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ABSTRACT: The rapid growth of methods emerging in the past
decade for synthesis of “designer” catalystsranging from the size and
shape-selected nanoparticles to mass-selected clusters, to precisely
engineered bimetallic surfaces, to single site and pair site catalystshas
opened opportunities for tailoring the catalyst structure for the desired
activity and selectivity. It has also sharpened the need for developing
approaches to the operando characterization, ones that identify the
catalytic active sites and follow their evolutions in reaction conditions.
Commonly used methods for determination of the activity descriptors
in the nanocatalysts, based on the correlation between the changes in
catalyst performance and evolution of its structural and electronic
properties, are hampered by the paucity of experimental techniques that
can detect such properties with high accuracy and in reaction
conditions. Out of many such techniques, X-ray absorption spectros-
copy (XAS) stands out as an element-specific method that is very sensitive to the local geometric and electronic properties of
the metal atoms and their surroundings and, therefore, is able to track catalyst structure modifications in operando conditions.
Despite the vast amount of structure-specific information (such as, e.g., the charge states and radial distribution function of
neighbors of selected atomic species) stored in the XAS data of catalysts, extracting it from the spectra is challenging, especially
in the conditions of low metal weight loading, nanoscale dimensions, heterogeneous size and composition distributions, and
harsh reaction environment. In this Perspective, we discuss the recent developments in XAS data analysis achieved by
employing supervised and unsupervised machine learning (ML) methods for structural characterization of catalysts. By
benefiting from the sensitivity of ML methods to subtle variations in experimental data, a previously “hidden” relationship
between the X-ray absorption spectrum and descriptors of material’s structure and/or composition can be found, as illustrated
on representative examples of mono-, hetero-, and nonmetallic catalysts. In the case of supervised ML, the experimental spectra
can be rapidly “inverted”, and the structure of the catalyst can be tracked in real time and in reaction conditions. Emerging
opportunities for catalysis research that the ML methods enable, such as high-throughput data analysis, and their applications to
other experimental probes of catalyst structure are discussed.

KEYWORDS: X-ray absorption spectroscopy, heterogeneous catalysis, machine learning, neural networks,
principal component analysis, clustering, multivariate curve resolution

1. INTRODUCTION

Understanding the mechanisms of activity, selectivity, and
stability of catalytic materials is an extremely challenging task
because of the complex, inherently heterogeneous structure of
most catalysts, and their dynamic nature. It has become
evident in recent years, given the development of advanced
characterization tools and in situ methods, that the structure
and properties of the catalysts may change under reaction
conditions.1−3 In the process of restructuring the bonding
network, the charge states of active sites and their interaction
with reactants, intermediates, and products may change
dynamically, directly affecting their catalytic activity, selectivity,
and/or stability. Hence, these properties of the catalysts
geometric, dynamic, and electronichave to be probed
experimentally and modeled theoretically at similar, atomistic

levels of detail, in order to capture these transformations. For
practical reasons, in order to correlate experimental measure-
ments with theoretical simulations, a good approach is to rely
on generalized descriptors of the structure, dynamics and
electronic properties. Examples of such descriptors include the
coordination number (CN) of nearest neighbors in a metal
nanoparticle (NP), interatomic distance, the number of (111)
facets, the number of missing bonds, surface strain, d-band
center, and many others.4−9 A well-known illustration of this
approach includes the volcano plots by Nørskov et al., which
link simple descriptors of catalyst structure to activity of its
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interactions with adsorbates.10 There are also other reports
listing several types of descriptors, specific to different catalysts,
supports, and reactions.7,9,11,12 It is often impossible to deduce
the values of the descriptors from the knowledge of synthetic
parameters and prereaction characterization of the catalyst.
One possibility to solve this problem is by using an operando
approach, in which not only the structure and property of the
catalysts but also their activities are measured in situ, all in the
same experiment.13−17

A notable challenge with these approaches is the difficulty to
experimentally validate the predicted descriptors in working
catalysts. There are two main reasons for that. First, for the
success of this approach, the ability to synthesize the desired
structural motifs on demand is required. The second reason is
that in many catalytic reactions with novel catalysts (NPs,
clusters, single site, and atomically dispersed catalysts), the
detailed determination of the descriptors is complicated
because of the paucity of most experimental techniques to
reliably characterize these attributes in subnanometer species
that may coexist in different structural forms and oxidation
states and to follow their transformation in reaction conditions.
While machine learning (ML) methods may play quite
different roles at different stages of this process (one recent
solution is the increasing reliance on the ML methods in
materials and chemistry sciences for the task of discovering
patterns in complex data sets18−20), in this Perspective we
summarize their use for the extraction of key structural
descriptors of catalysts from the X-ray absorption spectroscopy
data, and we discuss the current and future applications of
these methods. This topic is a culmination of the efforts started
by the authors and their collaborators in 2017, when they
demonstrated for the first time that X-ray absorption fine
structure (XAFS) data can be decoded by an artificial neural
network (NN) and “mapped” onto the nearest neighbor
coordination numbers. As a result, important details of the
structure of a catalytic material, such as the size and shape of
metal NPs, were obtained.21 In the subsequent works, we
demonstrated that the extended X-ray absorption fine structure
(EXAFS) can also be analyzed by the NN approach and that
atomic pair distribution function can be directly extracted from
the data.
The focus of this Perspective is on the applications of ML

methods to the task of extracting structural properties of
catalysts from their X-ray absorption near-edge structure
(XANES) and EXAFS data. The main overarching idea in
these approaches is the assumption that there is a unique
relationship between the structural, electronic, and composi-
tional descriptors of a given type of a catalyst and its X-ray
absorption spectrum. This assumption is in the core of any
XAFS analysis and modeling methods, except that conven-
tional approaches rely either (i) on the forward modeling (e.g.,
in the case of the XANES studies, where one assumes a certain
structure, then calculates the corresponding theoretical
spectrum) and are, thus, model-dependent or (ii) on the
fitting analysis (e.g., in the case of EXAFS studies), which
works well for systems with relatively high degree of structural
ordering. Neither forward modeling nor fitting methods are
reliable for nanoscale catalysts, which, in active states, may
have unique structures and/or are too disordered for fitting
methods to produce adequate results. In this Perspective, we
will show the possibilities of using ML methods and, in
particular, the NN approach for solving the inverse problem:
given the spectrum, to obtain structural information in a

working catalyst. Because of the similarity between the origins
of the fine structure in X-ray absorption coefficient and the
electron energy loss spectrum (EELS) in the electron
microscopy experiment, the discussed ML methods will be
applicable for EELS data analysis as well. Specifically, the fine
structure data in the energy loss near-edge structure (ELNES)
or extended electron energy loss fine structure (EXELFS)
spectra can be mapped to the structural and electronic
descriptors of catalysts because ELNES and EXELFS contain
similar information to XANES and EXAFS spectra, respec-
tively.22,23

As an important caveat, the quantitative capability of both
XANES and EXAFS, which are inherently ensemble-averaging
methods, to solve the local structure around particular type of
atoms is hampered by the heterogeneity of atomic distribution
in the material. A typical situation is a material in which
different species containing the same atom type as X-ray
absorbing atoms can coexist, for example, in a reactor
compartment containing regions with reduced and oxidized
states of the catalyst24 or in solutions where leaching of metal
ions from metal nanoparticles occurs during reaction.25 While
the challenges in the homogeneous and heterogeneous samples
are unique and different, both types can be studied by ML
methods that can be separated into two classes: unsupervised
and supervised ML. The goal of supervised ML (SML) is to
establish relationship between inputs (spectra in our case) and
outputs (descriptors of structure) based on a set of labeled
training data (i.e., spectra, for which the correct answer
(structure) is known). The goal of unsupervised ML is to
discover patterns in large sets of experimental data without any
labels. Unsupervised ML includes also such methods as
principal component analysis (PCA), multivariate curve
resolution, and clustering. While the NN approach for
XANES and EXAFS data analysis is an example of supervised
ML, the task of resolving heterogeneous species is best
addressed by methods of unsupervised ML that we also
summarize in this Perspective.
As we discuss in the Future Opportunities section, rapid data

analysis of experimental data by ML methods enables “on the
fly” analysis and, in a more distant future, “reaction on
demand” approaches. We note also that, despite all the power
and versatility of XAFS method, the complete and
unambiguous model of a working catalyst can be constructed
only by complementing it with other experimental probes:
electron microscopy, IR spectroscopy, mass spectrometry,
NMR, and so on. Conceptually, the analysis of the data from
these methods can benefit from ML in the same way as it does
for XAFS data. In this Perspective, we briefly discuss the recent
applications of ML methods for these experimental approaches
as well.

