which the first and second maxima after the
edge rise visibly shift (Figure S2). These are behaviors expected
for a reaction sequence leading to the production of a Pd
carbide phase (where the absorption edge position does not
shift as compared to metallic Pd, while the first maximum shifts
to higher and the second maximum to lower energy relative to

the metallic state).51,53,55 This known behavior can be used
therefore as a fingerprint for a specific Pd phase speciation and
its conversion in operando conditions. Examining all the spectra
taken in the different reaction regimes, we note that those in
regimes 1−3 (where the feed reaches in sequence a
stoichiometric gas feed composition producing the maximum
conversion of C2H6, 50:50) evolve to closely resemble that of a
bulk metallic phase. For the data measured in more ethylene-
rich ambients (regimes 4 and 5), they show, as noted above, the
trends associated with a conversion of the Pd to carbide phase.
An examination of the spectra collected in the subsequent
regimes indicates that this change is not fully reversible under
these reaction conditions. For instance, the spectrum collected

Figure 2. (a) Operando STEM images and (b) STEM measured
particle size distributions of Pd NPs supported on SiO2 under different
reaction stages at 1 atm. Bold and thin gray lines indicate the standard
deviation and quartile range, respectively. The plots show no
statistically significant difference on size distributions.
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in pure H2 (regime 9) after the exposure of the catalyst is
different from that of the initial sample state formed in this
same gas phase ambient. The spectrum collected in regime 9, in
fact, more closely resembles that of the regime 5 spectrum,
although quantitative differences in the first and second maxima
shifts are evidenced (Figure S2).
The extended X-ray absorption fine structure (EXAFS) data

allow a more explicit analysis of the atomistic features of the
structural transformations that are implicated within the
electronic structure changes discussed above. These data were
analyzed using the IFEFFIT software package and FEFF6
program.56 The Pd−Pd bond distances and their associated
disorder were varied in the fits. Other fitting parameters
(coordination number N, correction to the photoelectron
energy origin E0, and amplitude reduction factor S0

2) were
constrained for all data sets, which were fit concurrently to
minimize correlation effects in the fitting parameters and
reduce uncertainties in their best fit values. These constraints
are justified by the similarity of the particle distributions seen in
the environmental STEM data (Figures 2 and S1) throughout
the sequence of operando reaction conditions. The lack of any
shifts of the edge position in the XANES data (Figure S2)
further supports the use of a concurrent fitting protocol that
constrains the photoelectron energy origin in the manner
described.
With these assumptions, the analyses yielded useful insights

into the bonding habits that were present through the sequence
of reaction conditions. The constrained fits are summarized in
Table S1 with typical spectra plotted in Figure S3 and yield a
value for the first shell Pd−Pd coordination number of 8.1 ±
0.3. This is a value suggesting a mean particle size of about 1.6
nm (containing about 92 Pd atoms), assuming a truncated
cuboctahedral cluster shape that accords well with both the
morphologies and particle size distribution data measured by
STEM (Figure 2).44 The latter assessment follows from a
geometric model of a truncated cuboctahedral cluster made
using the experimentally determined bonding parameters from
the EXAFS data analyses in conjunction with eq 144
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where N is the coordination number of nearest neighbors to X-
ray absorbing atoms; m is the total number of nearest neighbor
pairs; n is the total number of atoms; r is the first nearest
neighbor distance (≈2.745 Å as obtained from the inferred
metal-like state of Regime 3); and d is the deduced size of the
cluster.
As Table 1 shows, particle dimensions in this size range

