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Knowledge of the local coordination environment around atomic species in functional materials is critical
for understanding their mechanisms of operation. Heterogeneous mixtures of metal complexes are ubiquitous
in catalysts, ionic liquids, molten salts, biological enzymes, and geochemical systems, among many others.
Extracting information from ensemble-average measurements about the structural and compositional descriptors
of each type of coordination complex comprising the mixture is not generally possible, especially when they
possess multimodal bond-length distributions. We developed a method that enables the mapping of an x-ray
absorption spectrum on the radial distribution function describing the average environment of the metal ions.
The supervised neural network based method utilizes an objective training set, for which the choice of the local
structural motifs is completely agnostic to the theoretically expected structure and dynamics of the modeled
system. The method was validated using first-principles modeling of structural dynamics of nickel complexation
in molten salts, and it applies to a large class of heterogeneous systems, including those studied under in situ and
operando conditions.
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I. INTRODUCTION

Investigating the local environment around atomic or ionic
species in functional materials helps understand mechanisms
of their operation in diverse applications such as nanocata-
lysts [1], quantum dots [2,3], molten salt systems for nuclear
reactors [4], chemical warfare filtration [5], and micro- and
nanoactuators [6]. Characterizing atomic distributions in these
and other multicomponent and strongly disordered systems
poses a major challenge due to the need for elemental
specificity, which allows for distinguishing between different
neighboring atoms in the same coordination sphere of a given
atomic species, and spatiotemporal resolution, which must be
sufficient for quantitative analysis of atomic displacements
from ensemble-average positions due to static and/or dynamic
disorder. Extended x-ray absorption fine structure (EXAFS)
is an excellent tool for such purposes due to its excellent
elemental specificity and spatiotemporal resolution.

In EXAFS theory, the absorption coefficient of x rays
is given by real-space multiple scattering (RSMS) the-
ory, focusing on the interference between the outgoing and
backscattered (by nearest neighbors to the absorber) photo-
electron waves [7]. The spectrum for an absorber-neighbor
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pair is given by

χ (k) = S2
0

∫ b

a
A(k, r)

1

r2
sin [2kr + δ(k, r)]g(R)dR, (1)

where S2
0 is the passive electron reduction factor, A(k, r) is the

photoelectron scattering function that also includes inelastic
losses, δ(k, r) is the photoelectron phase shift, and g(r) is
the unknown pair-distribution function of nearest neighbors to
x-ray absorbing atoms, which is normalized by the condition
∫b

a g(r)dr = N , the number of neighbors to the absorber in the
distance range a < r < b, corresponding to the given shell.
Equation (1) can be modified to include multiple scattering
contributions by replacing g(R) with corresponding many-
atom distribution functions [8]. Provided a 3D structure, the
photoelectron scattering parameters are readily calculated via
the Rehr-Albers approach under the muffin-tin approximation
of the atomic potentials [9] with the FEFF software package
[10]. For well-defined structures, such as those of most bulk
materials, EXAFS calculations agree well with experimen-
tal spectra [11]. However, in most functional nanomaterials
with unknown structure, various methods are used to ap-
proximate the needed structural information, in particular the
pair-distribution function, g(r).

A typical EXAFS research project often approximates the
g(r) as quasi-Gaussian, using a finite (usually, first 3–4 terms)
number of terms in the cumulant expansion [12] through non-
linear least-square fitting. This approach notably breaks down
in materials with anomalously large, asymmetric bonding dis-
order [13,14]. “Inverse” methods, such as the “regularization”

2469-9950/2024/109(10)/104201(8) 104201-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2224-532X
https://orcid.org/0000-0002-7683-1201
https://orcid.org/0000-0001-6991-8205
https://orcid.org/0000-0002-5451-1207
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.104201&domain=pdf&date_stamp=2024-03-01
https://doi.org/10.1103/PhysRevB.109.104201


MARCELLA, LAM, BRYANTSEV, ROY, AND FRENKEL PHYSICAL REVIEW B 109, 104201 (2024)

[15–24] and “splice” methods [25,26] are very useful
techniques for reconstructing a model-independent g(r) in
different types of ordered and disordered materials. In the
“forward” modeling, g(r) is calculated via molecular dynam-
ics (MD) simulations and validated by matching the EXAFS
calculated on MD trajectories (MD-EXAFS) to experimental
data [27–30]. Alternative methods like reverse Monte Carlo
(RMC) simulations [31,32] rely on assumed initial structures,
which are often not known in low-dimensional and/or strongly
disordered materials.