2. IF YOU WANT TO UNDERSTAND STRUCTURE,
STUDY SPECTRUM

“If you want to understand the function, study structure”,
wrote Francis Crick. As we emphasized in the Introduction,
unlocking the details of the catalyst structure (especially of that
in small (<3 nm) NPs) from experimental data is extremely
challenging. Crystallographic approaches cannot be used to
determine the particle size, shape, and atomic structure of such
small NPs that can be very disordered, and the sensitivity of
high-resolution electron microscopy methods is not sufficient
to resolve in detail the atomic structure.26,27 XAFS is among a
few experimental methods that are useful in this case. The
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unique role of XAFS spectroscopy for catalyst studies is based
on its element-specificity, sensitivity to the details of local
environment around catalyst (or adsorbate) atoms, applic-
ability to broad range of samples, and applicability to in situ
and operando studies. An important advantage of the XAFS
method is its ability to address very different length-scales that
all are relevant for catalysis: from subtle variations in
interatomic distances on picometer scale due to interactions
with adsorbates and surface-induced stress, to changes in the
morphology of materials on nanometer scale (e.g., changes in
NPs sizes and shapes), to macroscopic changes in the
oxidation state of materials, crystallographic structure, and,
finally, distributions of species in chemical reactors. Similarly,
very different time-scales are accessible in XAFS experiments:
while conventional XAFS measurements take minutes and are
thus suitable for monitoring relatively slow changes in catalyst
structure (e.g., oxidation/reduction processes) that take place
within minutes and hours, other approaches enable inves-
tigation of processes at much shorter time scales. For example,
millisecond regimes can be nowadays explored with quick-
EXAFS and optically dispersed XAFS approaches, while pump-
probe approaches provide access to picosecond time scales and
allow one to probe, for example, structural transformations in
photoexcited photocatalysts.28 To employ this power of the
XAFS method to the full extent, when it is applied to such
intrinsically complex systems as catalysts under working
conditions, advanced approaches to data analysis are required.
Our proposed solution is, therefore, in order to understand
structure, study spectrum. In the next section, we will describe in
more detail the challenges in XANES and EXAFS data analysis
and modeling by conventional methods.

3. CHALLENGES IN STRUCTURAL ANALYSIS BY
X-RAY ABSORPTION SPECTROSCOPY

XANES and EXAFS constitute two regions of X-ray absorption
spectra that encode complementary information. XANES
portion of the spectrum corresponds to lower excitation
energies and is defined by electronic transitions to unoccupied
atomic and hybridized states and contains information,
therefore, about the details of spatial arrangements of
atoms.27,29 EXAFS, in turn, is less sensitive to the details of
electronic structure (due to higher energy of excited electrons)
but contains more detail about the distributions of nearest
neighbors around the absorbing atom. For decades, analysis of
EXAFS features has been an indispensable tool for quantitative
catalyst structure studies. Less attention has been paid to the
structural information encoded in XANES, which has unique
advantages. While EXAFS data quality can dramatically
decrease in reaction conditions because of, for example, high
temperature, low metal loading, restrictive reactor environ-
ment, and so on,30−35 XANES remains relatively insensitive to
disorder effects and, overall, has better signal-to-noise ratio
than EXAFS. It can also be more sensitive to the 3D structure
of the material, whereas EXAFS probes mostly radial
distribution of atoms around the absorber. Furthermore, in
the studies of nanostructured materials, in which the structural
disorder is much more pronounced than in their bulk
counterparts, XANES could be more sensitive to the structural
details than EXAFS. Good-quality XANES data can be
collected for samples in harsher experimental conditions,
intrinsically disordered materials, samples with a low
concentration of absorbing atoms, samples in complex,
attenuating sample environments, as well as for samples on

attenuating supports and/or crystalline supports that yield
strong Bragg reflections that limit the length of usable spectra.
Acquisition of XANES spectra can be done faster than
acquisition of full EXAFS spectra; therefore, XANES-based
studies are attractive for time-dependent investigations as well.
XANES (or analogous ELNES) data can also be collected
more easily in lab-based setups. In the soft X-ray regime
(useful for studies of L and M edges of early transition metals,
K-edges of nonmetals like C, N, O, S, and so on), typically only
XANES spectra are available. All these factors make XANES
analysis an attractive tool for studies of catalysts and other
functional materials. Indeed, the sensitivity of XANES spectra
to catalyst structure, (e.g., the NPs sizes) have been
acknowledged a long time ago, both for metallic27,36−38 and
nonmetallic NPs.39,40 The main challenge that hinders the
usage of XANES for quantitative analysis of nanostructures is
the lack of a general methodology that would allow one to
extract 3D structural information from experimental data. As
discussed in the Introduction, it is particularly desirable that
this information is expressed in terms of useful “descriptors” of
structure that can be modeled theoretically in order to
understand reaction mechanisms and guide the design of
novel catalysts. In addition, with the development of
instrumentation for in situ, time-resolved, and high-throughput
XAS studies,41,42 there is a growing need for a method that
would allow on-the-fly extraction of relevant structural
information from hundreds and thousands of acquired spectra
in a systematic way. Such methods, beyond conventionally
used workhorse XANES analysis methods such as linear
combination analysis (LCA) and principal component analysis
(PCA), that are useful for chemical speciations of mixtures, but
not for structural refinement of unknown structures, are
presently lacking.
EXAFS analysis can provide detailed information about the

distribution of bond lengths that cannot be extracted from
XANES data. While methods for quantitative analysis of
EXAFS data are more established than those for XANES data
interpretation, ML-based approaches can address several issues
that are challenging for conventional methods. Note that
EXAFS can be directly linked to the partial radial distribution
functions (RDFs) gAB (R), which describe the probability
density for finding atom of type B, where symbol B designates
any type of a nearest neighbor, including, e.g., A, at distance R
from the absorber A. The contribution χAB (k) of atomic pair
A−B to the total spectrum for absorbing atom A can be
expressed as43,44

∫χ

ϕ

=

+

λ
+∞

−k S g R F k R

kR k R
R

kR

( ) ( ) ( , )e

sin(2 ( , ))
d

R k
AB 0,A

2

0 AB AB
2 / ( )

AB 2

A

(1)

Here

=
ℏ

−k
m

E E
2

( )e
2 0,A (2)

is photoelectron wavenumber, me is electron mass, ℏ is
Planck’s constant, E0,A is photoelectron reference energy for
absorber A, S0,A

2 is corresponding amplitude reduction factor
due to many-electronic excitations, FAB and ϕAB are real and
imaginary parts of photoelectron scattering functions, and
λA (k) is the effective mean free path for the photoelectron.
The total spectrum for absorbing atom A is a sum of all single-
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scattering contributions χAB (k), but, importantly, also of so-
called multiple-scattering (MS) contributions, which depend,
e.g., on bonding angles and can be described by an equation,
similar to eq 1, but where, instead of RDF gAB (R), a many-
atomic distribution function needs to be used. From eq 1,
knowing the partial RDF gAB (R), it is straightforward to
calculate the corresponding χAB (k) contribution to the total
EXAFS signal. The inverse problem (determination of gAB (R)
from experimental EXAFS) is, however, much more challeng-
ing (ill-defined). Conventional EXAFS fitting based on EXAFS
equation and nonlinear least-squares procedure45 requires
making an a priori assumption about the shape of bond-length
distributions. Typically Gaussian or quasi-Gaussian shape is
assumed, although more complex expressions based on
asymmetric Γ-function are also used.32,35,46−48 These approx-
imations work well for well-defined bulk materials at low
temperatures. However, for very small NPs or systems at high
temperatures (both cases are commonly encountered in
heterogeneous catalysis studies), these approximations are
inadequate because of the enhanced static and/or thermal
disorder, and the analysis results in significant systematic errors
in the obtained values of CNs and interatomic distan-
ces.31,32,34,46,49−54 Such asymmetry can be caused by the
heterogeneous environments of atoms of the same type that
are located at the catalyst surface, in the interior, and in the
interface with the support.33 For example, the atoms near the
surface or support interface may be located in the strained
environment, while the atoms near the core are in a relaxed
environment closer to their bulk sites.55,56 If only the average
interatomic distance is obtainedtypical for conventional
EXAFS analysesthe ability to detect and analyze the different
populations is lost. Another challenge is the analysis of
contributions from distant coordination shells: while the more
distant neighbors can contribute significantly to the EXAFS
spectra of crystalline and nanocrystalline materials and can
provide important clues about the 3D geometry of the
material,57,58 interpretation of these contributions in conven-
tional EXAFS fitting approaches is nontrivial. Contributions of
the distant neighbors overlap strongly and overlap also with the
contributions of MS effects. Corresponding structural param-
eters thus cannot be obtained without additional constraints
and assumptions because of the strong correlation between
them.46,59 Supervised ML-based approaches provide an elegant
way to address both these challenges: instead of defining
constraints and additional assumptions explicitly, the ML
method deduces them automatically from the analysis of the
training data set.60

As we have briefly outlined in the Introduction, in the case
of structural and compositional heterogeneities, structural
analysis of multiple coexisting species by ensemble-averaging
XANES and EXAFS methods is very challenging. More
common is the use of these methods for speciation purposes,
using a number of linear algebra-based tools. The most widely
used approach is LCA,61 but more advanced approaches as
PCA,62−65 Blind Signal Separation (BSS)66−68, and Multi-
variate Curve Resolution with Alternating Least Squares
(MCR-ALS) fitting69−71 are getting increasingly popular.
These latter methods rely on the availability of large sets of
experimental data and can be considered as examples of
unsupervised ML.
In the next sections of this Perspective, we will focus on the

analysis of homogeneous catalytic materials, with narrow
particle size and compositional distributions. We start with

discussing automated data matching and database search
approaches for interpretation of XAFS data and then focus on
SML methods (classification and regression), which enable
determination of materials properties (discrete or continuous,
respectively) even without a perfect agreement between the
measured spectrum and one of the entries in the database. For
construction of the XAFS spectra database, one relies on the
forward modeling of XANES (and/or EXAFS) spectra of
individual catalytic species (e.g., NPs or clusters). Methods of
unsupervised ML will be then summarized in Section 6. Future
opportunities in catalysis research based on the new spectral
“inversion” methods will be presented in Section 7.

