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ABSTRACT: Tracking the structure of heterogeneous catalysts under operando
conditions remains a challenge due to the paucity of experimental techniques that can
provide atomic-level information for catalytic metal species. Here we report on the use of
X-ray absorption near-edge structure (XANES) spectroscopy and supervised machine
learning (SML) for refining the 3D geometry of metal catalysts. SML is used to unravel
the hidden relationship between the XANES features and catalyst geometry. To train our
SML method, we rely on ab initio XANES simulations. Our approach allows one to solve
the structure of a metal catalyst from its experimental XANES, as demonstrated here by
reconstructing the average size, shape, and morphology of well-defined platinum
nanoparticles. This method is applicable to the determination of the nanoparticle
structure in operando studies and can be generalized to other nanoscale systems. It also allows on-the-fly XANES analysis and is a
promising approach for high-throughput and time-dependent studies.

X-ray absorption spectroscopy (XAS) has been used for
decades in studies of heterogeneous catalysts and

nanostructured materials.1,2 Its unique sensitivity to local
atomistic structure around absorbing metal species3,4 and the
possibility to monitor in situ material transformations
distinguish XAS as one of a very few experimental methods
that can detect and analyze correlations of the structure of
metallic nanoparticles (NPs) and their properties (e.g., catalytic
activity).5−10 This capability is a crucially needed step toward
the goal of rational design of new catalysts.11,12 In particular,
average coordination numbers (CNs), extracted from extended
X-ray absorption fine structure (EXAFS) for NPs in the ca. 3
nm size range and smaller, are widely used to determine particle
sizes, structural motifs, and shapes in well-defined NPs. For
NPs with narrow size and shape distributions, such analysis was
required to link their average shape with their catalytic activity6

and anomalous thermal properties13,14 and monitor in situ the
NP coarsening.15

Much less attention has been paid to the information
encoded in X-ray absorption near-edge structure (XANES).
The XANES portion of XAS spectrum is defined by electronic
transitions to unoccupied atomic and hybridized (atom-ligand)
states and is therefore sensitive to the details of 3D
arrangements of atoms, providing sensitivity to structural and
electronic characteristics.5,16,17 XANES also is relatively less
affected by structural disorder, which severely reduces the
quality of EXAFS data and complicates their interpretation,
especially for nanomaterials, where disorder is much more
pronounced than in their bulk counterparts,18−22 and also for in
situ catalytic studies, which commonly involve high temper-

atures and hence result in strong thermal disorder. Finally, the
better signal-to-noise ratio in XANES region in comparison
with that in EXAFS region allows studies of more diluted
samples in complex, X-rays attenuating sample environments
and on strongly absorbing support materials, and also the
reduction of the data acquisition times. The main challenge that
hinders the usage of XANES for the quantitative analysis of
nanocatalysts is the lack of a methodology that would allow one
to extract structural characteristics (“descriptors”) from the
spectra (note, though, that for simple systems with a few
degrees of freedom examples of such attempts are
known17,23−27).
Recent advances in data-enabled discovery methods in

chemical research28,29 provide a key to this problem. In
particular, supervised machine learning (SML) methods are a
promising tool for establishing relations between spectral
features and relevant descriptors of the investigated sample.
Here we employ an SML method, namely, artificial neural
network (NN), to unearth information about the 3D structure
of nanoparticles from experimental XANES. An immediate
challenge in this approach (as in any SML application) is the
requirement to have a large representative, labeled training data
set with thousands of data points. Clearly, it would be
impractical to attempt to construct such data set from
experimental measurements. Here we overcame this data
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availability issue by constructing the training set via ab initio
XANES simulations validated against experiment. By using
theoretical simulations, we can generate a large number of
spectra, corresponding to well-defined structure motifs.
We report the application of this method to the important

problem of deciphering the 3D structure of supported platinum
NPs. In our approach we use average CNs for the first few
coordination shells C C C{ , , , ...}1 2 3 that are known to
characterize the size and 3D shape of a nanoparticle with
close-packed or nearly close-packed structure.30 Next, we
construct a training data set using ab initio codes FEFF31 and
FDMNES32 (these codes are used interchangeably by the XAS
community). We generate theoretical XANES μ E( )i (here E is
X-ray photon energy) for nanoparticles of different sizes/
shapes, where the sets of corresponding average CNs are
known. Artificial NN is then defined as a nonlinear function

