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X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts.

One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a

useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing

three-dimensional geometry around each type of atomic species, especially in those cases when the

EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for

quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We

have developed a method, based on the artificial neural network, trained on ab initio site-specific XANES

calculations, that enables accurate and rapid reconstruction of the structural descriptors (partial

coordination numbers) from the experimental XANES data. We demonstrate the utility of this method on

the example of a series of PdAu bimetallic nanoalloys. By validating the neural network-yielded metal–

metal coordination numbers based on the XANES analysis by previous EXAFS characterization, we

obtained new results for in situ restructuring of dilute (2.6 at% Pd in Au) PdAu nanoparticles, driven by

their gas and temperature treatments.

Introduction

In bimetallic alloys, different mixing motifs of atomic species
(homogeneous or heterogeneous, random or non-random in
the case of the former, or various types or segregation in the
case of the latter) are known to strongly influence the electronic
properties of the surface atoms and hence a material’s catalytic,
optical, magnetic, and electronic properties.1–5 Furthermore,
just as the size and shape6,7 and the degree of structural order8

can change dynamically in reaction conditions, so can the
compositions of nanoparticles9–11 in a complex relationship with
other material properties. It is for the latter reason that, in order to
accurately measure those dynamic changes, measurements should

be taken under in situ conditions.12 Extended X-ray absorption
fine structure (EXAFS) has long been a preferred method for
studies of bimetallic nanocatalysts due to its ability to monitor
structural changes through the measurements of partial coordina-
tion numbers (CA–A, CA–B, CB–A and CB–B in an AxB1�x bimetallic
material), bond lengths, and their disorders in a broad range of
in situ and operando conditions.13 However, the accuracy of EXAFS
analysis in metal catalysts has limitations in many cases. For
example, at low weight loadings of the X-ray absorbing atoms and
in the presence of other factors affecting the data quality (such as
low atomic numbers of the absorbing elements, high temperatures,
strongly absorbing reactor walls, supports and/or solvents), the low
signal to noise ratio of EXAFS spectra may hinder their deciphering
by the universally used fitting methods. In addition, particularly in
nanoscale systems such as nanocatalysts, the interfacial effects
(catalyst-adsorbate, catalyst-support) result in a significant, detect-
able, asymmetry in bond length distributions which introduces
artifacts in the EXAFS fitting procedure.14–16 Another section of the
X-ray absorption coefficient spectrum, the X-ray absorption
near edge structure (XANES), has been used, until recently, only
qualitatively or semi-quantitatively for structural refinement of
catalyst data due to the lack of analytical methods for structural
refinement – such as the EXAFS equation that is used for fitting
EXAFS spectra. While a true quantitative fitting procedure has not
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yet been realized, several computational approaches were devel-
oped over the last several decades for the quantitative modeling of
the XANES spectra, using the atomic coordinates of appropriate
model structures.17–19 This approach, however, suffers from its
model-dependency (‘‘given the structure, calculate the spectrum’’),
which limits the available XANES fitting approaches (e.g. MXAN
code and FitIt)20,21 to cases dealing with only a few degrees of
freedom.

Recently, we have developed two approaches to help improve
the analytical capability of XANES and EXAFS techniques for metal
nanoparticle characterization using machine learning tools:22

Neural Network (NN) assisted EXAFS analysis (NN-EXAFS),22–24

and Neural Network assisted XANES analysis (NN-XANES).25

NN-EXAFS can extract the partial radial distribution functions
(RDF) for AA, AB, BA and BB pairs in a AxB1�x bimetallic material,
which is not possible by conventional EXAFS analysis.15,26–29

However, the consequences of harsh reaction conditions are quite
severe for EXAFS data quality, especially in dilute alloys containing
a few percent of one of the atoms, as mentioned above. They limit
the applicability of this method to many types of catalytic
studies.30 NN-XANES, on another hand, can, potentially, be a
preferred approach in those cases, due to the presence of intense
features in the XANES region that are much less hampered by the
thermal disorder and low weight loading, and can be acquired
relatively quickly and with better signal-to-noise ratio than EXAFS
data. Previously, NN-XANES was developed and validated for use
with monometallic Pt,25,31 Ag,32,33 Cu,32 and CuOx size-selective
cluster catalysts.34 Therefore, NN-XANES was demonstrated to be a
viable alternative to EXAFS for catalytic studies, but it has never
been used for bimetallic nanomaterials.