4. AUTOMATED SPECTRA MATCHING AND
SUPERVISED CLASSIFICATION

From the early stages of XAFS method development, the
common approach for the interpretation of experimental
spectra to determine the electronic and atomistic structure of
the material relied on the comparison of obtained XAFS data
with those for reference materials. The limitations of this
approach are clear. First, spectra for many reference materials
need to be collected for the identification of a single spectrum
of interest. Second, the result of “visual” comparison between
two different spectra may be subjective and prone to bias,
especially if the changes in local environment have only a
subtle influence on XAFS features. While far from being fully
addressed, some progress in dealing with these issues was
noticeable during the last years. Part of the solution is the
development of publicly available databases, containing
experimental and theoretical XAFS data for many relevant
reference materials. A necessary second part of the solution
relies on the advances in algorithms that enable efficient search
of the large databases and automated data matching.
The existing publicly available databases of experimental

XAFS and analogous EELS spectra (http://cars.uchicago.edu/
xaslib,72 www.cat.hokudai.ac.jp/catdb,73 https://eelsdb.eu/74),
while useful, contain currently just a few hundreds of
experimental spectra.75 This information can be comple-
mented by theoretical XAFS simulations. Note that during the
last decades there has been a significant progress in the ab
initio methods for XAFS spectra modeling. Current models for
EXAFS modeling, implemented, for example, in FEFF76 and
GNXAS77 codes, provide excellent agreement with experiment.
Simulations of EELS and XANES data are more challenging
but can be addressed within different approaches, for example,
multiple-scattering,78,79 Bethe-Salpeter equation method,80,81

time-dependent density-functional theory,82,83 and others.84−87

Different levels of theory for XANES data calculations are
compared in the recent review.88

For the task of generation of large databases, a good starting
point is to use the computationally least demanding
approaches, based on multiple-scattering approximation. Such
an approach is implemented in FEFF79 code (that carries out
XANES simulation in so-called muffin-tin approximation to
describe the electron density distribution in the material) and
FDMNES89 code (that can work with muffin-tin, as well as
more accurate finite-difference methods). Within these
approaches, simulations of a single XANES spectrum takes
typically several CPU minutes, giving the possibility to
generate databases with thousands of spectra.
Currently, the most impressive accomplishment in this area

is the work by Zheng, Mathew et al.,75,90 where FEFF code79

was used to generate a database with ca. 800 000 K-edge
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XANES spectra for material structures from the Materials
Project database.91−93 Based on this collection, a tool was
developed for automatic identification of XANES data. The
key here is to define the distance or similarity function that
would allow one to assess the difference between two spectra
μ1 (E) and μ2 (E). Different approaches can be used. The
simplest approach is to use the Euclidean distance between
discretized XAFS spectra. It is, however, sensitive to the
outliers, experimental noise, and systematic errors (e.g., data
collected at different beamlines can have different resolution
and can be difficult to compare; the details of background
subtraction and spectra normalization may affect the results;
and alignment of collected spectra in energy space may be
affected by X-ray beam instabilities, etc.). Attempts to develop
more robust distance functions have been made. Some of the
alternative measures of similarity, discussed in the literature,
include L1-norm (Manhattan distance),87,94 Pearson’s correla-
tion coefficient,87,90,94 cosine distance,87,90,94 and Spearman
correlation test.94 For matching experimental data with
theoretically calculated spectra, the choice of similarity
function may strongly affect the result, because due to the
systematic errors in XANES data modeling, a perfect match
between the input spectra and most appropriate spectrum from
the database is not expected. In the algorithm, developed by
Zheng, Mathew et al., this problem is addressed by using
ensemble learningdifferent combinations of similarity
functions and data preprocessing methods are used simulta-
neously, and the final result (the structures that match well the
given experimental spectrum) is determined on the basis of the
combined ranking. An example of the application of this
method is shown in Figure 1, where experimental Ni K-edge

and Co K-edge XANES spectra for NiO and LiCoO2 materials
are shown, together with the 5 most similar entries from the
database of generated theoretical spectra. In both cases, the
correct structure is among the 5 most likely answers.75,90

Although this database contains a large number of spectra, it
is still limited to well-defined bulk materials; hence, its
applicability to analysis of many catalytically relevant systems
(heterogeneous catalysts, NPs, bimetallic alloys, etc.) is
limited. Some useful information, can, nevertheless, be
extracted. For example, even when the algorithm fails to find
a correct structure for a given experimental spectrum, the listed
possible structure models often have correct oxidation state

and/or coordination environment for the absorbing spe-
cies.75,90 This paves the road for a more general analysis
instead of looking for an exact match with experimental
spectrum, analysis of XAFS features can provide insight into
some characteristics of studied material (oxidation state,
number of nearest neighbors around absorbing atom and
their arrangement, etc.). The interpretation of XANES spectra
now can be formulated as a supervised classification problem:
we attempt to construct a mathematical model h(Θ,μ(E)) → p
that takes as input experimental spectrum μ(E) and returns a
discrete number (label) that characterizes the corresponding
property of the sample (e.g., oxidation state of absorbing
species). The model depends on parameters Θ, which during
the training step are optimized to ensure correct mapping
between spectral features and materials properties. For this
training step, one uses a set of spectra, for which the correct
value of the corresponding property is known. Experimental
spectra of well-defined reference spectra can be used for this
purpose. For example, recently, Miyazato et al. used 23 K-edge
experimental XANES spectra to train different ML routines
(different functions h(Θ,μ(E))), such as support vector
machine, random forest, decision trees, logistic regression,
etc.) to recognize from the shape of absorption edge, whether
the material is oxide or not.95 However, only simple models
can be trained using such small data sets. For more complex
problems, much larger training sets are needed, and ab initio
simulated spectra can be used for training.
In a recent work by Carbone et al.,96 a database of 18184

site specific K-edge XANES spectra for transition metal oxides
was constructed using structure models from Materials
Project91−93 and FEFF code79 for XANES modeling. Using
this data set, a NN was trained to recognize the local
coordination environment around absorbing species (tetrahe-
dral (4 nearest neighbors), square pyramidal (5 nearest
neighbors), or octahedral (6 nearest neighbors) geometries).
In the case of NNs, the function h(Θ,μ(E)) is represented as a
network of nodes, where the nodes in the first layer are
initialized by the values of xi

(1) = μ(Ei); hence, their number is
equal to the number of data points (of the order of a hundred
to several hundreds) in the discretized XANES spectrum. The
values of the nodes in the following layers are obtained as

θ θ= = + ∑ =
−( )x f z f x( )i

n
i

n
i

n
j ij

n
j
n( ) ( )

0
( )

1
( ) ( 1) , where summation

is carried out over all nodes in the current layer, and θij
(n) are

parameters (weights and biases) that are optimized during the
training step, and f is some activation function (rectified linear
unit (ReLU) is used by Carbone et al.96). The output of the
nodes in the NN final layer corresponds to the values of the
material properties p. The advantage of NNs over other ML
methods is that the complexity of the model h(Θ,μ(E)) can be
easily increased by increasing the number of layers and nodes,
and if very large training sets are available, quite complex
relationships between spectral features and material structure
can be constructed. Note here that for small training data sets,
other ML methods may be better suited than NN.
A key property of NN that makes its training feasible is that,

despite possibly a very complicated structure of NN, it is easy
to calculate the derivative of the NN prediction error with
respect to all the parameters Θ. Here, the definition of the NN
prediction error (cost function) is problem-specific, but in the
simplest case (more suitable for regression problems, discussed
below, where the NN output can assume continuous values), it

can be defined as ε = ∑ −x p( )
K m k m k

n
m k

1
2 , ,

( )
,

2 where summa-

Figure 1. Results of automated spectra matching for (a) Ni K-edge
XANES in NiO and (b) Co K-edge XANES in LiCoO2. Experimental
spectra are given together with the 5 most similar theoretical spectra
for different bulk structures from the database. Theoretical spectra are
shown in the order of decreasing similarity. Reproduced with
permission from ref 90. Copyright 2018 Springer Nature. Reproduced
under Creative Commons Attribution 4.0 International License:
https://creativecommons.org/licenses/by/4.0/.
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tion is carried out over all K training examples or a subset of
training examples (“batch”), and p̃m,k = xm,k

(n) and pm,k are the
NN-yielded and the true values for parameters pm, respectively
(index m indicates here that NN can have more than one
output value). The partial derivatives of ε are then commonly
obtained by the so-called back-propagation algorithm. First, for
the last NN layer (output layer), ε