μ θ ⃗ → ̃ ̃ ̃h C C C( , ) { , , , ...}i i
1 2 3 that uses as input a preprocessed

and discretized XANES spectrum μi and returns a vector
̃ ̃ ̃C C C{ , , , ...}i
1 2 3 . As illustrated in the Supporting Information,

Figure S1, function h can be represented as a network of nodes,

where the values of the nodes in the first layer (input layer) are
set by input vector μi, whereas the value of jth node in kth layer

aj
k is obtained as aj

k = θ∑ − −f a( )m j m
k

m
k

,
1 1 . Here summation is

carried out over all nodes in the −k( 1)th layer, f is so-called

activation function (hyperbolic tangent in our case), θj m
k
, are

NN parameters, and ̃ ̃ ̃C C C{ , , , ...}1 2 3 are obtained as the values

of aj
k in the last (output) layer of NN. During the training

process, we fit the NN parameters θj m
k
, so that the distance

between the true CNs vector C C C{ , , , ...}1 2 3 and NN output

vector ̃ ̃ ̃C C C{ , , , ...}1 2 3 is minimized for all spectra in our

training set. After the optimal values of θj m
k
, are found, NN can

take experimental XANES as an input and determine
̃ ̃ ̃C C C{ , , , ...}1 2 3 as estimators for average CNs for NPs in the

corresponding sample. Knowing the CNs, one can then
proceed to estimate the corresponding NPs size and shape,
following the established prescription.30 To avoid the averaging
effects over a range of particle sizes/shapes, in this proof-of-

Figure 1. Size effect in Pt L3-edge XANES spectra. (a) Experimental and theoretically calculated (with FEFF and FDMNES codes) spectra for Pt
foil. (b) Experimental spectra for supported Pt NPs with different sizes, shifted vertically for clarity and ordered accordingly to average NPs size, as
estimated from EXAFS and TEM analysis (particle size varies from ca. 0.9 to 2.9 nm). (c) Site-specific XANES spectra (shifted vertically for clarity),
calculated with FDMNES code for sites with different first four CNs in a Pt NP, shown in the inset. (d) Particle-averaged CNs and averaged XANES
spectra (shifted vertically for clarity), calculated with FDMNES code for Pt NPs of different sizes.
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principle work we focused on experimental data sets obtained
for Pt nanoparticles with narrow size and shape distributions, as
validated by previously reported EXAFS and TEM measure-
ments.13,14,33 We could therefore use the known results (NPs
3D geometry) for validating the quantitative capability of our
new approach. Note that the current progress in the
nanomaterial synthesis broadens significantly the availability
of such monodisperse samples, and they have been widely used
to establish relation between particle morphology and proper-
ties.6,13,14 At the same time, possible applications of our method
are not limited to such monodisperse systems only. For
heterogeneous samples our method will yield ensemble-
averaged CNs, and trends (rather than absolute values) in
such averaged CNs can be used to monitor changes in particle
shape and size.15

Sensitivity of XANES spectra to nanoparticle size and shape
has been acknowledged theoretically previously,16,34,35 and such
an effect could be also recognized in our experimental spectra.
In Figure 1a,b we show experimental Pt L3-edge XANES
spectra for Pt foil and Pt nanoparticles of different sizes on γ-
Al2O3 support. Pt NPs were prepared via inverse micelle
encapsulation method (samples S1−S4)

13 or by impregnation
method (samples A1−A3),

14 and XANES spectra were acquired
at room temperature in a H2/He atmosphere. In addition,
XANES spectra for samples A1−A3 were also acquired in a pure
He atmosphere. These spectra are denoted as B1−B3.
Differences in size (from ca. 0.9 nm to ca. 2.9 nm) and
shape of these NPs were established previously based on their
TEM and EXAFS data.13,14,33 Details of sample preparation and
experimental characterization are given in the Supporting
Information. XANES changes upon increase in NPs size can be
clearly observed in Figure 1b. In particular, all XANES features
are smoother and less pronounced for particles of smaller size.
This effect can be qualitatively reproduced by ab initio