(where Pd occupation of low coordination surface sites is

statistically very important) scale strongly with the average
coordination number of nearest neighbor Pd−Pd bonds, a
feature strongly reinforcing the assessments coming from the E-
STEM data.
We now turn to a more detailed consideration (beyond

average metal cluster size) of the atomic bonding that is present
in active catalytic clusters and the nature of the chemical
transformations they might be experiencing. The data
presented in Figure 3 illustrate that strong sensitivities to

reaction conditions operate in this system, with substantial
modifications of the bonding being evidenced (e.g., large and
apparently hysteretic bond relaxations) as the feed gas
compositions are varied through the sequence of regimes
outlined in Figure 1. One remarkable observation evident from
comparing the top and bottom panes in Figure 3, where the
dependences of the values for the Pd−Pd bond lengths and
bond length disorder parameters are plotted, is that they
qualitatively appear to be mirror images of each other. Specific
and substantive chemical modifications of the Pd clusters
underpin these trends. In the discussions that follow, we explain
both of these effects, as well as the trends described in the
XANES data, in the context of the aforementioned chemical
model of the structural and electronic transformations
manifested during the catalysis. First, we note that the Pd−
Pd bond length in Regime 3 (the point of maximum conversion
reached with 1:1 ratio of H2 and C2H4) is very close to that of

Table 1. Exemplary Corresponding Particle Size (d) of
Given Numerical Pd−Pd Coordination Numbers (N)a

N d (nm)

4.8 0.549
7.0 1.098
8.2 1.647*
8.9 2.196

aThe average particle size of this specific sample obtained from STEM
measurements (dSTEM) is 1.7 nm.

Figure 3. EXAFS analysis results of (a) the interatomic distances r and
(b) bond length disorder (σ2) for Pd-SiO2 catalyst under different feed
gas composition regimes of H2 and C2H4 (from pure H2 to pure C2H4
and then back to pure H2). The dashed line in (a) indicates the bond
length of bulk Pd (foil).
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bulk, metallic Pd (d0 = 2.745 Å). This further supports and
extends the structural inferences developed from the XANES
data (Figure S2). It follows as a result that both the bonding
and electronic structural effects observed in these measure-
ments report on the development of a generally metal-like
structure for the Pd NPs in that regime. The increase in the
bond length disorder in this case is correlated with a state of
highest activity for the hydrogenation reaction. An intriguing
hypothesis is one that associates this impact with the nature of
the adsorbate bonding present on the surface of NPs in that
regime and that it is patterns of bond strains developed in
consequence that increase bond disorder as the regimes are
traversed. These effects are even more pronounced in the
vicinity of the next local activity maximum associated with
regime 7. It is also seen that the Pd−Pd bond length is again
minimized here, relative to the significant strains seen in the
neighboring pure gas limits (regimes 5 and 9). The structure in
this case must retain a form of perturbation as it never recovers
the metal-like bond length seen in regime 3. The picture that
arises for the latter, then, is one of a set of essentially bulk-like
bonding in the core of the silica-supported Pd clusters joined
with adsorbate-mediated structural relaxations at their surfaces.
The bond strains seen for their precursor state (regime 1) have
a well understood and, as we will show quantitatively, verifiable
origin (vide inf ra).
The Pd−Pd bond lengths in pure H2 (regimes 1 and 9) and

in pure C2H4 (regime 5) are longer than those of regimes 3 and
7. They also correspondingly appear to be more ordered.
Despite these similarities, the corresponding Pd NP structures
in each case are quite different. Specifically, the larger Pd−Pd
bond distance in the initial pure hydrogen regime points toward
the formation of a Pd β-hydride phase.44 In that phase,
hydrogen atoms occupy random interstitial octahedral sites in
the Pd fcc structure, causing an expansion but with no change
in Pd lattice symmetry. This correlates well with the fact that no
changes are seen in the average size of Pd nanoparticles in
consequence of the change in the feed composition. The
magnitude of bond length expansion seen under hydrogen
depends critically on the H occupancy and, due to finite
truncations, on the Pd cluster size. As a result, the bond strain
in this case provides a means that can be used to determine the
Pd NP size.44,57