In the remainder of this article we present a NN-XANES
approach for use with bimetallic systems and demonstrate its
utility on the example of the PdAu nanoalloy, an important
catalytic system for the selective oxidation of methane, CO
oxidation, and selective alkyne hydrogenation reactions.35–40

We will describe the NN approach, present the details of the
neural network training and testing, a demonstration of the
utility of our method for in situ observation of restructuring in

dilute alloy catalysts, followed by the discussion of the results,
and, finally, conclusions.

Neural network-based approach to
XANES data analysis

Here we use the same approach for the creation of a NN method
for the analysis of bimetallic nanocatalysts that was used in our
previously reported method for NN-XANES analysis in mono-
metallic systems.25 The main idea is to train a NN to learn the
association between the XANES spectrum and the descriptors of
the three-dimensional arrangement of nearest neighbors to the
X-ray absorbing species. For bimetallic materials, the X-ray
absorption edge of each type of atomic species can be measured,
thus providing information on the first nearest neighbor pairs
of four types: A–A, A–B, B–B, and B–A, through the partial
coordination numbers (CNs) of the first nearest pairs are CA–A,
CA–B, CB–A and CB–B. Therefore, our method for obtaining the
CNs relies on two independent, ‘‘absorber-specific’’, NNs, each
with ‘‘pair-specific’’ outputs, i.e., CA–A, CA–B for absorber A, and
CB–A and CB–B for absorber B (Fig. 1).

The first nearest neighbor partial CNs are particularly useful
as they are directly related to the compositional motifs of bimetallic
nanoparticles as well as the particle sizes and shapes.13,41–44 For
example, they can be used to directly extract the Cowley short range
order parameter, for characterizing either mixing or segregation
behaviors of components in the nanoalloy from the measured CN
values.13 To discover such a relationship and serve in a predictive
capacity, the NN requires training on large sets of labeled data (for
which the relationship between the structure – i.e., the CNs – and
the spectrum is known). The NN-based method is interpolative in
nature, employing large numbers of learnable parameters (weights
and biases), whose number (and, hence, complexity of the model)
can be increased by increasing the number of NN layers and the
number of nodes per layer. In the case of NN-XANES, which
utilizes fully connected multilayer perceptron (MLP) layers and
convolutional layers, the number of learnable parameters can

Fig. 1 A schematic that represents the application of NN-XANES to an AxB1�x bimetallic system. Partial first coordination numbers are extracted from the
XANES of A and B absorbing components. The partial coordination numbers (A–A, A–B, B–B, and B–A) are used to deduce the average nanoparticle
structure.
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quickly reach the order of hundreds of thousands. It is therefore
required that the training data set included hundreds of thou-
sands of labeled spectra. Because it is very challenging to obtain
a sufficient amount of labeled experimental data for this
purpose, hence, we follow a previously developed approach25

and train the networks on synthetic data (i.e., theoretical XANES
spectra calculated ab initio using FEFF917 code). The use of NNs
for local structure predictions from experimental XANES data
after training on purely theoretical data has been shown to work
in our previous NN-XANES and NN-EXAFS examples, as well as
in recent applications of the NN approach to scanning transmission
electron microscopy (STEM) data and nuclear magnetic resonance
(NMR) spectroscopy.22,34,45–47 Training, for these case, is the process
by which the cost function is minimized by refining the NN weights
and biases, where the cost function is defined as the mean squared
deviation of the NN outputs from the corresponding ‘‘target’’ values
(i.e., true values of CNs that are known for the training data).22