XANES simulations, which is an important first indication that
we can rely on such simulations to guide the analysis of NPs
size and shape effect in experimental XANES data. In Figure 1d
we compare XANES spectra, calculated with FDMNES code
for Pt NPs of the same shape but different sizes. Note that the
total XANES μ E( ) of a nanoparticle is an average of partial
contributions μ E( )j from all Na atoms in the nanoparticle:

μ μ= ∑E E N( ) ( )/j j a.
16,35 Therefore, in our simulations we first

carry out independent XANES calculations for all NP sites and
then average them. Such site-specific XANES spectra are shown
in Figure 1c. As one can see, spectra for different sites differ
significantly. Spectra for sites located deep in the NP core
resemble those for bulk Pt material, whereas spectra for
undercoordinated surface sites have significantly smoother
features. The previously observed size sensitivity of particle-
averaged XANES (Figure 1d) thus can be interpreted as a result
of changes in the ratio of core sites and surface sites.
Each site can be conveniently characterized by site-specific

CNs c c c{ , , , ...}1 2 3 , that is, the total numbers of neighboring
atoms in the first, second, third, and so on coordination shells
of a particular site. Importantly, as shown in Figure 1c, the
differences in the number of nearest neighbors only (c1) cannot
account for all of observed differences in site-specific spectra
because the spectra for two nonequivalent sites with the same
number of nearest neighbors (9) are clearly different. This
demonstrates the sensitivity of XANES to the arrangements of
more distant neighbors. The weights of different nonequivalent
site-specific contributions to the total XANES are directly

proportional to the ratios of nonequivalent sites and are related
to the average CNs {C1, C2, C3, ...} = ∑ c c c N{ , , , ...} /j j1 2 3 a.

Knowing the ratios of nonequivalent sites (or, alternatively, the
set of average CNs), we can, in principle, reconstruct the 3D
shape of the nanoparticle.
Extraction of this structural information from the particle-

averaged XANES data is, however, challenging because, first,
many such nonequivalent sites are present in nanoparticles, and
the contrast between their partial contributions to the total
spectrum is weak. Second, whereas ab initio simulations (which
could be used to assign partial XANES contributions to specific
NP sites) provide qualitative agreement with the experimental
data, significant systematic errors of XANES modeling, as
demonstrated in Figure 1a for Pt foil, prohibit in most cases the
direct fitting via, for example, the least-squares procedure that
has been used for simple systems.17,23−27 In particular, note
that the systematic error of Pt L3-edge XANES modeling is
comparable to the amplitude of broad XANES features for
surface sites. Thus the contribution of surface sites cannot be
analyzed reliably by linear methods.36 The direct fitting of each
experimental XANES spectrum would also be challenging due
to high computational costs of ab initio XANES modeling
(calculations of a XANES spectrum for a nanoparticle with a
few hundreds of atoms may take several CPU hours).
The use of SML methods allows us to solve these problems.

Such methods as artificial neural network approach can find
complex, nonlinear relationships between features in XANES
data and structure descriptors. The NN method can identify the
spectral regions, relevant for structure determination, based on
the information automatically extracted from the training on a
vast number of training spectra, thus minimizing the influence
of systematic errors.37,38

To establish relations between the features in averaged
XANES μ E( ) and average CNs C C C{ , , , ...}1 2 3 , we train
artificial NN with theoretical XANES data, calculated with
FEFF and FDMNES codes for Pt particles of different sizes and
shapes, shown in the Supporting Information, Figure S2. The
pairs of theoretical spectra μ E( )i and average CN sets
C C C{ , , , ...}i

1 2 3 then can be used to fit the NN parameters

θj m
k
, . Here and further below we limit our discussion to the

analysis of the first four coordination shells only because the
first four CNs are sufficient to represent the 3D shape and size
of Pt nanoparticles and because atoms belonging to the first
four coordination shells can be identified unambiguously not
only in face-centered cubic (fcc)-type structures but also for
icosahedral and hexagonal close-packed (hcp) structures,30

which were also used for NN training. Details of our NN
implementation and NN training are discussed in the
Supporting Information. Note that the ab initio XANES
calculations to construct the training data set were the most
time-consuming part of our procedure and required several
CPU days. Training of NN was accomplished in <1 h on a
single CPU. Fortunately, for a given system both of these steps
need to be performed only once. After the training is
completed, NN can be used to analyze quickly an unlimited
number of theoretical and experimental XANES spectra (the
processing of each spectrum takes less than a second).
To validate our method, we provide as input for the trained