An empirical, but now well-validated, model allows a
correlation to be made between the average first shell Pd−Pd
bond length and the composition (PdHx, where x < 1) of the β-
hydride phase.43,44,57 This correlation is shown in the plots
given in Figure S4. This provides, then, an explicit means to
calculate the H intercalation (H/Pd) ratio for the supported
nanoscale Pd(0)−hydride clusters present in regime 1 using the
experimentally measured Pd−Pd bond length. These data
suggest a stoichiometry lying in a narrow range centered on x =
0.40. This value can be evaluated within a geometric model to
infer an average particle diameter, examining how the finite
truncation of a specific cluster shape and size would impact the
number density of octahedral sites (those occupied by H in the
β-hydride phase). The results of this analysis, following a
previously reported method, are presented in Figure 4.44 Here
the cluster sizes were progressively incremented, and the
inferred H/Pd ratio was deduced from the octahedral site
densities lying within model closed-shell truncated cuboctahe-
dral clusters. The experimentally determined value of the Pd−
Pd bond length (Figure 3) can be used to provide a
stoichiometry for the hydride phase based on the relationship

plotted in Figure S4. The composition so deduced is shown in
Figure 4 together with its error bars projected to a set of x-axis
intercepts (cluster size) taken from the STEM data analysis of
the cluster size distribution (Figure 2b). One sees that, even
given the qualitative features guiding it, the intercalation model
(Figure 4) predicts a geometric habit of the Pd clusters that is
bounded by model 37 and 92 atom truncated cube octahedral
clusters, a motif that is remarkably similar to the assessments
made from the EXAFS and E-STEM data discussed above. As
Figure 4 illustrates, average particle size in this range affords a
good description of the maximum bond strains seen in the
hydride phase based solely on a consequence of how the finite
crystal truncations scale the approximate density of octahedral
sites as a fraction of the total number of metal atoms present in
the fcc structure. This establishes a possible testable prediction
for theory that the bond length expansion is in fact one limited
by the approximately 50% ratio of H to Pd (i.e., the full
occupancy in a particle of this size) in an otherwise
unperturbed β-hydride structure.44

A similar peculiar behavior in the Pd−Pd bond lengths and
their associated disorder is seen in pure ethylene (regime 5,
Figure 3). The perturbations in this case are not caused by
hydrogen intercalation, as any such absorbed H atoms are
known to be readily consumed by the hydrogenation
reaction(s) under the latter conditions. The lattice expansion
must result from a different cause, likely by carbon insertion
into the Pd structure, as suggested most notably by the XANES
data discussed above (vide supra). There is striking similarity
between the structures adopted by Pd upon uptake of either
carbon or hydrogen atoms, specifically: (1) both occupy
octahedral sites in the Pd fcc structure, and (2) neither causes
restructuring of the Pd lattice beyond tensile bond strains that
expand it from its bulk value. As a result, the Pd−Pd
coordination numbers are not affected by either intercalation
mechanism, which is justified by the size measurements by
STEM. Since carbon atoms are larger and also provide more
valence electrons than hydrogen, their interstitial occupancy in