To optimize NN hyperparameters, such as number of nodes,
layers, learning rate, regularization parameters and number of
training iterations, we consider also the cost function for a
validation dataset, which is analogous to the cost function for
the training dataset, but is calculated for examples that are not
directly used in the optimization of NN weights and biases. In
all previous works, the validation cost function was calculated
using theoretical examples that were excluded from the training
data set. For bimetallic NPs, however, we found that approach to
be insufficiently accurate, due to systematic differences between
theoretically simulated XANES spectra and actual experimental
data. In the new approach described here, we use an experi-
mental validation set, which is composed of the data for which
we have a good knowledge of the corresponding sample’s structure
via EXAFS. Information regarding the experimental data sets are
listed in Table 1. We elaborate on the data sets, and how they were
used for validation and testing in the next section.

Because of our reliance on theoretical training data for NN
training, the method requires that theoretical spectroscopy
codes generating such training data provide good qualitative
agreement between theory and experiment for reference materials
with known structure, such as bulk standards. In previous NN-
XANES works with monometallic (Pt, Ag or Cu) nanoparticles,25,32

we assumed that FEFF9 simulation parameters, which were
optimized to ensure the best possible match between the
theoretical and experimental bulk Pt, Ag and Cu spectra, remain
optimal also for the simulation of XANES spectra in their
respective monometallic nanoparticles. In the present work,
we similarly began by evaluating the agreement between FEFF9
simulation and experimental XANES data for bulk Pd and Au.
We present the optimal calculated theoretical Pd K-edge and Au
L3-edge XANES spectra of bulk standards and the respective
experimental counterparts in Fig. 2. The a, b, g, and d symbols
mark specific features in the bulk Pd XANES (Fig. 2A), and h, i, j,
and k mark features in the Au XANES (Fig. 2B). The observed
type of agreement between theory and experiment (in the energy
range up to 67 eV from the Pd K-edge and up to 76 eV from the
Au L3-edge) appears to be satisfactory for our method, as we will
show in the validation and testing sections.

We also investigate the capability for FEFF calculations,
using the optimized parameters, to capture major qualitative trends
in alloyed NPs such as the size and concentration dependence of
spectral features. To do this, we look for trends in our experimental
data sets labeled ‘‘peptides’’ and ‘‘RCT-1’’ in Table 1, which are data
used later in NN validation. The XANES from the Pd K-edge and
Au L3-edge is plotted in Fig. 3, labeled ‘‘Experiment’’, and described

Table 1 Experimental data for the validation or testing of the absorber-
specific NNs

Dataset

Sample characteristics
Synchrotron &
conditions

Validation (V)
or testing (T)

Pd at% Support or surfactant Facility Gasa Pdb Auc

Peptides 83 R5-Peptide APS Air V V
Peptides 67 R5-Peptide APS Air V V
Peptides 50 R5-Peptide APS Air V V
Peptides 33 R5-Peptide APS Air V V
Peptides 25 R5-Peptide APS Air V V
RCT-1 9 RCT-SiO2 SSRL He T V
RCT-1 2 RCT-SiO2 SSRL He T V
RCT-2 9 RCT-SiO2 NSLSII He T —
RCT-2 4 RCT-SiO2 NSLSII He T —
RCT-2 25 RCT-SiO2 NSLSII He T —
RCT-2 25 RCT-SiO2 NSLSII H2 T —
TiO2 24 TiO2 APS Air — T
TiO2 15 TiO2 APS Air — T
TiO2 12 TiO2 APS Air — T
TiO2 5 TiO2 APS Air — T
TiO2 4 TiO2 APS Air — T
TiO2 3 TiO2 APS Air — T

a All data were taken at 25 1C. b Pd absorber-specific NN. c Au absorber-
specific NN.