NN with fixed parameters θj m
k
, theoretical XANES spectra

calculated for Pt NPs of different sizes and shapes with FEFF
and FDMNES codes. The aim is to verify that the CNs
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̃ ̃ ̃ ̃C C C C{ , , , }1 2 3 4 , predicted by NN, indeed are close to the true
CN values C C C C{ , , , }1 2 3 4 . For validation we use particle-
averaged XANES data for particles that were used to construct
training data set (Figure S2a) as well as for particles of other
shapes and sizes (Figure 2a) with fcc-type structure, truncated
by (100) and (111) planes, and also with icosahedral and hcp
structures. The predicted and true first-shell and fourth-shell
CNs for different NPs are compared in Figure 2b,c.
Corresponding comparison for the second and third coordina-
tion shells is shown in the Supporting Information, Figure S3.
In most cases the predicted CNs for all four coordination shells
agree within error bars with the true values.
Special attention needs to be paid to disorder effects. It was

demonstrated both experimentally and theoretically that atomic
thermal motion results in small but detectable changes in
XANES features.39 Static disorder due to, for example, surface-
induced stress in the material is also expected to have similar
effect on XANES spectra. Note that the NN training was
performed using XANES data for NPs models without any
disorder in atomic positions. Therefore, to check how robust
our analysis is with respect to the possible artifacts caused by
disorder effects, we performed an additional validation of our
method, providing FEFF-generated XANES spectra where

thermal disorder was introduced via commonly used correlated
Debye model40 as input for our NN. The predicted CNs as a
function of temperature are also shown in Figure 2b,c and in
the Supporting Information, Figure S3. As one can see, the
predicted CN values remain relatively stable in a broad range of
temperatures (the changes in the predicted CNs values are
comparable to the error bar of our analysis).
Next, we applied the NN to determine the CNs

corresponding to experimental XANES13,14 for Pt NPs on γ-
Al2O3 and experimental Pt foil data. Obtained results for the
first and fourth coordination shells are shown in Figure 3a,b,
while those for the second and third coordination shells are in
the Supporting Information, Figure S4.
As an important cross-check, we note that the first-shell CNs

determined for all samples are in an excellent agreement with
the results of EXAFS analysis (Figure 3a).13,14 We can also
observe a systematic increase in CNs with the increase in NP
size, as estimated by TEM (Table 1). These findings
demonstrate the validity of our NN/XANES method for the
analysis of experimental data and that systematic differences
between experimental and theoretical data used for NN training
do not affect the performance of our method significantly.

Figure 2. Validation of neural network using theoretical XANES data. (a) Additional Pt NPs models, used to validate the accuracy of trained NN.
(b,c) True CNs for particles, shown in panel a and Figure S2a, are compared with the CNs, predicted by NN from XANES data, generated by FEFF
or FDMNES codes. Solid lines are guides for eye. In the insets we show CNs, predicted by NN for truncated octahedral particle with 38 atoms from
FEFF-generated XANES data, where thermal disorder was introduced using Debye model in the temperature range between 0 and 600 K. Debye
temperature was set to bulk Pt value 244 K.13 Horizontal dashed lines show the true value of corresponding CN.
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Analysis of CNs for more distant coordination shells using
EXAFS method is much less straightforward and less reliable
due to a large number of structure parameters and multiple-
scattering (MS) effects that need to be accounted for in the
analysis.41 Nevertheless, in Figure 3b and Figure S4 we show
the results of such analysis, performed in ref 13, for sample S3.
CNs, predicted by NN, agree with the results of such MS-
EXAFS analysis for the second and fourth coordination shells
and are slightly smaller than the result from MS-EXAFS
analysis for the third coordination shell.
Another indicator of the validity of our NN/XANES method

is that for all samples we obtain physically reasonable sets of
CNs. Note, as shown in Figure 3b and Figure S4, that CNs for
different coordination shells are strongly correlated, and in a
realistic cluster model one cannot expect to have, for example,

very large CN for the fourth coordination shell while having
small first-shell CN. The results yielded by our NN from
experimental XANES data agree with this observation, and in
almost all cases the obtained CNs agree reasonably with what
could be expected for close-packed metallic particles with fcc-
type structure.
Interestingly, when NN/XANES results for particles in H2/