θ
∂

∂ ij
n( )
terms can be readily

calculated. For example, with the above-defined cost function,
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( ) . Similarly, the partial

derivatives of the cost function with respect to the θij
(n−m)

values for deeper NN layers can be expressed as
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( ) . In the back-propagation algo-

rithm, the ε∂
∂ −zi k

n m
,

( )
terms are recursively calculated layer-by-layer,

knowing the corresponding values of derivatives for the
w e i g h t s i n t h e f o l l o w i n g ( n−m+ 1 ) l a y e r :
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ref 97 for more details. Once the partial derivatives for all
weights are calculated, it is easy to optimize their values using
the standard gradient descent method or some more advanced
approaches. For example, Carbone et al. used the so-called
ADAM method,98 which currently is a popular choice for NN
training. Using this approach and another set of theoretical
spectra for testing, local CN was identified with accuracy better
than 90% for tetrahedrally and octahedrally coordinated
species. Lower accuracy (ca. 70%) was achieved for 5-
coordinated species, which often were mistakenly identified
as tetrahedrally or octahedrally coordinated. Another impor-
tant limitation was that the accuracy of the method, when it
was applied to real experimental data, was significantly lower
than that achieved in tests with theoretical data. This result is a
consequence of significant systematic errors of XANES
modeling and demonstrates clearly that extreme caution is
needed, when ML-based approaches, trained on theoretical
data, are applied for interpretation of experimental data.96 In
principle, the performance of the ML method on experimental
data can be improved, if after the training on large sets of
theoretical training data, the parameters of NN (e.g., in the last
hidden layer only) are slightly reoptimized, using a small set of
well-defined experimental data (“transfer learning” ap-
proach96,99).
It is also important to note that in the above-mentioned

works, the different possible labels, that is, different classes of
materials (oxide vs nonoxide, or tetrahedrally coordinated vs
octahedrally coordinated), are predefined; thus, one assumes
from the beginning which material characteristics are most
important for explaining XAFS features. For parameters like
oxidation state or the symmetry of the coordination environ-
ment around the absorbing atom, this approach works well,
because these parameters have very large effects on XAFS and
their importance is well-documented in the literature. For the
interpretation of more subtle relations between spectral
features and structural motifs it is desirable, however, to
determine the key structural characteristics in an automatic,
unbiased way. The data-driven approach by Kiyohara et al.100

is a demonstration of this idea. In that work, 46 O K-edge
ELNES/XANES spectra were generated in theoretical
simulations. Spectra were then clustered in a few clusters
(see Section 6.3), and then a decision tree was constructed,

which describes the structural characteristics that are common
for each cluster of spectra (valence state, presence of short or
long bonds, etc.), thus automatically constructing a label for
each cluster (Figure 2). Interpretation of an experimental
XANES/ELNES spectrum is then carried out by just assigning
it to the most similar cluster of spectra and reading out the
corresponding label.

5. SUPERVISED MACHINE LEARNING: REGRESSION
5.1. New Opportunities for Analysis of X-ray

Absorption Spectra. While in the case of classification the
output of SML routine is a discrete variable that describes the
belonging of input vector to a certain class, in the case of
regression the output is a continuous variable (or several
variables) that can characterize, for example, the NP size,
surface-to-volume ratio, characteristic interatomic distance,
bonding angle, or some other structurally relevant (as opposed
to an abstract) parameter that affects XAFS spectra. We thus
attempt to decipher much subtler differences due to small
changes in structure, associated, for example, with in situ
changes in NP shape, increase in disorder, interactions with
adsorbates, and so on, that are inaccessible to other approaches
for XAS data analysis.
While for classification problems different ML methods can

be used, for regression analysis of XANES and EXAFS data, the
usage of NNs seems to be the most beneficial. The reasons for
that are (i) good scalability of NN-based models, which allows
one to construct easily very complex relationships between
spectral features and structure descriptors, and (ii) the
nonlinear sensitivity of NNs to different features in the input
vectors, which allows detection of minor changes in the
analyzed spectra and, for example, enhancement of distant
coordination shells contribution and minimization of the
systematic errors influence. However, the training of complex
NN-based regression models requires large training sets with
thousands (or, in the case of XAFS data, tens or hundreds of
thousands) of spectrum−structure pairs. Additionally, to
minimize bias, the NN should be trained to predict structures
that can be present in active states during chemical
transformations and are unlikely to have analogues in
experimentally available spectra. For example, if NN was
trained on fcc-type NPs structures only, the NN yielded output
will also always correspond to some fcc-type structure,

Figure 2. Automatic labeling of spectra using decision tree: generated
theoretical spectra are clustered, and a decision tree is constructed,
which assigns to each cluster a unique set of corresponding structural
characteristics. Reproduced with permission from ref 100. Copyright
2018 Springer Nature. Reproduced under Creative Commons
Attribution 4.0 International License: https://creativecommons.org/
licenses/by/4.0/.
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regardless of the actual structure of the experimentally
investigated NP. Ab initio simulations of XAFS data are
therefore the only viable approach for constructing such data
sets. Generation of training data is the most time-consuming
part of NN-XAFS methods. Some automated procedures for
selection of training examples for a particular problem may be
helpful (“active learning” approach).101,102

Before discussing NN-EXAFS and NN-XANES/EELS
approaches, let us note here that ML-based regression methods
can be, of course, used in the interpretation of other
experimental data. For example, ML methods, trained on
experimental103−105 or simulated106 data are used for
determination of chemical shifts in NMR analysis. An
interesting (and conceptually similar to our NN-XAFS
approach) application of ML methods is also a recent study
by Ziatdinov et al.,107 where NN is used to determine the
atomic positions from microscopy images. As in the case of our
NN-XAFS, simulated data are used for NN training.107

5.2. XANES Analysis. 5.2.1. Method. The NN approach
has been already introduced in Section 4. In our original NN-
XANES regression scheme,21 the output layer of NN produced
a vector pi containing average CNs for the first few
coordination shells: pi = {C1

i ,C2
i ,C3

i , . . .}. Knowledge of CNs
allows one to estimate effective NP size, and, for small NPs
with narrow size- and shape-distributions, also NP shape: for
this purpose, CNs, extracted from NN-XANES analysis, are
compared with a database of calculated CNs for particles of
different sizes, shapes, and crystallographic structures.58,108

Moreover, for well-defined reference samples with low
disorder, CNs extracted from XANES data can be directly
compared with the results of EXAFS analysis to validate the
accuracy of our NN-XANES method (Figure 3a).21 In the
follow up study, we extended this approach and used NN to
also determine from XANES spectra the effective interatomic
distances R.109 Since for small NPs the interatomic distances
depend on NP size, we can use NN-yielded R and C1 values as
two independent characteristics of particle size (Figure 3b).

Other structural and nonstructural parameters that affect
XANES spectra can be extracted in a similar man-
ner.88,101,110,111

For NN training, we use theoretical XANES spectra for
particles of different sizes, shapes, and crystallographic
structures, calculated with FEFF79 and FDMNES89 codes.
Some systematic errors present in both codes are partially
compensated, when both of them are used to produce spectra
for the NN training. For reliable results, and especially for the
analysis of more distant coordination shells, many thousands of
training spectra are needed. In principle, one could therefore
construct a training set by generating thousands of NP models
and calculating particle-averaged XANES spectra for each of
them. This is, however, inefficient, because larger NPs have
many nonequivalent sites, and several hundreds of site-specific
XANES spectra need to be calculated to generate a single
particle-averaged spectrum. Moreover, for larger NPs, the
particle-averaged spectra are getting close to that of
corresponding bulk material, and the contrast between
different training examples would be low. That last limitation
is the most severe: the degeneracy of a vast number of large-
size NP models with respect to the spectra that correspond to
them would, effectively, limit this method to generating only
several hundreds of nonequivalent spectra, that is not enough
for training of a NN for the analysis of XANES or EXAFS data.
Instead of particle-averaged spectra, we use random linear
combinations of a few site-specific XANES spectra to generate
the training sets. From a relatively low number of NP models
several hundreds of nonequivalent site-specific spectra can be
generated, which then can be combined in practically
unlimited number of linear combinations. Thus, a large set
of training examples can be generated quickly and with modest
computational resources.21,108,109

NNs with one or two hidden layers with several hundreds of
nodes in each are usually sufficient to address the complexity of
the problem.21,108,109 For the simplest cases (e.g., when one is
interested in the number of nearest neighbors in the first
coordination shell only), satisfactory performance can be
achieved even with the linear regression method (NN without
hidden layers).21 In addition to traditional, fully connected
NNs, convolutional NNs can also be employed, which is a
powerful method widely used (e.g., in the image processing).
In the case of XANES data analysis, our tests do not show,
however, any significant advantage of convolutional NNs over
fully connected NNs.99

We would like to emphasize here again that caution is
needed when NN, trained on theoretical data (which contain
some unavoidable systematic errors), is applied to the
interpretation of real experimental data. Because of the
nonlinear nature of the NN function, even small systematic
disagreement between experimental and theoretical data can,
in principle, result in significant errors. The accuracy of NN
predictions thus always needs to be validated using sets of
experimental data for well-defined model samples. Moreover,
since the accuracy of XANES simulations is different for
different materials, a good performance of a NN in the
interpretation of one absorption edge data (e.g., Pt L3-edge)
does not guarantee an equally good performance of similar NN
for other element/absorption edge (e.g., Au L3-edge), and it
needs to be validated on the case-by-case basis. On the other
hand, the nonlinear nature of NN is also an advantage in
dealing with systematic errors: during the NN training, NN
automatically assigns larger weights to those spectral features

Figure 3. (a) Validation of the accuracy of NN for analysis of Pt L3-
edge XANES data: comparison of NN yielded CNs with their true
values for theoretical models and with CNs extracted from
conventional analysis of experimental EXAFS data. Shapes for Pt
NPs, synthesized via support impregnation with incipient wetness
method (samples A1, A2, A3)

114 and for Pt NPs of similar sizes,
synthesized using inverse micelle encapsulation (S1, S2, S3, S4)

112 are
shown. Adapted with permission from ref 21. Copyright 2017
American Chemical Society. (b) Numbers of nearest neighbors and
effective interatomic distances between them, as extracted by NN
from in situ Cu K-edge XANES data for ultrasmall mass-selected Cu
clusters under CO2 conversion conditions. Possible cluster models are
shown in the insets. Reprinted with permission from ref 109.
Copyright 2018 American Chemical Society.