Fig. 2 Experimental and theoretical XANES of bulk Pd and Au at the (A)
Pd K-edge and (B) Au L3-edge. The theoretical spectra are calculated with
FEFF9 code.
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in Table S1, in the ESI,† where information obtained from transmis-
sion electron microscopy (TEM) and compositional measurements
are listed.23 Circles mark isosbestic points present due to changes in
composition and size between the NPs. Using the experimental data
as a reference, we then constructed 7 representative NPs where the
theoretical XANES were simulated using basic structure models
constructed based on the size and composition of the experimental
systems. We approximated each particle as quasi-spherical with an
average lattice constant determined by Vegard’s law:

aeff = xPdaPd + (1 � xPd)aAu, (1)

where aeff is the effective lattice constant, xPd is the concentration of
Pd, aPd and aAu are the lattice constants of Pd and Au, respectively.
Including a varied lattice constant in the training set is important
because XANES is sensitive not only to the CNs, but to the nearest
neighbor distance as well.32 For each particle model, the particle-
average Pd or Au XANES spectra were calculated by averaging
contributions independently calculated for all absorbing atoms of
the same species (Pd or Au) in the model. The results of this
calculation are shown in Fig. 3, labeled ‘‘Theory’’. While the theory
does not reproduce the experimental data, evident by the differences
in horizontal placement of the circles in Fig. 3 between the
experiment and the theory, we do observe similar isosbestic points
in the theory as in our experimental reference systems, which
demonstrates that theory reproduces qualitative trends in composi-
tional and size dependences. We will show, in the following
sections, by validation and testing of the NN, that such a contrast
in XANES produced by FEFF, due to size and composition
dependence, is adequate for NN training.

After testing the feasibility of FEFF9 calculations for NN
training, we created a set of theoretical training data for which
site-specific XANES calculations at the Au L3 and Pd K edges

were made using the optimal parameters, listed in Note S1 in
the ESI.† This dataset is herein referred to as the ‘‘site-specific
training data’’. To create the site-specific training data, two
distinct sets of atomistic models of PdAu NPs were created for
calculations at the Pd K-edge (18 538 models) and Au L3-edge
(15 756 models). The total number of atoms, particle composition,
and effective lattice constant in these models were variable, and
thus randomly generated to ensure maximum training data
diversity. The number of atoms in each particle model ranges from
10 to 185, the composition – from 1 to 90% Pd, and effective lattice
constant – from 3.89 to 4.08 Å. The geometric templates used to
create the models are the same as reported in ref. 25. In addition to
the bimetallic NP models, 1200 monometallic Pd NPs and 2663
monometallic Au NPs, also with number of atoms ranging from
10 to 185 and effective lattice constants between 3.89 and 4.08 Å
were constructed. Furthermore, to ensure that dilute Pd species are
represented, we included the Pd site calculations (2859 dilute Pd
sites) made for the 7 PdAu NP models mentioned in the last section
and shown in Fig. 3. The first partial CNs for each absorbing atom
were extracted from the atomistic coordinates of the 41 016 struc-
ture models, resulting in site-specific training data in the form of
XANES-CNs associations. The extent of the diversity of the final site-
specific training data set is very important for ensuring the NN is
able to interpolate well. We examine the diversity in Fig. S1–S6 in
the ESI.† We can see that the local compositions (i.e. composition of
the absorbing site) varies between 0 and 100% Pd and all possible
atoms locations are represented. To maximize diversity, and
increase the size of our training data set, we trained the NNs on
linear combinations of the site-specific training data. This approach,
introduced in our previous works,22,25 mimics the particle-averaging
effect in experimental XANES data, and takes advantage of the
fact that particle-average XANES m(E) and coordination numbers