He (spectra A1−A3) and pure He atmospheres (spectra B1−B3)
are compared, slightly different CNs can be observed (see
Figure 3a,b), suggesting changes in particle local structure.
Whereas XANES data for samples in H2/He suggested a well-
ordered, fcc-type structure, more distorted structure models
give better agreement with the obtained CNs for samples in a
He atmosphere. This agrees with the observation that Pt
interactions with hydrogen relieve the surface-induced strain in

Figure 3. Coordination numbers predicted by NN from experimental XANES. (a) Comparison of the first-shell CNs, as predicted by NN method,
and results of conventional EXAFS analysis for Pt NPs on γ-Al2O3; solid line is guide for eyes. (b) CNs, predicted by NN method for the fourth
coordination shell. Gray empty circles correspond to CNs for Pt model clusters with different sizes and shapes, obtained from fcc-type Pt structure,
truncated along (100) or (111) planes, as well as for clusters with icosahedral and hcp-type structures. Magenta rectangle in panel b shows the
confidence region for CNs, obtained for sample S3 from MS-EXAFS analysis in ref 13. (c) Corresponding possible 3D models of particles.

Table 1. Coordination Numbers, Predicted by NN from Experimental XANES for Pt Foil and Supported Pt NPs in a H2/He
Atmosphere

sample C̃1 C̃2 C̃3 C̃4 dTEM (nm)a,b model NP CNsc model NP size (nm)c

foil 11.6(2) 5.8(2) 23(1) 11.1(8) {12, 6, 24, 12} ∞
A3 9.1(3) 4.3(3) 11(2) 8(1) 3(1) {9.4, 4.0, 14.4, 7.1} 2.8
S4 8.9(3) 4.2(4) 10(2) 7(1) 1.2(2) {8.5, 3.2, 11.5, 5.0} 1.2
S2 8.1(3) 3.7(4) 8(2) 4.5(8) 1.2(3) {7.8, 3.3, 9.6, 4.1} 1.1
S3 7.7(4) 3.8(4) 4(2) 3.9(9) 0.9(2) {7.7, 3.1, 9.2, 3.8} 1.1
S1 7.4(4) 2.0(3) 3(1) 6(1) 1.1(2) {7.4, 2.6, 8.0, 3.3} 1.2
A2 6.6(4) 2.3(4) 3(1) 5(1) 1.1(3) {6.6, 2.1, 6.0, 2.9} 1.4
A1 6.3(3) 1.5(3) 2(1) 5(1) 0.9(2) {6.2, 1.9, 5.1, 2.4} 1.1

aIn the parentheses the uncertainty of the last digit is given. bSize of Pt NPs, determined by TEM.13,14 cCoordination number and size of possible
structure models, shown in Figure 3c.
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Pt NPs and result in more ordered particle structures.13,14 This
result demonstrates a utility of our method for the in situ
studies of NPs shape and size changes in response to changes in
ambient conditions.
For samples in H2/He we used the CNs, predicted by our