Figure 4. Correlation between the Pd nanoparticle size and the
intercalation ratio (H/Pd or C/Pd). Shaded area shows the
experimentally obtained ratio, as calculated from the measured Pd−
Pd distance. The curves and symbols correspond to the theoretically
calculated ratios, assuming the full H or C occupancy and a
hemispherical cuboctahedral model, for different particle sizes. The
range of sizes that correspond to the shaded areas was chosen to agree
with the experimentally measured (STEM) size distribution. The
overlap of the model curves with the shaded areas validates both (the
nanohydride and nanocarbide) models.
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the Pd lattice is significantly lower. The current literature
suggests that the likely structure of Pd carbide is one
comprising a Pd6C composition. In the latter, theoretical
calculations suggest the adoption of an fcc Pd lattice in which
the absorbed carbons occupy √3 × √3 sites between every
two (111) Pd planes with another layer of vacant sitesthis
structure is energetically favored among all possible Pd−C
stoichiometries.32 The finite crystal truncations of the nanoscale
Pd clusters should affect the C/Pd ratio in a carbide phase
forming under operando conditions in a manner analogous to
that described above for the hydride structure. The result is that
stoichiometry for C must be less than that in the Pd6C bulk
phase (because some subsurface sites are not available for C
insertion), and this in turn must affect the magnitude of the
tensile strains evidenced in the Pd−Pd distances.32 It is
therefore possible to use the experimental Pd−Pd distance to
infer both a stoichiometry for the carbide in the operando
context as well as a confirming average particle size in a manner
similar to what was done for the nanoscale Pd hydrides
discussed above.44 To do so, we in turn: (1) deduced a
stoichiometry for the Pd-carbide based on the experimental
Pd−Pd bond length (Figure 3) using the compositional scaling
formalism presented in Figure S4 and (2) estimated a size for
the Pd clusters based on finite cluster truncations that yield a
C/Pd ratio with that embedded bond strain. We employed for
lack of a better theoretical model a linear relationship between
the C/Pd ratio and the known limiting Pd−Pd bond lengths, an
approximation justified by the Pd−Pd bond length variation
between the metallic Pd and bulk Pd6C phases (Figure S4b).
The lower part of Figure 4 shows the correlation between the
cluster size distribution determined from the E-STEM data and
the correlated C/Pd stoichiometry deduced from the
experimental bond strain. An exemplary Pd carbide cluster
coming from this model is shown schematically as an inset. We
see here that the analysis of cluster size derived from the strain-
based intercalation model is in strong accord with the
assessments made by both EXAFS and direct E-STEM
measurements (where again the deduced structures fall very
close to the bounding limit afforded by 92 atom closed-shell
truncated cuboctahedral clusters (with the C/Pd ratio of 8.3%,
corresponding to an average particle size of ∼1.8 nm, Figure
4)). This result agrees very well with STEM observations, the
previously estimated Pd particle size from H intercalation
results (vide supra), and the XAFS-determined Pd NP size (1.6
nm), estimated from the measured Pd−Pd coordination
numbers. This strongly suggests that the speciation inferred
in this model must capture this feature of the structure in-
operando in a qualitatively (and possibly quantitatively)
predictive way.
We note also that formation of stoichiometric (or almost

stoichiometric, as shown here) hydride and carbide structures,
coupled to the lack of (or very low) catalytic activity in
conditions of pure hydrogen or ethylene (save for self-
hydrogenation, see below), respectively, may help explain the
relative decrease in structural disorder seen in regimes 1, 5, and
9, as compared to the high conversion activity cases (regimes 3
and 7), which in the latter enhanced structural disorder might
be expected in consequence of complex adsorbate-mediated
dynamics at the catalyst’s surface.
In summary, our combined examinations of the morpho-

logical (Figure 2), electronic (Figure S2), and structural (Figure
3) characteristics of Pd NPs reveal dynamic transformations
between Pd hydride, metal, and carbide structures as are

induced by changes made in the operando reaction conditions.
These data illustrate a facile conversion of a Pd-hydride phase
to a metastable carbide as the gas phase ambient becomes olefin
rich. Its reversion, however, is not completely efficient. This is
perhaps more clearly evidenced by the overall trends of the data
shown in Figure 3, most notably in the very different
magnitudes of Pd−Pd bond length strains and disorder seen
in gas composition regimes 3 and 7features that also
correlate with the somewhat less efficient conversions of
ethylene to ethane seen in the latter (Figure 1). Guided by
these observations and by the XANES results discussed above,
we propose that the carbon atoms forming the carbide are likely
retained in the Pd lattice, frustrating reconversion to a pure
hydride phase on return full sequence to the hydrogen-rich
ambient. In the latter regime, this carbide phase would only
persist due to kinetic limitations of the necessary H2-coupled
regenerative reactions that would remove it (as do occur at
higher temperatures).
The source of the C that forms the carbide phase must arise

as a consequence of dissociative pathways that lead to the
cleavage of C−C bonds of some type. What these pathways
might be are not fully understood, at present, although some
inferences can be made on the basis of other minor products
that are found in the process stream. We have found, for
example, that very low levels of production to C3 species
(propane and propene) are also seen (Figure S5), with
activities that seem well correlated with production of the C4
products discussed above. The other correlated activity, as
relevant to the one regime most explicitly, is in pure ethylene
where self-hydrogenation at low rate levels is noted. The
acetylene that must be coproduced in this instance likely will be
subject to further conversion via dissociative pathways.50