ACS Catalysis Perspective

DOI: 10.1021/acscatal.9b03599
ACS Catal. 2019, 9, 10192−10211

10198

http://dx.doi.org/10.1021/acscatal.9b03599


that are most relevant for determination of corresponding
structure parameters. If these features are reproduced in
simulations reliably, NN will have high accuracy even if
systematic errors corrupt some other features in the absorption
spectra. This gives significant advantage for NN-based
methods over, for example, linear algebra-based methods,
which weigh all the data points in the analyzed spectra
uniformly, regardless of their relevance for the determination
of materials structure. This makes NN-based methods also
relatively robust toward the details of data preprocessing, for
example, background subtraction and normalization of
absorption spectra. While these steps can affect the shape of
XANES features, their effect on absorption spectra is quite
different from the effect of changes in material structure, and
thus, from our experience, often does not influence the
performance of NN. One can further minimize their influence,
if instead of using absorption spectra μ(E) directly, NN is
trained on theoretical Δμ(E) = μ(E) − μref(E) data, where
μref(E) is a theoretical reference spectrum for corresponding
well-defined material (e.g., bulk metal). After training is
completed, as input for NN one provides experimental Δμ(E)
spectrum, where the role of μref(E) is played by a
corresponding experimental reference spectrum for metal foil,
for example. In the study of Pt NPs,21 discussed below, such
differential approach allowed us to extend the sensitivity of our
NN up to the fourth coordination shell, for example. Clearly,
some other steps in data preprocessing can have more critical
influence. For example, shifts of spectral features due to a
misalignment of experimental data can affect significantly the
accuracy of NN predictions. Reference spectra thus always
need to be collected together with the spectra of material of
interest, to enable accurate alignment of energy scales. Data
augmentation approach, discussed in the Section 5.3.1, can also
be helpful in addressing the problem of data misalignment.
5.2.2. Examples. In our proof-of-principle work,21 we

applied the above-described approach to a set of γ-Al2O3-
supported samples of Pt NPs with narrow NP size and shape
distributions (Figure 3a). Our first step was to demonstrate the
accuracy of our method using theoretical data. By comparing
the CNs for the first four coordination shells, yielded by
trained NN from the particle-averaged XANES spectra, with
the true values for corresponding NP model, we confirmed that
(i) our NN training was successful and that (ii) XANES
spectra in metal NPs are sensitive not only to the number of
nearest neighbors (which was acknowledged before37,38) but
also to the arrangements of atoms in more distant coordination
shells, thus providing the possibility to use XANES analysis for
NPs shapes determination.58 Next, we validated the robustness
of our approach toward systematic errors of XANES modeling,
by applying NN to experimental data and comparing NN-
XANES yielded CNs with the results of conventional EXAFS
analysis, which were also available for this well-defined model
system. Excellent agreement was obtained. Finally, we used the
CNs for the first four coordination shells to determine the
average size and shape for experimentally investigated NPs.
The obtained NPs sizes were in agreement with TEM results,
while the obtained NPs shapes, intriguingly, showed sensitivity
toward the NPs synthesis method: preformed Pt NPs,
synthesized via inverse-micelle encapsulation method,112

were more spherical, while NPs prepared via support
impregnation with incipient wetness method were found to
be flatter, suggesting stronger particle−support interactions.
Such difference in NPs shape may have also important

implications for understanding thermal113 and catalytic
properties7 of these model catalysts.
Recently, we have revisited the above-described NN and

applied it to analyze polarization-dependent Pt L3-edge
XANES data for Pt NPs on single-crystal supports.115 Note
here that the bonds with different orientation with respect to
X-ray polarization contribute differently to the total XAFS
spectrum. Thus, by comparing effective CNs collected with
different X-ray polarizations (for oriented samples), one can
get additional clues about the anisotropy of NPs structure and
NP-support interactions.
In the follow-up works, we applied NN-XANES method for

interpretation of in situ data. For example, it was used for the
interpretation of Ag K-edge XANES data collected during self-
assembly of silver clusters in an ionic liquid.108,116 By following
in situ changes in CNs, we concluded that the assembly of
clusters occurs without coalescence, and the sizes and shapes
of individual clusters are preserved in the assemblies. The work
that is perhaps the best illustration of the prospects of NN-
XANES method for the studies of catalysts, however, is our
investigation of Cu clusters,109 which are attractive catalysts for
CO2 conversion. Among other factors, the NP size has a
decisive importance for the activity and selectivity of these
catalysts.117−120 To investigate the catalytic properties of
ultrasmall (with only 4, 12, and 20 copper atoms) clusters, they
were prepared in gas phase and soft-landed on a thin layer of
oxide deposited by ALD on a silicon wafer. The as-prepared
clusters were oxidized. Under reaction conditions (in CO2 and
H2 mixture and at temperature 375 °C), however, the clusters
were reduced, as evidenced by the changes in in situ XANES
data, collected in grazing incidence (GI) mode. While the as-
prepared clusters were mass-selected, it was not clear, whether
they preserved their ultrasmall sizes under reaction conditions
or sintered/agglomerated. For powder-supported NPs, this
question could be answered by EXAFS data analysis. However,
in this case, EXAFS data were not available because of the low
loading of metal and strong Bragg reflections from the Si wafer
support. Instead, we relied on the NN-based XANES analysis.
We considered not only the possible changes in CNs but also
in interatomic distances. Because of the expected reduction of
interatomic distances in small NPs,121,122 if we observe
significantly reduced CNs simultaneously with the reduced
interatomic distances (with respect to the values for bulk
copper), we can be confident that the investigated clusters
indeed preserve their initially ultrasmall sizes. It indeed was
found to be the case for Cu clusters on ZrO2 support (Figure
3b). For Cu clusters on ZnO support, however, significantly
larger average CNs were obtained, as well as longer interatomic
distances. This indicates that Cu clusters on ZnO significantly
agglomerated.109 Our efforts now are focused on the extension
of the NN approach to nonmetallic clusters. For example,
Figure 4 from an ongoing work demonstrates that similar
sensitivity to NP size can be observed also in the Cu K-edge
XANES data for partially oxidized, size-selective Cu clusters.
Using the NN approach, the XANES spectra can be inverted
and the information on the cluster size and oxidation state can
be extracted, similarly to what has been done for the metallic
Cu clusters.
Another good example of application of ML methods for

quantitative interpretation of XANES data in catalytically
relevant systems are the studies by Guda et al. of local structure
around Ni in CPO-27-Ni metalorganic framework (MOF)
upon adsorption of CO, CO2, and NO.88,111 Interaction with
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adsorbates affects Ni K-edge XANES, depending on the
distance between Ni and adsorbate and the bond angle (e.g.,
Ni−N−O angle in the case of NO adsorption). The ML
method is then trained on theoretical spectra, generated using
FDMNES code89 for DFT-optimized MOF structures. The

values of structure parameters then can be successfully
extracted from experimental Ni K-edge XANES data. Among
other examples, we mention also the recent study by Kiyohara
et al.,110 where NN was used for interpretation of O K-edge
ELNES data. In this study, 1171 O K-edge spectra were
calculated using CASTEP code123 for different SiO2 poly-
morphs from Materials Project database.91−93 NN was then
trained on these data to predict average Si−O bond length,
average bond angle, Voronoi volume, Mulliken charge,
excitation energy, and bond overlap. This study thus sets a
good example that geometrical parameters as well as
parameters of electronic structure can be recognized by NN
from near-edge data. NN, trained on theoretical data, was then
able to obtain accurate values of these parameters from
experimental O K-edge data for α-quartz.

5.3. EXAFS Analysis. 5.3.1. Method. During the operando
transformation of catalysts between different structures,
including the strongly disordered ones, a concept of a
“coordination shell” is not applicable because the ensemble
averaged distribution of neighbors may not feature isolated,
well-defined peaks. In these cases, instead of the commonly
used (for structural characterization of catalysts) CNs, the
structure can be more reliably characterized by partial RDF
gAB (R) (eq 1), which has to be extracted from EXAFS data for
this purpose. Conceptually, NN for the analysis of EXAFS data
works in the same way as for XANES analysis (Figure 5a−d).
NN takes EXAFS spectrum as input and yields the description
of structure, in this case the entire RDF, parametrized as a
histogram (each NN output node yields a height of particular
histogram bin). NN training is carried out using a large set of
spectra, for which the correct RDF is known.
The main difference between NN-XANES and NN-EXAFS

approaches thus lies in the construction of their respective

Figure 4. Particle size effect in theoretically calculated109 Cu K-edge
XANES spectra for Cu2O clusters. Inset shows comparison of Cu−Cu
CNs (which characterize NP size), extracted by NN from theoretical
XANES data, with the true values for these clusters.