Fig. 3 Experimental and theoretical XANES of peptides and RCT-1 data sets at the (A) Pd K-edge and (B) Au L3-edge. The theoretical spectra (for 83, 67,
50, 33, 25, 9, and 2 at% Pd) are calculated with FEFF9 code. The theoretical data in A and B were shifted vertically for clarity. Several connected circles are
guides to the eye, illustrating similar trends between the theoretical and experimental spectra.
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CAA and CAB are linear combinations of the XANES spectra
and coordination numbers, respectively, calculated for each

absorbing site j: m Eð Þ ¼
P

j

mj Eð Þ=Na, and CAA ¼
P

j

C
j
AA=Na,

CAB ¼
P

j

Cj
AB=Na. Therefore, using a relatively small set of

XANES-CNs pairs obtained for individual sites, we can generate
large, diverse, sets of labeled examples for the NN training set.
To create each example for NN training, we linearly combine
three randomly selected XANES-CNs pairs from the pool of site-
specific examples. In that way, approximately 1.3 � 1012 possible
synthetic training examples can be generated. In the next section,
we described how the training data function was used to minimize
the validation cost function and how additional testing data were
used to test the neural network models.

Neural network training and validation

Here we used an experimental validation set, and subsequent
validation cost function, to optimize the Pd and Au absorber-
specific neural networks. The experimental data selected for the
validation set came from the previously published EXAFS fitting and
NN-EXAFS analysis.23 We examined R5-peptide-templated (peptide)
NPs with nominal Pd concentrations of 25, 33, 50, 67, and 83 at% Pd
with NP sizes from 3 to 4 nm, as determined by TEM,48 as well as
dilute Pd in Au NPs with Pd concentration of 2 and 9 at% Pd, with
sizes between 5–6 nm, synthesized using sequential reduction
method, and incorporated into raspberry colloid-templated (RCT)
porous SiO2 using a previously published procedure.37,49,50 These
two data sets are referred to as the ‘‘peptide’’ and ‘‘RCT-1’’ data

sets respectively in Table 1, both of which contain Pd K-edge
and Au L3-edge measurements for each sample. XANES spectra
for the Pd K-edge and Au L3-edge of both peptide and RCT-1
data sets are shown in Fig. 3.

Before training, the data were pre-processed (aligned, inter-
polated, normalized) as described in Note S2 in the ESI.† For
both the Pd and Au absorber-specific NNs, we use an early
stopping training method based on the cost functions shown in
Fig. S7 in the ESI.† This method ensures that the NN model,
trained on purely theoretical data, is able to generalize to
experimental data. We found that a simple convolutional
neural network (CNN) architecture provides the lowest validation
loss, where the peptide data was the validation set for the Pd NN,
and the peptide and the RCT-1 data were the validation set for the
Au NN. To ensure the stability of the models, predictions from
10 independently trained NNs were compared in terms of the
median absolute deviation. The results of are presented in
Fig. S8, in the ESI.† We see that, for both Pd and Au absorber-
specific NNs, the median absolute deviation in CN predictions is
very low, characterizing the prediction of the median CNs as very
stable. Technical details of training are also included in Note S2
in the ESI.† The layers used in the final Pd K-edge CNN are listed
in Table S2 (ESI†) and the layers used in the final Au L3-edge CNN
are listed in Table S3, both located in the ESI.† We also present
the entire NN architecture, as implemented in Mathematica 12,51

in Fig. S9 and S10 in the ESI.†
The resulting absorber-specific NN predictions on the experi-

mental validation sets (described in Table 1) are shown in Fig. 4
with the error bars of the absolute predictions determined by our
method described in Note S3 in the ESI.† At the validation cost

Fig. 4 The XANES-derived vs. EXAFS-derived first partial coordination numbers with respect to (A) the Pd K-edge and (B) the Au L3-edge. Coordination
numbers A–A are in black and A–B are in red. In (A) filled in circles are the peptide templated data (validation set), open circles are the RCT-1 data (test
set), and triangles are the RCT-2 data (test set). In (B) filled in circles are the peptide templated data (validation set), open circles are the RCT-1 data
(validation set), and stars are the TiO2 supported data (test set).
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minima, the coordination number values and relative trends
obtained by using NN-XANES agree with those obtained by
conventional EXAFS fitting and NN-EXAFS (Fig. 4). While the
agreement is good, an additional testing phase was completed, as
described in the next section, in which NN predictions were made
on data that were not included in the validation cost function.