The data presented above illustrate an exemplary case where
the reactions are mediated by a dynamical catalyst system
whose structure and chemical speciation arise as a direct
consequence of the operando conditions associated with its use.
The chemistries described above, processes that mediate the
conversion of a Pd-hydride to a carbide phase, are ones that
change the electronic and atomic structure of the catalysts in
significant ways. We infer as well that the kinetic stability of the
carbide phase could lead to impacts on the catalyst activity that
correlate with that feature. As noted above, the hydride state is
the most efficient catalyst for the formation of ethane (Figure
1). This aspect of activity is also mirrored in the
oligomerization processes that afford C4 hydrocarbons. One
notes, though, that these same data show that the production of
the oligomeric alkene and polyene products are little affected by
the conversion to the carbide form. We cannot, at present, fully
account for this observation except to note that the products in
these instances likely involve β-hydride elimination mechanisms
of surface alkyls (for butane) to form the final product (a step
that generates surface-bound hydrogen). Alkanes, on the other
hand, can only arise as a consequence of formal reductive
elimination processes that generate the last formed C−H bond
of the product.
The literature suggests that the oligomerization we see might

in fact lead to products other than those discussed above. We
examined, for this reason, that state of the catalyst samples both
in operando conditions, using μ-IR methods, and by a final post
mortem analysis characterized by MS any oligomerization
products that could be extracted from the support after the end
of a run. The latter qualitative MS analyses were made for
samples that had been held in either H2- or C2H4-rich regimes
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(2 and 4) prior to isolation and extraction. These studies
confirmed the formation of heavier hydrocarbon species in each
of these cases. As Figure 5 shows, the species extracted from the

catalyst support are fairly complex, with the coexistence of
different structures with various degrees of unsaturation. In
both cases, several prominent peaks can be discerned in the
spectra, corresponding to C4−C8 fragments (see Table S2 for
the list of peaks). For the H2-rich regime, the largest MW
hydrocarbon observed had a chain length of about C10 to C12.
Molecules of this size can still be regarded as slightly volatile,
though the boiling point may be higher than 100 °C, and for

this reason are expected to accumulate on the silica support. In
comparison, the products collected under the C2H4-rich regime
contain much larger molecules, with fragments for chain
lengths up to C20 being observable in the data; aliphatic
hydrocarbons of this size have a very low vapor pressure and
would also be strongly retained within the silica support
materials. The electron impact ionization fragmentation
patterns seen in these data cannot be rationalized by
assignment to a single product. We have made tentative
assignments to the fragments that highlight important masses
and their composition. It seems, based on qualitative
assessments, that the molecules formed in the C2H4-rich
regime must minimally contain a complex mixture of varied
chain length alkanes and alkenes. That their formation appears
to have little sensitivity to the state of the catalyst may in fact be
misleading, given that the production of alkenes and polyenes
becomes most pronounced as the feed composition is advanced
to the ethylene-rich regime and thereafter follows a rate
sensitivity associated with the carbide phase.
We performed additional μ-IR spectroscopy studies to better

examine the production of the oligomeric hydrocarbons in
operando conditions, varying gas phase compositions within the
microreactor in the manner described. The data presented in
Figure 6 show exemplary spectra taken for a catalyst sample
that had been cycled through the range of compositions and
then stepped and held for 2 h at each regime in the same
sequence for ethylene hydrogenation and recording infrared
spectra for each. All the spectra show characteristic modes in
the C−H stretching region, ones whose lineshapes and

Figure 5. Surface-extracted (ex-situ) mass spectra of residue species on
catalyst collected from the ethylene hydrogenation reaction with
different feed gas composition: (a) 75% H2 + 25% C2H4 (H2-rich,
regime 2) and (b) 25% H2 + 75% C2H4 (C2H4-rich, regime 4).