Another inverse modeling approach in which the unknown
g(r) is obtained from the experimental EXAFS data is by
using neural networks (NN-EXAFS) [13]. In the original work
developing this method for studying disordered states of Fe
during its high-temperature transition from the body-centered
cubic to the face-centered-cubic (fcc) phase, and in subse-
quent applications of this method to the studies of mono- and
bimetallic nanoparticles [33,34], Timoshenko, Frenkel, and
others trained the feedforward neural network to recognize
the relationship between the input (EXAFS spectrum) and the
output: g(r). The EXAFS signal, including multiple scatter-
ing contributions, is mapped onto one of the pair-distribution
functions in this approach. The general concept of the in-
version of Eq. (1) and mapping EXAFS data on the g(r) is
shown in Fig. 1. In the existing approach for training the NN
[Fig. 1(b)], classical MD is used as a practical way to create an
array of geometries from which EXAFS spectra are calculated
per time step and labeled with the corresponding histogram for
the g(r). This approach to structure generation is “subjective”
in the sense that the structure is determined by an assumed or
ab initio interaction potential. MD provides instantaneous 3D
structures and g(r), while FEFF calculates EXAFS on those
structures. Finally, the NN inverts the input (experimental)
spectrum onto g(r), determined by the bond-length histogram.
Provided that the MD simulations adequately represent the
system of interest, the FEFF-calculated scattering parameters
are accurate, and the background subtraction is handled appro-
priately, the trained NN can be used to invert the experimental
data onto g(r).

For many types of material systems, however, the use of
MD for generating training sets is impractical. While ef-
fective for bulk and nanoscale metals and alloys [35–37],
classical MD faces limitations in reactive environments where
bonds frequently form or break, such as, e.g., in metal cat-
alysts, transition metals, and actinides in ionic liquids or
molten salts [4,38–41]. In these cases, ab initio molecular
dynamics (AIMD) can model EXAFS spectra in disordered
environments, making it useful for constructing NN-EXAFS
training sets [4,29,42,43]. However, AIMD is computation-
ally expensive and subject to sampling biases, limiting the
generality of NN-EXAFS. The sensitivity of EXAFS to
factors like temperature and composition necessitates rerun-
ning AIMD simulations to match experimental conditions.
Although machine-learned force fields could reduce costs
[44–48], they may still suffer from biases in configurational
sampling due to the underlying density-functional theory
functionals, which have their own limitations for predicting
structural and thermodynamic properties [49].

Ultimately, any of these techniques can be modified on
an ad hoc basis to provide structures for NN-EXAFS train-

FIG. 1. Schematic of the inversion of an EXAFS spectrum using
the subjective (based on MD simulations) and objective (CRV) meth-
ods for structure generation. (a) The neural network function maps
χ (k) (left) to g(r) (right), as shown using an example of bulk Ni.
(b) Existing training data construction scheme relies on an interaction
model embedded in molecular dynamics simulations. Real-space
multiple scattering (RSMS) is used to calculate the EXAFS from the
structure model. (c) This objective approach uses CRVs for gener-
ating pair distances via the probability density function f (x|μ, σ ).
The macrostate is the user-defined set of CRVs for the overall pair
distance distribution. The microstate, or list of pair distances p, is
sampled from the macrostate using random variate sampling (RVS).
Ultimately, the microstate, or pair distances, will be assembled into
a 3D structure model for RSMS calculations.

ing, such as scaling trajectories or varying thermodynamic
conditions. However, these modifications increase complex-
ity and limit accessibility for typical EXAFS users. In this
work, we acknowledge the fact that the NN does not need
to learn the EXAFS–g(r) relationship solely from MD. Since
EXAFS depends on the atomic coordinates, any method gen-
erating these coordinates realistically can create a training set.
This motivates exploring alternatives for training NN-EXAFS
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models, aiming for high configurational sampling and low
computational costs.

