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Co-Pt nanoparticles have enormous potential and are widely used catalysts for the oxygen reduction 

reaction (ORR) in fuel cells. Bimetallic particles were designed to reduce the use of expensive Pt, by 

diluting the Pt atoms into Co and keeping them well dispersed on the surface. Hence, this process 

significantly optimized the use of Pt for catalytic reaction. However, little is known about the migration 

of Pt atoms within the Co-Pt ensemble, especially during the reaction. Pt atoms are less optimized if they 

migrate towards the core of particles or segregate by forming clusters, ultimately reducing the catalytic 

properties. 

In this work, 10-nm Co-Pt nanoparticles supported on carbon and exposed to O2 and H2 were investigated 

with a multimodal approach. In situ scanning transmission electron microscopy combined with electron 

energy-loss spectroscopy (STEM-EELS) and in situ XFM was performed to track dynamical restructuring 

effects. I will first review how we took advantage of a direct detection system for obtaining in situ EELS 

spectra. The improved signal-to-noise ratio makes it possible to perform fine structure analysis on the data 

and track chemical changes in metallic elements. This is the same approach used with X-ray absorption 

spectroscopy (XAS) to determine the valence state or the coordination number of elements [2]. I will then 

focus on in situ XFM where the sample underwent the same redox cycle. In situ XFM data were obtained 

with a 10 μm beam, hence providing information of a larger number of particles as the beam used for 

STEM-EELS is smaller than 1 Å. This unique approach can track the structure of the catalysts under 

realistic conditions and reveal the valence state during oxidation and reduction: Changes of the 

morphology as well as modification of the oxidation and coordination numbers were observed and could 

be interpreted as a degradation mechanism of the Co-Pt system. Both in-situ data sets are complementary 

and provide chemical information at different length scales that will guide the future design of more active 

nano-catalysts [3].  

  
Figure 1. (a) Ex situ dark-field STEM image of the particles on carbon. (b) In situ XFM experiment with Co K 

edges collected. The sample was exposed to H2 and the temperature was progressively increased. 
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Figure 2. In-situ EELS spectra collected for the Co-Pt particles. (a) O K edge. (b) Co L2,3 edges. 
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