Figure 6. IR spectra collected in operando conditions under different regimes of feed gas concentration for room-temperature ethylene
hydrogenation over Pd-SiO2 catalysts. Top waterfall figure shows individual spectra acquired under different regimes, and the lower contour map
highlights the maxima of hydrocarbon fingerprint bands. Note that there was some exogenous hydrocarbon background from the very beginning, so
that the 2958 cm−1 band is not taken as a benchmark.
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intensities vary markedly as the gas phase composition is varied.
The three peaks centered roughly at 2958, 2922, and 2850
cm−1, assignable to various modes of methylene and methyl
groups, strongly suggest the present on the support of aliphatic
species under in operando conditions. These assignments follow
those for the C−H stretching modes of model linear
hydrocarbons.58

The data show a further complexity in positions of the modes
during the cycling of the catalyst, notably the shifting of the
broad band at 2868 cm−1 to lower energies as the catalyst
enters the ethylene-rich regime and is then progressively
returned to a hydrogen-rich ambient. These data can be
interpreted in terms of the impact of the unsaturation within
the hydrocarbon chain and its impact on the CH2 symmetric
stretching vibration of methylene groups proximal to it. The
tentative model we propose is one of chain growth within the
hydrogen-rich regimes that leads to a variety of unsaturated
hydrocarbons, including linear α-olefins (LAOs), an assignment
supported by the off-line MS data.59 One problem we note is
that the expected modes for the olefinic C−H bonds are not in
evidence in these data. As these modes are typically much
weaker than those of the aliphatic substituents in long-chain
hydrocarbons, the present data quality does not allow their
unambiguous exclusion. The other complex feature, namely, the
red shift mentioned above, could be associated with
perturbations due to the adsorption of the hydrocarbon species
on the surface of the Pd (and silica) particles. Alternatively, we
believe the impacts may be due to hydrogenation activities and
that the passage of the feed through a hydrogen-poor regime
leads to the buildup of unsaturated, as well as polyunsaturated,
long-chain hydrocarbons on the support. As H2-rich conditions
are restored, these unsaturated hydrocarbons should be mobile
enough on the support to allow them to be hydrogenated and
thus over time tip the limiting composition toward that of
linear alkanes that remain physisorbed on the support.

■ CONCLUSION
The results of a multimodal, operando investigation of the
structural dynamics of a silica-supported Pd catalyst reveal that
the reaction conditions drive pronounced composition coupled
structural transformations during the hydrogenation of ethyl-
ene. Under hydrogen-rich conditions, the active nanoscale
catalyst metal clusters exist in the form of a β-hydride phase,
one whose composition is determined (relative to the 1:1 Pd/H
ratio found in a bulk phase) by finite crystal truncations that
limit hydride occupancies at octahedral sites. Transformation to
a carbide phase in an olefin-rich ambient proceeds via the
intermediacy of a metallic phase from which the hydride atoms
are removed and are subsequently transformed by complex
dissociative pathways producing the C atoms that are absorbed
within the Pd. The stoichiometry of the supported Pd-carbide
clusters formed in this operando regime is also limited (from a
value of Pd6C in the bulk) by its finite truncation of crystal in
consequence of the restrictions that feature imposes on the
necessary octahedral sites needed for its uptake. The latter
conversion is hysteretic and not fully reversible on return to a
hydrogen-rich gas feed. The complex dynamic electronic and
structural properties seen in this exemplary catalyst make
important suggestions about the speciation and structure of the
active Pd catalysts that mediate the selective hydrogenation of
acetylene in a predominate ethylene gas feed, a critical process
required to purify upstream feeds for polyolefin processes. The
data further illustrate a strongly conserved activity for the

oligomerization of the ethylene in the feed, a reactivity that is
able in the olefin-rich ambient to generate unsaturated
oligomeric materials with carbon chain lengths reaching as
high as C20. These low volatility hydrocarbons accumulate on
the support during the time on stream and appear to be
susceptible to further hydrogenation-based transformations
themselves. Taken together, Pd appears to foster a unique
activity toward absorptive uptake of both H and C atoms as a
consequence of this otherwise simple catalytic transformation.
The most striking observation coming in this work is relative
structure insensitivity of the oligomerization processes that
operate as a minor side reaction, an activity seen to operate in
operando regimes where hydrogenation pathways are most
efficient due to their mediation by various hydride and/or
metallic states of the Pd, as well as in those where dissociative
pathways lead to the formation of a nanoscale carbide phase.
An important point that future work might address is to explore
whether specific forms of alloying, as are present in industrially
important selective hydrogenation catalysts, can in fact usefully
modulate this latter activity.
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