Figure 5. Experimental Pd K-edge EXAFS for PdAu NPs (a) is processed via wavelet transform (b) and fed into NN with several hidden layers (c).
The output nodes of NN yield a histogram of bond-lengths (d), which describes RDFs of atoms of different types (Pd and Au) around the
absorbing atoms (Pd). Partial RDFs, obtained by NN-EXAFS method for PdAu NPs of different sizes and compositions from experimental Au L3-
edge (e) and Pd K-edge EXAFS data (f). 3D structure models, obtained from the CNs yielded by NN-EXAFS (g). Arrows (in scale) indicate the
sizes of NPs, as obtained from TEM. Adapted with permission from ref 137. Copyright 2019 American Chemical Society.
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training sets. XANES is relatively insensitive to minor
displacements of atoms; therefore, for ML training, one can
use simple polyhedral structure models without any disorder. It
is not the case for EXAFS, and structure models with realistic
structural and thermal disorder (realistic gAB (R)) are needed.
In our approach, we use for this purpose classical molecular
dynamics (MD) simulations. It has been demonstrated that for
many systems (bulk metals,32,46,124 covalent materials,125−131

NPs,32,59,124,132−135 etc.), classical MD is a computationally
inexpensive way to generate models that agree well with the
available EXAFS data and other experimental informa-
tion.46,136 By carrying out MD simulations at different
temperatures, structure models with different degree of
disorder can be generated. Once the structure model is
obtained, further generation of theoretical EXAFS spectra is
straightforward using codes like FEFF76 and GNXAS.77

Similarly, as for NN-XANES analysis, for NN-EXAFS training
one can also use either spectra, averaged over all absorbing
atoms in the model, or site-specific spectra. The latter
approach in beneficial for NP analysis.137 Finally, as in the
conventional EXAFS data analysis, before being analyzed by
NN, experimental EXAFS spectra should be preprocessed to
remove experimental noise, high-frequency contributions of
distant coordination shells that are not included in the
theoretical MD-EXAFS models and low-frequency contribu-
tions due to the artifacts of background subtraction. Fourier
filtering can be used for this purpose. However, we have
demonstrated that the usage of more advanced wavelet
transform138,139 can be beneficial, especially for multielement
systems, providing better resolution of contributions from
different elements and, hence, simplifying the NN analysis.137

Clearly, the same Fourier- or wavelet filters used for
experimental data need to be applied to theoretical data used
for NN training.
Once the RDF is known, structure parameters of interest

(partial CNs, interatomic distances, disorder factors) can be
easily obtained by integration of gAB(R) function,54,60,137 and
used to construct 3D structure model of the material.137 The
influence of nonstructural parameters (E0 and S0

2, see eqs 1 and
2) also needs to be considered. S0

2 correlates directly with the
bin heights of g(R) histogram (for a given bin size) and, hence,
the values of CNs. Normally it is not a problem, because the
value of S0

2 can be estimated from the analysis of reference
compounds. The effect of E0, however, requires more
attention, because it is sensitive to charge transfer, presence
of adsorbates, support, temperature, and so on, as well as X-ray
beam instabilities. Therefore, it can easily change from one
sample to another and can even change in situ during the
experiment for the same sample. The chosen value of E0 can
affect the shape of obtained RDF, and the error of ca. 1 eV in
the E0 value can noticeably affect the obtained result.54

Fortunately, this problem can be addressed quite simply: in ref
54, we have shown that if each of the theoretical EXAFS
spectra used for NN training is shifted by a random ΔE0 value,
NN performs much more stably and does not assign any
physical meaning to small shifts in the energy scale of
experimental data. Similar data augmentation schemes can be
helpful in the interpretation of XANES data as well.96 Other
nonstructural parameters (e.g., parameters that define XAFS
signal background) can also affect the shapes of spectral
features, but their influence appears to be low because of (i)
aforementioned Fourier of wavelet filtering that allows one to
single out structure-sensitive information from smooth

variations of the background and (ii) the nonlinear sensitivity
of NNs that, as discussed in Section 5.2.1, automatically assigns
large importance only to those spectral features that are
relevant for determination of material’s structure.

5.3.2. Examples. Our original work on NN-EXAFS method
was devoted to the interpretation of Fe K-edge EXAFS data in
bulk iron experiencing temperature-induced transition from
bcc to fcc phase.60 While that study did not focus on catalysis,
the problem it addressed is relevant for many heterogeneous
catalysts: under harsh experimental conditions, the structure of
material changes significantly, and this change may be
challenging to interpret using conventional approaches. For
example, for iron at low temperature, in conventional EXAFS
analysis, the bcc structure model fits experimental data
noticeably better than the fcc model. At high temperature,
however, when distributions of bond lengths are significantly
broadened and asymmetric, the difference between fitting
results with bcc and fcc models is smaller than the systematic
error of the analysis, and the conventional EXAFS fitting
cannot distinguish between these models conclusively. Finally,
conventional EXAFS analysis methods will be particularly
challenged by a spectrum that corresponds to a material
measured during the structural phase transformationfor
example, neither an fcc nor a bcc model would be adequate to
analyze the spectrum of iron measured during such trans-
formation in the example described above.
By using the NN-EXAFS approach, this problem can be

addressed. By reconstructing RDFs directly from the
experimental data, we are able to access directly the
asymmetric shapes of RDF peaks, and integrate g(R) function
to extract accurate information on the average density of atom
packing, which is different for fcc and bcc structures.
Moreover, since the NN-EXAFS method is not limited to
the first coordination shell, it allows us to analyze contributions
of more distant neighbors, which are informative in even more
challenging cases, when, for example, fcc structure needs to be
distinguished from hcp structure.60 This is an important
problem in the determination of active species in Co-based
Fischer−Tropsch catalysts, for example.140

Even more challenging is the determination of RDF in
nanocatalysts, where in addition to thermal disorder, structure
is affected by strong static disorder effects. As a result, reliable
determination of CNs (which can be directly linked to particle
size), interatomic distances and other structure parameters for
small NPs is challenging even at room temperature. Recently,
we have demonstrated54 that analysis artifacts may contribute
to investigation of anomalous thermal properties, observed by
EXAFS method in small supported Pt NPs. In particular, it was
demonstrated in previous works that for such NPs upon
temperature increase, negative thermal expansion of NPs
structure can be observed, as well as anomalously high Debye
temperatures.112−114,141 Different explanations for these effects
have been proposed (e.g., temperature-dependent interactions
between NP and support114,142,143 or between NP and
adsorbates).113 While strong interaction with support and
nonvibrational dynamic motion have been shown to be the
main origin of the NTE factors in nm-scale NPs114,141−143

prepared by support impregnation, recent NN-EXAFS analysis
of Pt L3-edge data for preformed NPs has shown a different
explanation of their NTE.54 We note that particle−support
interactions, being significantly weaker in that latter case of
preformed NPs, cannot explain the observed NTE in this
system. By reconstructing shapes of RDFs in that latter
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material, Timoshenko et al. observed that they all were
strongly asymmetric and non-Gaussian, due to the pronounced
thermal and structural disorder. These effects are challenging
to account for using conventional EXAFS analysis approaches.
However, when they are considered explicitly using the NN-
EXAFS method, one observes positive thermal expansion for
those preformed NP samples (in the absence of hydrogen
adsorbates and strong particle−support interactions that were
shown to be responsible for real, not apparent NTE in the
samples prepared by support impregnation114,141−143). Sim-
ilarly, the anomalously large Debye temperatures, also
observed for this system, can be explained by the disorder
effects that are underestimated by conventional EXAFS fitting
approaches at high temperatures.54 This study thus demon-
strates the potentiality of NN-EXAFS method for accurate
determination of structure parameters in heterogeneous
nanocatalysts at harsh experimental conditions.
Rich structural information can be extracted by NN-EXAFS

method for bimetallic and more complex catalysts.137 Note
that discrimination between different heterometallic structural
motifs (e.g., between alloyed and segregated NPs) is often
based on the analysis of partial CNs and interatomic distances,
extracted from EXAFS data.144 The accurate determination of
structural parameters, enabled by NN-EXAFS method, is thus
a desired ability for studies of transformations of catalyst
structures under reaction conditions. An important advantage
of ML-based methods over conventional fitting approaches is
also their applicability to the analysis of distant coordination
shells, which for heterometallic materials are practically
intractable by conventional methods but provides the
possibility to discriminate between crystalline and amorphous
structures, between close-packed and non-close-packed (e.g.,
icosahedral) atomic arrangements, as well to detect signatures
of subtle ordering (e.g., second-neighbor ensembles145,146),
which all may be important for the understanding of structure-
properties relationship. In our recent work, we applied NN for
the analysis of EXAFS data in PdAu NPs of different sizes and
compositions.137 Using both theoretical as well as experimental
data, we have demonstrated the accuracy of this method for
the determination of structural characteristic in bimetallic NPs.
Moreover, by complementing NN-EXAFS analysis with a
simple structure optimization algorithm, which processed
simultaneously the information from the first four coordination
shells extracted from Pd K-edge and Au L3-edge EXAFS data,
3D models of analyzed NPs were constructed (Figure 5e−g).
The sizes and compositions of obtained NP models matched
those extracted from other experimental techniques (TEM and
ICP-MS). At the same time, unique information about the
distributions of different species within the NPs was obtained
(in particular, a trend for Pd to segregate to NPs surface in Pd-
poor NPs was observed).137

6. UNSUPERVISED MACHINE LEARNING: FINDING
PATTERNS IN LARGE DATA SETS
6.1. Dimensionality Reduction. PCA. In studies of

catalysts under reaction conditions, common is the situation
when different species coexist. Interpretation of ensemble-
averaged spectroscopic signals using supervised methods in
these cases can be challenging, because there is no single label
or single structure model that could be unambiguously
assigned to the acquired spectrum. In this situation,
unsupervised ML methods can be helpful. Two common
tasks of unsupervised ML are data clustering and dimension-

ality reduction.147,148 The objective of clustering is to find a
few spectra that could represent the whole data set.148 Instead
of performing the analysis of the whole large data set (which
may contain hundreds and thousands of spectra), analysis of
these few representative spectra should provide a complete
description of the sample. The goal of dimensionality
reduction is also to provide a simplified description of the
available data. One approach here is feature extraction,149

where a few descriptors (e.g., position of the absorption edge,
intensity of the white line in XANES, positions of the main
peaks in Fourier-transformed EXAFS spectra, etc.) of the
obtained spectra are used to track the changes in materials
structure.150 Selection of appropriate features, however, is
material- and task-specific and requires human expertise, and
therefore, it may be biased. An alternative approach relies on
so-called latent variable analysis,147 which assumes that the
variations between all measured spectra can be explained by
changes in a few variables (e.g., concentrations of constituent
species). Measured experimental spectra μi (E) in this case are
represented as