Neural network testing

Testing the trained NN with data that were not included in the
validation cost function is a common way to benchmark the NN
before it is applied to unknown systems. For that purpose, we
used XANES spectra for several, previously characterized PdAu
NPs (4 nm NPs with 4, 15, and 24 at% Pd as well as 6 nm NPs
with 3, 5, and 12 at% Pd), all of which were synthesized using a
seed-mediated colloidal synthesis method and deposited on
TiO2. This dataset, herein referred to as the ‘‘TiO2-supported’’
NP dataset, consisted of spectra collected at beamline 12-BM-B,
Advanced Photon Source (APS), and their analysis reported in
ref. 23. We also use another dataset, referred to as ‘‘RCT-2’’, of
Pd K-edge spectra recently measured at beamline ISS (8-ID),
National Synchrotron Light Source II (NSLS-II), of 5–6 nm PdAu
NPs with Pd concentrations of 4, 9, and 25 at% Pd were
synthesized using a sequential reduction method, and incorpo-
rated into RCT SiO2 using a previously published procedure.37,49,50

The measurements of the 4% and 9% samples were taken in situ
under He, while the 25% sample was measured under He and H2.
The Pd K-edge data collected for the 25% Pd RCT-2 NPs and their
analysis results were reported in ref. 52, while the details of XAS
data collection and NN-EXAFS analysis of the rest of the RCT-2
data are included in Note S4, located in the ESI.† The RCT-1 and
RCT-2 datasets were used to test the Pd absorber-specific NN, while
the TiO2-supported data were used to test the Au absorber-specific
NN. While both the Pd K-edge and Au L3-edge spectra were collected
for the TiO2-supported dataset, we only use this data to test the Au
absorber-specific NN. The Pd K-edge data collected at beamline
12-BM-B appears to have lower energy resolution compared to the
rest of the Pd K-edge data that makes NN predictions via XANES
unstable for this dataset, see Fig. S11 and S12 in the ESI.†
Predictions made on the test data sets are plotted vs. EXAFS-
derived partial coordination numbers in Fig. 4. In all cases, the
NN-XANES predictions agree with the CN values, and trends,
derived from EXAFS analyses. The results are tabulated in
Table S4 in the ESI.†

Application of the NN-XANES for
detection of surface restructuring in
dilute alloys

Here we demonstrate the utility of our approach for studying
gas and temperature treatment effects on component restructur-
ing in dilute (2.6 at% Pd) PdAu/RCT catalyst (Pd2.6Au97.4/RCT), for
which the conventional EXAFS analysis for the Pd K-edge could
not yield conclusive results on Pd–Pd and Pd–Au coordination
numbers. As were the other dilute Pd (in Au) catalysts in the

RCT-1 and RCT-2 data sets, Pd2.6Au97.4/RCT was synthesized
using sequential reduction method, and incorporated into raspberry
colloid-templated (RCT) porous SiO2 matrix using a previously
published procedure.37,49,50 In our recently published work on the
4 at% Pd PdAu/RCT catalyst53 and work on the 25 at% Pd PdAu/RCT
catalyst52 we obtained that Pd species redistribute within Au host in
response to high temperature hydrogen treatment. The in situ
XANES data (Fig. 5) were collected at room temperature under He
flow after an initial calcination at 400 1C in 20% O2/He balance for 1
hour (the O2 treatment), and then collected at room temperature
under He after calcination at 400 1C in 100% H2 for 30 minutes (the
H2 treatment). More experimental details are in Note S5 in the ESI.†
Visual examination of the Pd K-edge XANES data indicates that the
local composition around Pd changes between different regimes.
For example, energy shifts between the edge positions of the spectra,
corresponding to different treatments, and the spectrum of Pd foil
reference, reflect the changes in Pd alloying with Au. The larger
is the shift towards lower energy, the greater is expected to be
the degree of alloying between Pd and Au, consistent with the
dissolution of surface Pd into the bulk, expected under H2