In this paper, we present a method for the “objective”
training the NNs used to “invert” the EXAFS spectra onto
g(r), resulting in objectively trained NN-EXAFS (ONNE).
Rather than employing MD to generate training data, we
use an algorithm to create local structures based on a com-
bination of the simple Gaussian functions describing pair
distributions. We call this objective structure generation
[Fig. 1(c)]. Our method can generate training structures from
any combination of bond-length distributions, including par-
tial bond-length distributions from coordination shells beyond
the first-nearest neighbors, and thus be used to interpolate the
configurational space to an arbitrary degree. Moreover, we
can incorporate multimodal bond distributions via objective
training, where “multimodal” refers to the different types of
bond distributions (unimodal, bimodal etc.) within a given
(e.g., cation-anion) coordination shell. Using this approach,
and similar to other inversion methods described above, such
as regularization method, we obtain the overall distribution
“objectively” and forgo the need to learn (or assume) what
are the individual species that contribute to the heterogeneous
mixture, which is a limitation of forward-modeling methods.
We verify the key idea using a toy example of an oscillating
dimer and a more complex case of bulk Ni. Finally, we demon-
strate this method’s utility and limitations by applying it to
reconstructing the g(r) from the a priori known (calculated
with AIMD) EXAFS spectrum in a heterogeneous environ-
ment of Ni2+ ions in molten salt.

II. METHODS

We present an algorithm to create diverse 3D structures
with user-controlled tolerances for coordination numbers,
compositions, and radial distances. Essentially, this method
inverts a given pair distribution into a 3D structure. Although
the problem is ill posed, leading to multiple structures with
equivalent radial distances but random angles, this random-
ness benefits our aim to generate unique scattering paths over
a highly interpolated configurational space.

Bond-length distributions are defined by absorber-
neighbor pair lengths per coordination shell and per scatterer
type if multiple elements are present, utilizing continuous
random variables (CRVs) [Fig. 1(c)]. A CRV for each shell,
denoted (vn,e), is defined where (n) represents the neighbor
shell index and (e) the scattering element. The CRVs, collec-
tively referred to as the “macrostate,” each follow a probability
density function given by fn(x|μ, σ ) = 1

σ
√

2π
exp(− (x−μ)2

2σ 2 ),
and are organized into sets Ve = {v1,e, v2,e, . . .}, where the set
Ve is the macrostate, with adjustable mean (μn) and standard
deviation (σn). To generate the structures, Nn pair lengths,
corresponding to the number of neighbors per shell n, are
sampled from each CRV of the macrostate to create one list
of absorber-neighbor pairs referred to as the “microstate.” Fi-
nally, the pairs from the list are assembled into a 3D structural
configuration for scattering calculations with FEFF.

Assembling the microstates into configurations presents a
challenge due to the many configurations possible for one
microstate. Given that the microstate is the list of radial dis-

tances from the center (absorber) to neighboring atoms, we
define a “reasonable” structure as one in which the atoms are
placed on spherical shells without getting too close to each
other. We utilize a genetic algorithm (GA) to create these
3D structures, employing a customizable fitness function
that considers constraints on bond lengths and coordination
numbers, and optimizes bond angles. The fitness of 3D con-
figurations is determined by maximizing the minimum pair
distance between all atoms. Because we hold the distance to
the central atom constant and only modify the angles, this
has the effect of keeping atoms separated enough so that they
do not overlap in space. The details are in the Supplemen-
tal Material [51].The primary assumptions underpinning the
ONNE philosophy are that 1) a NN trained on combinations of
microstates generated from Gaussian-distributed macrostates
can generalize to more complex macrostates, i.e., a network
trained on Gaussian distributions can generalize to multi-
modal distributions, and 2) that a NN trained on combinations
of multimodally distributed microstates can generalize to EX-
AFS calculated on “physically distributed” structures, i.e.,
the ONNE-trained NN can make predictions on EXAFS that
are calculated on structures that are distributed according to
either experimental crystal structure refinement or a potential
model. We test these assumptions using two cases: first, the
harmonically oscillating dimer (see the Appendix) and sec-
ond, bulk Ni foil. While the dimer case illustrates the ability
to reconstruct a multimodal distribution from the EXAFS-
like spectra, the bulk Ni example confirms that NN trained
on combinations of multimodally distributed microstates can
generalize to EXAFS calculated on realistically distributed
structures, i.e., those consistent with either reported crystal
structures or plausible models.

III. RESULTS AND DISCUSSION

A. ONNE with Ni foil

We utilize the RMC-EXAFS fitting of Ni foil at 298 K
from Ref. [13] [Fig. 2(a), inset (iii)] to provide a realistically
distributed example. This structure was derived from the iter-
ative perturbation of a periodic fcc Ni crystal structure until
the calculated, ensemble-average EXAFS matched the exper-
imental EXAFS. From this structure we calculate EXAFS and
gRMC(r).