∑μ =
=

E w s E( ) ( )i
j

N

ij j
1 (3)

where sj(E) are spectra for pure compounds, N is their number
and wij − their weights. In matrix form, this equation can be
rewritten as

=M WS (4)

In the standard LCA,61 spectra sj(E) need to be guessed in
advance; thus, LCA is applicable only to studies of relatively
simple, well-defined compounds. Much more powerful
approach is PCA,62−65 which does not require any additional
human input and provides the most compact representation of
the measured data set by finding orthogonal vectors that
account for the largest discrepancies between spectra in the
data set. Such decomposition of matrix M into matrices W and
S can be ensured by singular value decomposition (see, e.g., ref
151 for detailed discussion). For PCA (and other approaches,
discussed below) to work reliably, large sets of spectra are
required (number of spectra should be much larger than the
number of pure components), where weights of different
components change systematically. Importantly, if the ratios of
some pure components are the same in the whole data set,
these components can be separated neither by PCA, nor
methods, discussed below. Each of the components should also
have a significant contribution to at least a few experimental
spectra.68,152 In this case, only relatively few vectors in matrix S
will have nonzero contribution (nonzero wij) to the measured
spectra. The orthogonality of the vectors in matrix S means
that these few vectors form orthogonal basis, and the number
N (number of significant sj vectors) is then equal also to the
number of independent components that are needed so that
every spectrum in the data set can be described as their linear
combination and thus will indicate the number of species in
the mixture. Vectors in matrix S, however, do not correspond
to any particular spectrum of pure compound but are their
linear combinations. If the spectra for the pure compounds are
known, the spectra for the unknown components can be
reconstructed using target transformation.151

PCA-XANES is commonly used in the time-resolved in situ
studies of catalysts. For example, it was used to identify
reaction intermediates from the time-dependent Cu K-edge
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XANES spectra for Ce0.8Cu0.2O2 catalyst reduction in hydro-
gen153,154 and to study changes in oxidation state of copper in
bimetallic CuPd catalyst on zeolite support.155 PCA was used
for speciation of molybdenum oxides (which are active
catalysts for oxidation of propene) under reaction condi-
tions,156 study of Mn-promoted Fe-based Fischer−Tropsch
catalysts,157 and study of the oxidation state of Fe in complex
Fe−Mo−Bi catalysts for propylene ammoxidation.158 In
addition to time-dependent studies, PCA is actively used for
the interpretation of spatially resolved data of catalysts
collected with focused X-ray beam or in full-field mode with
2D detectors.24,159 For example, in ref 160, the distributions of
oxidized and reduced species in illuminated by UV radiation
CuNi photocatalyst were obtained by PCA analysis of XANES
data collected with a microfocused beam, confirming the
presence of Cu2+ species only in the illuminated zone of the
material (Figure 6).
Clearly, PCA (as well as the approaches discussed below)

can provide meaningful information only if the difference
between XANES spectra for different species is significant. If
the absorbing species in different phases are present in similar
environments, or if the spectra are relatively featureless,
speciation by XANES method will not be possible.63 In some
cases, this problem can be addressed by performing measure-
ments in the high-energy resolution fluorescence detection
(HERFD) mode, which provides superior sensitivity to
different XAFS features due to lower spectral broaden-
ing.161,162 For example, PCA-HERFD-XANES was recently
used to probe in situ transformation of copper oxidation state
in the industrial commercial Cu/ZnO/Al2O3 catalyst for
methanol production.161 Alternative possibility is to use
instead of XANES corresponding EXAFS data that are more
sensitive to the details of distance distributions.64,163,164

6.2. Blind Signal Separation and MCR-ALS. PCA
yielded component are abstract and cannot be readily
identified, because the requirement that the spectra sj(E)
should be orthogonal is unphysical. In alternative approaches
(blind signal separation methods66−68), such as independent
component analysis (ICA), non-negative matrix factorization
(NNMF)147 and multivariate-curve resolution with alternating
least-squares (MCR-ALS),69−71 the approximations to ma-
trices W and S are obtained by replacing this condition with
other, physically meaningful constraints. As a result, sj(E)
yielded by BSS can often be directly identified with the spectra

for pure components. As such constraints, one can use the fact
that XANES spectra sj(E) and corresponding weights wij
should be all non-negative. In this case, the problem of solving
eq 4 can be addressed by NNMF.66 For the MCR-ALS
method, in addition to non-negativity, it is also required that
the sum of all the weights wij for a given experimental spectrum
μi(E) should be equal to 1. Additional constraints can be given.
For example, in ref 68, the BSS method was used for
interpretation of Pd K-edge XANES spectra in thiolated Au-Pd
clusters, where it was requested that the obtained XANES
spectra sj(E) should not be too different from the theoretically
simulated XANES spectra for different Pd placements within
the bimetallic cluster.
MCR-ALS is the most popular BSS method for XANES data

analysis. In this method, as a first step, the expected number of
components N needs to be specified. PCA is normally used for
this purpose. Next, initial guess of matrix W (or matrix S) (eq
4) is provided and constructed on the basis of PCA or rough
LCA. eq 4 is then solved using the least-squares procedure,
with respect to elements of matrix S (matrix W), subject to
specified constraints. Next, elements of W (or S) are similarly
refined. One continues alternate fitting of S and W for several
iterations, until the difference between M and WS product
does not improve anymore.165,166

To illustrate the accuracy of MCR-ALS method for XANES
analysis, in Figure 7a we apply it to a set of synthetic data,
constructed as linear combinations of experimental Cu K-edge
XANES spectra for standard materials (metallic Cu foil and
bulk Cu2O and CuO). After several iterations, an excellent
match between the MCR-ALS yielded approximations of
spectra for pure compounds and the true spectra is obtained.
The recovered concentration profiles also are in a good
agreement with the true values. In Figure 7b, the results
yielded by MCR-ALS in the interpretation of real experimental
XANES spectra for alumina-supported copper catalysts from
ref 71 are shownthe changes observed in Cu K-edge XANES
spectra during the thermal activation of the catalyst can be
identified with the changes in catalyst oxidation state. It needs
to be emphasized here that the association of the spectral
components with particular oxidation state and/or structural
motif is a separate problem, because MCR-ALS yields only the
corresponding XANES spectra for pure components, without
any labels. For the interpretation of obtained spectra, one can
compare them with the spectra of reference materials either

Figure 6. PCA analysis of XANES in CuNi photocatalyst. (a) Experimental scheme: sample is confined in a cell that allows simultaneous gas phase
treatment and UV illumination from to top side. Arrows show the direction of the gas flow, UV illumination, and incident X-ray micro beam. (b)
Concentration profiles of Cu0 and Cu2+ species in CuNi sample as a function of the distance from the surface, obtained from PCA analysis of Cu K-
edge XANES spectra (c) for UV-illuminated CuNi sample. Results for pure Cu are also shown in (b). Adapted with permission from ref 160.
Copyright 2018 Wiley-VCH GmbH & Co. KGaA, Weinheim.
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manually or using automated procedure (see Section 4).
Alternatively, ab initio XANES simulations can be used for this
purpose, as demonstrated in recent work by Martini et al.,
where DFT-relaxed structural motifs were used for XANES
modeling and then contrasted with the spectra, which were
extracted by MCR-ALS from experimental data for Cu-based
zeolites.167 A good example of application of MCR-ALS
technique for studies of zeolites-based catalysts is also the
recent study by Pappas et al.,162 where MCR-ALS was used for
the interpretation of HERFD XANES data for Cu-based
catalyst for methane-to-methanol conversion. Applications of
MCR-ALS methods to zeolites were also recently reviewed by
Guda et al.88 Among other recent examples of MCR-ALS
method applications, one can mention speciation of Co-based
Fischer−Tropsch catalysts from time-resolved QXAFS
data,70,168,169 study of Cr oxidation state changes in Phillips
catalyst during ethylene polymerization,170 in situ study of
formation of Ni−Mo catalysts for hydrodesulfurization
reaction171 and Fe−Ni catalyst for furfural hydrogenation,172
as well as in situ studies of Cu NPs growth.173,174