NN from experimental XANES, and information on NP size
from TEM to propose a possible shape for investigated NPs
(Table 1 and Figure 3c). Specifically, we selected structure
models, whose first-shell CN within error bar agrees with the
results of NN-XANES analysis and whose size within error bar
agrees with TEM results; from this set we then selected models,
whose second-, third-, and fourth-shell CNs are as close as
possible to the results from NN-XANES analysis. We
emphasize that we rely here on the a priori TEM observation
that the NP size and shape distribution in all of these samples is
narrow. Note that the influence of NP size distribution on CNs,
derived from EXAFS analysis, is discussed in ref 42, where it
was demonstrated that broad size distribution may result in CN
overestimation. The analysis of CNs in this case will yield an
effective (median) shape of the cluster.42 The same arguments
are also applicable for XANES analysis results. Note also that,
of course, for each sample at least several similar NPs models
can be found (see the Supporting Information, Figure S5),
which all agree reasonably with the predictions of NN/XANES
method. The larger the particle, the larger the number of
different structure models that fit the obtained CNs. As with
any other XAS method, also for our NN/XANES approach all
particles with sizes larger than ca. 5 nm will be indistinguishable
from bulk material because the fraction of undercoordinated
surface sites gets negligible, and the spectra for sites in the NPs
core are close to XANES of bulk metal. Therefore, the NP
structure models, shown in Figure 3c, should be considered
only as representative examples of possible structures. Never-
theless, one can note that the shapes, predicted here by our
NN/XANES method, are in agreement with the shapes,
proposed from advanced MS-EXAFS and TEM size analysis.13

As an independent reality check, we validated the so-
obtained, representative NPs shapes with reverse Monte Carlo
(RMC) simulations of EXAFS data. In RMC-EXAFS analysis
the structure models that were established based on our NN/
XANES method were used to calculate the corresponding
theoretical EXAFS spectra, allowing small deviations from the
initial structure to account for the disorder effects.19,43 In
Supporting Information Figure S6 we demonstrate that RMC-
EXAFS simulations for all structure models yielded by NN/
XANES method confirm their agreement with the available
EXAFS data. More details of the RMC-EXAFS method are
given in the Supporting Information.
Overall, our NN/XANES analysis shows that whereas the

inverse micelle encapsulation method results in more spherical,
symmetric particles,44 the particles prepared via impregnation
method have flat, raft-like shapes. In both cases smaller particles
have more flattened shapes due to a strong interaction of Pt
atoms with the support.44 This finding demonstrates the utility
of our method for determination of catalyst morphology and
enables, for example, direct correlation of NP shape with its
catalytic properties. We emphasize here again that the
determination of particle shape, as developed here on the
basis of XANES data, relies on the use of samples with narrow
particle size and shape distributions (the same requirement as
for the use of EXAFS modeling methods developed previously
for the same purpose), as validated, for example, by TEM
imaging. Note, however, that also in the cases when the particle

size and shape distribution is not narrow, the ability provided
by our method to obtain ensemble average (effective) CNs and,
importantly, to monitor in situ the changes in such effective
CNs can significantly advance our understanding of particle
formation, coarsening, and agglomeration processes, despite the
fact that in this case the absolute CN values will be somewhat
overestimated. For example, increase in all CNs can be
unambiguously interpreted as evidence of NP growth. Similarly,
increase in some CNs while others are decreasing indicates
changes in NP shape. Also, as emphasized above, after NN
training is complete for a specific chemical element we can use
the so obtained NN as a static analysis tool to quickly find
corresponding structures for an unlimited number of
experimental XANES spectra in nanoparticles consisting of
those atomic species. Furthermore, such analysis can be even
done on-the-fly during the data acquisition, which is a unique
capability for in situ studies. The ability of our method to
analyze quickly a large number of XANES spectra makes it also
attractive for high-throughput studies, which are getting
progressively more widespread with the development of the
new generation of X-ray sources that provide unprecedented
photon flux and dramatically reduce the spectra acquisition
time.45,46

In summary, using a sample set of well-defined metal
nanoparticles with size and shape control as an example, we
have demonstrated that XANES spectra in nanostructures can
be translated into real-space information about the coordina-
tion environment of metal atoms. Only by using neural
networks was it possible to extend the sensitivity of this
technique to the fourth coordination shell and thus to enable
the determination of particle sizes and shapes. Unlike MS-
EXAFS or RMC-EXAFS methods, our XANES-based approach
does not require high-quality EXAFS data and thus makes
possible advanced analysis of NPs structure at high temper-
atures, with diluted samples on X-rays absorbing supports and
in complex sample environments. Whereas we have focused
here on the study of metal nanoparticles, our method can be
easily extended to other nanoscale systems. We expect it will be
especially beneficial to analyze the in situ changes in the
environments of metal atoms in a wide range of catalytically
relevant systems and processes.
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