treatment.52,53

Quantitative NN-XANES analysis was performed using the
Pd and Au absorber-specific NNs. The result of the analysis is
presented in Table 2. We see that, after the H2 treatment, the
first partial coordination numbers for Au–Au pairs are similar
to those obtained after initial O2 treatment, as expected for the
majority component of the dilute alloy. In contrast, the first
coordination numbers for Pd–Pd pairs decrease after the H2

treatment from 0.17 to 0.10, consistent with partial dissolution
of Pd from sites closer to the surface into the bulk as demon-
strated in the recent work for larger Pd concentrations.53 To
determine if this change in coordination number is significant,
and not due to stochastic differences in NN training, we
take the median absolute deviation of predictions made with
10 independently trained NNs. All 10 NN models predict
a decrease in the Pd–Pd coordination number after the H2

Fig. 5 Pd K-edge XANES spectra of the Pd2.6Au97.4/RCT catalyst after O2

and H2 treatments and bulk Pd reference foil. The XANES data were
collected at room temperature under He.
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treatment, with a median decrease of 0.070 and median abso-
lute deviation of 0.001.

Discussion

In this work, we showed that it is possible to extract the partial
coordination numbers from the XANES spectrum of bimetallic
alloys using absorber-specific neural networks. This opens the
door for various applications. Most significantly, the structural
characterization of bimetallic nanoalloys in general, and nano-
catalysts in particular, via XANES is now possible in materials in
which EXAFS analysis is limited by signal quality. For example,
structural changes detected in harsh reaction conditions, parti-
cularly in dilute Pd in Au catalysts, can now be understood with
similar level of detail (i.e., the partial coordination numbers and,
hence, restructuring of the catalyst components that may occur
under in situ conditions, can be extracted). We provided an
example of this capability, by showing that in situ XANES
measurements can detect (and neural network-assisted analysis
can correctly recognize) the consequences of Pd restructuring
under varying conditions. The neural network-assisted data
analysis method we report provides structural parameters with
sufficient accuracy for modeling in only seconds, therefore
enabling new applications of XANES at the beamline, such as
the real-time monitoring of NP deactivation or high throughput
sample characterization. The PdAu absorber-specific networks
that we constructed can be immediately applied to the analysis of
XANES in novel PdAu systems or used to analyze previously
collected data for which structural characterization was not
originally considered, or not possible by conventional EXAFS,
due to, e.g., harsh reaction conditions, but for which XANES
data are of sufficiently good quality.

We have demonstrated that during and after NN training,
validation, and subsequent testing with experimental data sets
from additional systems, which were measured at different
beamlines, helped us evaluate and improve robustness of NNs
trained on theoretical data. We believe that these insights will
be crucial for those using this method to analyze PdAu systems
and those who will utilize NN-XANES in general for the analysis
of other bimetallic systems. We confirmed that the trained NNs
are able to make accurate predictions on metallic PdAu data, at
the Pd K and Au L3 absorption edges, with different composi-
tions, particle sizes, supports, and synthesis methods. Due to
the intrinsic structural complexity of bimetallic materials, there
was no guarantee that one general NN model (for bulk PdAu
alloys), as opposed to a specific NN model (for a given PdAu
nanoalloy system, i.e., in some size range and/or composition
motif), would be sufficient to capture the spectrum-structure