Overall, the PCA and BSS methods provide the biggest
advantage for speciation over conventional LCA method, when
the structure of the investigated material differs significantly
from the structure of well-defined bulk reference materials.
Examples of such (catalytically relevant) systems are small
NPs,36 ,174 ,175 bimetall ic alloys155 ,160 ,172 and zeo-
lites.152,162,167,176 Also, one can note that PCA and BSS
methods are useful, of course, not only for XAFS data
interpretation: they are getting increasingly popular for the
analysis of overlapping data in EDX microscopy,177,178 analysis

of XRD data179 and other spectroscopies, including IR and
mass spectroscopy.180

6.3. Clustering. The most common application of
clustering methods in XAFS analysis is processing of spatially
resolved spectra.181−185 Two- or three-dimensional (the latter
obtained using tomographic approaches) XANES mapping in
some region of a sample is carried out, with the aim to
establish spatial distributions of different species. By using
clustering methods, two goals are achieved. First, the analysis
of obtained data is significantly simplified, because instead of
analyzing XANES spectra for each of the hundreds of pixels/
voxels, only a few representative spectra need to be interpreted.
Second, by monitoring, to which of the clusters each of the
pixels/voxels is assigned, information about the distributions of
different species can be immediately visualized. Figure 8 shows

an example of such analysis. Here 2D mapping of Nd L3-edge
XANES has been carried out in magnetic Nd2Fe14B material
using full-field imaging.186 Each image contains 300 000 pixels
(i.e., 300 000 XAFS spectra were collected). Clearly, most of
the spectra are similar to each other. Using a clustering
approach, all the collected spectra can be grouped into three
groups. The differences in corresponding XANES spectra
(Figure 8d) suggest differences in the Nd environment in these
regions. For the interpretation of these differences in terms of
CNs and interatomic distances, analysis of full EXAFS spectra
was performed.186 For clustering methods to work, the choice
of similarity function is critical.87,94 Different possible similarity
functions are discussed in Section 4. Note also that instead of
comparing spectra in energy space, one can first reduce the
dimensionality of the data set using PCA, for example.181−183

The simplest clustering algorithm is k-means clustering,187

which can be carried out using Lloyd’s algorithm.188 The
number of clusters k should be specified in the beginning.
Next, k spectra are picked randomly as initial guesses of
representative spectra (cluster centers). Using the defined
distance function, for each of the spectra in the data set nearest

Figure 7. (a) Validation of MCR-ALS method using linear
combinations (black solid lines) of Cu K-edge data for Cu foil,
Cu2O and CuO (dashed lines). Corresponding concentration profiles
are shown as dashed lines in the inset. Spectra and concentration
profiles, reconstructed by MCR-ALS, are shown as solid red, green,
and blue lines. (b) Application of MCR-ALS to experimental data.
(Adapted with permission from ref 71. Copyright 2014 Elsevier.)
Evolution of Cu K-edge XANES for Cu catalyst on Al2O3 during
activation process (heating in H2 and He mixture from 50 to 250 °C,
followed by measurements at constant 250 °C). Determined
concentration profiles for Cu2+, Cu+, and Cu0 are shown in the inset.

Figure 8. Clustering of XANES spectra for imaging applications.
Pixels belonging to three clusters in the Nd L3-XANES maps for
permanent magnet material, Nd2Fe14B are shown in (a−c). The
representative Nd L3-edge XANES spectra for each of the clusters are
shown in (d). Reproduced with permission from ref 186. Copyright
2016 Springer Nature. Reproduced under Creative Commons
Attribution 4.0 International License: https://creativecommons.org/
licenses/by/4.0/.

ACS Catalysis Perspective

DOI: 10.1021/acscatal.9b03599
ACS Catal. 2019, 9, 10192−10211

10204

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1021/acscatal.9b03599


cluster center is found. The new, updated approximations of
representative spectra (cluster centers) are obtained by
averaging all the spectra, assigned to each of the k clusters.
Process is repeated iteratively, until there are no further
changes in cluster centers or changes in cluster centers are
smaller than a set threshold. This approach is widely used in
the clustering of XAFS data.183,189−192 However, more
advanced clustering approaches, such as density-based spatial
clustering are also used.186

Among recent examples of clustering-based analysis of
XANES data in catalytically relevant materials, one can
mention tomographic study of cobalt-based Fischer−Tropsch
catalysts,193 chemical imaging of single particles of Mo−Pt
catalyst,194 and study of the location and speciation of
elements in Cu-based zeolites.192 Without a doubt, such
studies of catalysts will get increasingly popular in the future.
One can mention that besides analysis of spatially resolved
XAFS data, clustering approaches can also be used for other
purposes, for example, to simplify ab initio XAFS calculations
for large disordered structure models, generated by MD or
reverse Monte Carlo (RMC) simulations.46 In these cases,
thousands of contributions of photoelectron scattering paths
need to be considered, where many of them have similar (but
not identical) geometries. To speed up calculations, con-
tributions of similar paths can be automatically clustered
together. Such an approach is implemented in EvAX code for
RMC simulations of EXAFS spectra in crystalline and
nanocrystalline materials.32,126

7. FUTURE OPPORTUNITIES FOR CATALYSIS
RESEARCH

ML-assisted methods of data processing and analysis have
undergone rapid development in the 2010s, coinciding with
similarly expanding palettes of experimental methods, ranging
from the high throughput to multimodal to operando modes of
characterization. A recent article by Kitchin and co-workers
outlines new opportunities that arise in catalysis research when
ML is used for image analysis, chemical design, speeding up
DFT calculations, and data mining in scientific literature.18 In
this section, we focus on the new opportunities that will
become available on the basis of the new methodology
summarized in this Perspective, namely, the “inversion” of
optical (e.g., X-ray, UV−vis, Raman), electron and other

spectra, and extracting practically important descriptors of the
catalytic system.
One possible direction in which significant progress can be

made is the rational design paradigm. Taking the original
“inverse design” approach advanced by Caruthers et al.,195 the
design rules are obtained by linking the formulation of the
catalyst and its performance using high-throughput exper-
imentation and a reaction modeling method. From the
knowledge of the structural and energetic descriptors, extracted
from in situ and operando characterization, one can, in
principle, obtain the smaller set that correlates with catalytic
performance and, therefore, propose the design rules of the
catalysts. This approach requires solving the “forward” problem
(given the catalyst structure, predict its activity) and the
“inverse” problem (given the desired activity, determine the
catalyst structure).196,197 Similarly, in one recent approach, the
classification algorithm (Sure Independent Screening and
Sparsifying Operator, or SISSO) was proposed to extract the
material’s property descriptors out of large feature spaces.198

Here a desired property of the material (e.g., catalytic
performance) is represented as a huge function of all possible
structure descriptors and all possible combinations. This
function (which may have billions of terms) is then optimized
to fit available data for structure−property relationships, but
the key point here is the additional condition that as few as
possible terms should have nonzero contributions. In that way,
the simplest possible relation between structure and properties
is obtained. The usefulness of this approach for catalytic
applications, however, yet needs to be demonstrated. A
systematic approach was also proposed on the basis of using
the Reaction Modeling Suite (RMS),199 which enables
automatic reaction kinetic modeling, particularlyformulating
a reaction network from chemistry rules and optimizing the
catalytic descriptors in the corresponding mathematical model.
A major challenge in these approaches is the difficulty to

experimentally validate the predicted descriptors in working
catalysts. In nanoscale systems, the descriptors require indirect
techniques for their detection, such as spectroscopies, rather
than more direct methods based on imaging or scattering.
Using ML-based methods, the spectra can be analyzed by the
“inversion” method to obtain the descriptors (Figure 9), hence,
providing quantitative information for the RMS and closing the
design loop described in ref 197.

Figure 9. Example of a catalyst design schematic based on an active learning framework. Descriptors of catalytic activity will be identified by
extracting the attributes of structure and electronic properties from the spectra and correlating them with catalyst performance.
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The ML-assisted analysis of X-ray spectra promises drastic
improvements in the way catalytic characterization is done at
the synchrotron and other facilities. We envision that the
structure of catalysts would be possible to analyze by NN-
XANES (and also NN-EXAFS) in harsh reaction conditions,
low weight loading, and using in situ/operando reaction cells.
Ultrasmall clusters and atomically dispersed catalysts could be
characterized by XANES methods, currently underutilized for
this purpose. High-energy resolution methods of fluorescence
detection will enable much better sensitivity to spectral and,
hence, structural features that the NN-XANES method can
probe. Importantly, ML-based methods will improve the
prospects of the use of lab-based X-ray sources200 for catalytic
studies that are currently unable to collect in situ EXAFS
spectra due to very low flux. We also anticipate that “on the fly”
data analysis will become possible because of the rapid (on the
order of a second or less) analysis of the spectra by the
pretrained NN. That capability will enable data analysis in real
time while being collected and, in principle, the automated
control of the reaction regimes aimed at improving catalytic
activity, selectivity, or stability. Finally, our approach can be
extended to other spectroscopies, most notably, EELS, Raman,
and UV−visible light spectroscopies, where computational
capabilities exist for forward modeling of their respective
spectra.
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(14) Bañares, M. A.; Guerrero-Peŕez, M. O.; Fierro, J. L. G.; Cortez,
G. G. Raman Spectroscopy During Catalytic Operations with On-Line
Activity Measurement (Operando Spectroscopy): a Method for
Understanding the Active Centres of Cations Supported on Porous
Materials. J. Mater. Chem. 2002, 12, 3337−3342.
(15) Weckhuysen, B. M. Operando Spectroscopy: Fundamental and
Technical Aspects of Spectroscopy of Catalysts under Working
Conditions. Phys. Chem. Chem. Phys. 2003, 5, No. vi-vi.
(16) Tinnemans, S. J.; Mesu, J. G.; Kervinen, K.; Visser, T.; Nijhuis,
T. A.; Beale, A. M.; Keller, D. E.; van der Eerden, A. M. J.;
Weckhuysen, B. M. Combining Operando Techniques in One
Spectroscopic-Reaction Cell: New Opportunities for Elucidating the
Active Site and Related Reaction Mechanism in Catalysis. Catal.
Today 2006, 113, 3−15.
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(160) Muñoz-Batista, M. J.; Motta Meira, D.; Coloń, G.; Kubacka,
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