relationship in a range of NP sizes and compositional distributions.
Here we see that the general NN model performs well in the case
of metallic PdAu. We see this clearly at the Au L3-edge, where the
theoretical-experimental agreement is better, and beamline
resolution effects are relatively forgiving, compared to the
Pd K edge (vide infra). As we create more bimetallic models for
different systems for which our method can be applied, we will
be able to determine the limits of applicability of our method
beyond the several NP systems we tested it on. We also see
that our training method results in NNs that make accurate
predictions, even in the face of moderate resolution and systematic
differences between beamlines and, even without explicitly simu-
lating these effects in the training data. This is an important
feature, especially at the Pd K-edge (and other edges at relatively
high energy), where the energy resolution is known to suffer at
some beamlines. The most significant example is derived from the
Pd9Au91 RCT supported sample, which is included in datasets
RCT-1 and RCT-2, where RCT-1 was measured at the BL2-2 beam-
line of Stanford Synchrotron Radiation Lightsource (SSRL) with a
Si(220) monochromator, and the RCT-2 samples was measured
at the NSLSII with a Si(111) monochromator. The Pd absorber-
specific NN predicts Pd–Pd and Pd–Au coordination numbers of
1.0 � 1.0 and 10.3 � 1.3 vs. 0.8 � 0.8 and 10.7 � 0.9 for the data
collected at the SSRL and NSLSII, respectively. The predictions
are in very good agreement with each other despite some spectral
differences that are caused by the energy resolution difference of
the beamline monochromators. A comparison of the spectra
collected at the two beamlines is shown in Fig. S13 in the ESI.†
We do see a limit, though, in the Pd absorber-specific NN’s ability
to deal with low-resolution Pd K-edge data, as mentioned in the
neural network testing section. However, in that case, the resolution
was much lower than usual, as quantified by an amplitude
reduction factor of 0.70 for Pd foil that was measured at the
time of the experiment. At some limit of the resolution,
the XANES may simply loose interpretable information. On
the other hand, using specialized beamlines and secondary
analyzers, it is possible to measure XANES with high energy
resolution. The high-energy resolution fluorescence detection
(HERFD) mode of XANES measurement provides a significant
enhancement to XANES spectra,54,55 improving its sensitivity to
the structure. In principle, a combined HERFD-NN-XANES
approach could be used to not only make superior structural
predictions, but a HERFD experimental validation set could be
used in neural network training, resulting in more accurate
predictions on non-HERFD XANES. Together with other recent
studies,56 this work further advances the potentiality of machine
learning approaches and XAFS method for characterization of
unique structural motifs in bimetallic nanoparticles and their
transformations under reaction conditions.

Table 2 NN-XANES analysis of Pd2.6Au97.4/RCT from the Pd K-edge and Au L3-edge

Sample Treatmenta Nc Au–Au Nc Au–Pd N Au–M Nb Pd–Pd Nb Pd–Au N Pd–M

Pd2.6Au97.4 20% O2/He@400 1C, 1 h 10.13 0.2 10.33 0.17 11.72 11.89
Pd2.6Au97.4 100% H2@400 1C, 30 min 10.16 0.17 10.33 0.10 11.84 11.94

a All data were taken at 25 1C under He. b Pd absorber-specific NN. c Au absorber-specific NN.
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Conclusions

The NN-XANES method has been developed for the extraction
of the first partial coordination numbers from the XANES of
PdAu nanocatalysts. Experimental validation was performed
with a set of well-defined PdAu NPs with sufficient EXAFS
quality for providing a priori knowledge, in combination with
another experimental testing step to benchmark the NN’s
predictive power over a range of compositions and supports.
We have demonstrated that this method provides robust pre-
dictions of first partial coordination numbers that agree with
those derived by conventional EXAFS fitting and NN-EXAFS
methods, and we showed that the method can be used to
investigate restructuring in dilute bimetallic catalysts. One
can now extend this method to other bimetallic compositions,
such as dilute catalysts and size-selective clusters.
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