The training data are created by considering a set of four
CRVs, VNi = {v1,Ni, v2,Ni, v3,Ni, and v4,Ni}, where μ is varied
within 10% around the underlying lattice’s pair length and σ

is varied to simulate the temperature-dependent Debye-Waller
factor [shown in Fig. 2(a), inset (i)]. Microstates are formed
using random variate sampling (RVS) to sample pairs per
CRV corresponding to fcc-packed bulk Ni. Finally, for each
microstate, one iteration of the GA results in one configuration
with an absorber in the middle of four shells of 12, 6, 24, and
12 atoms [Fig. 2(a), inset (ii)]. Running the GA multiple times
will result in multiple structures with equivalent radial dis-
tances and unique angular placements. Full details of dataset
construction, NN training, and code repository are provided
in the Supplemental Material, Notes, Methods [51]).

A precursory analysis of the RMC-EXAFS and gRMC(r)
ensures that both fall within the training data distribution
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FIG. 2. Deploying the objective training framework for the inversion of the Ni K-edge EXAFS of bulk Ni. (a) Bulk training and testing
structures. (a), inset (i): Forty-six macrostates with variations in distribution means (μ) and standard deviations (σ ) are created. (a), inset (ii):
One hundred microstates are created and assembled into 3D configurations with a genetic algorithm. (a), inset (iii): Existing RMC-EXAFS is
used to test the objectively trained neural network. (b) Examples of the training EXAFS (top) and g(r) (bottom) compared to the testing data
(red). (c) Top, panel (i) The results of prediction (black) vs true (red) g(r) and (bottom), panel (ii) Agreement between the structural parameters
extracted from the predicted and true g(r) for the first (red), second (blue), third (brown), and fourth (yellow) neighbor shells.

[Fig. 2(b)]. The results are shown in Fig. 2(c), where the
predicted and true gRMC(r) are compared. The agreement is
excellent in both the visual examination of gRMC(r) [Fig. 2(b),
inset (i)] ]and the quantitative comparison of interatomic dis-
tances (R), coordination numbers (CN), and mean-squared
relative displacements per neighbor shell. Therefore, we can
conclude that the objectively trained NN can invert physically
distributed data despite being trained on nonphysical configu-
rations. The success here is likely due to the appropriateness
of the muffin-tin approximation for bulk metals and our ability
to highly interpolate this relatively constrained configuration
space, i.e., the probability is high that we randomly generated
scattering paths that exist in the physically distributed model.

B. ONNE with Ni2+ ions in a molten mixture

We examine the system we denote as NiClZnK, consisting
of dilute (1 wt.%) NiCl2 in molten KCl-ZnCl2 salt mixtures,
with two compositions, comp 1 (45.3 mol.% KCl) and comp
2 (52.5 mol.% KCl), previously studied in Ref. [39]. Roy
et al. used EXAFS and AIMD simulations to capture Ni2+
local environments for both compositions. They found that
after segmenting the AIMD trajectories into representative Ni
complexes by Ni-Cl coordination number and then through
linear combination fitting of the EXAFS of those complexes to
the experimental spectrum, a match was achieved, resulting in
the trust in this physical model and FEFF’s ability to simulate
EXAFS in this system. Thus, for our testing, their AIMD-
EXAFS data will be used, as we know both the spectra and
the corresponding g(r).

We define the macrostates using three sets of continuous
variables: VCl = {v1,Cl, v3,Cl}, VZn = {v2,Zn}, and VK = {v3,K},
corresponding to their respective shells (Cl, Zn, and Cl/K).
The shell composition is varied by changing the coordination

of the first and second shells during RVS (from 1 to 6 for
Cl− and 0 to 2 for Zn2+). The GA creates configurations
[Fig. 3(a)], and the NN is trained using weighted linear com-
binations with an on-the-fly synthetic data generator. The
convolutional NN, full details of dataset construction, NN
training, and code repository are provided in the Supplemental
Material, Notes, Methods [51].

The ONNE results for both compositions are shown in
the left column of Fig. 3(b), where the partial distributions
gCl(r) and gZn(r) from AIMD-EXAFS are compared to the
true distributions from the AIMD trajectories. We trained
ten separate NNs for uncertainty assessment, displaying av-
erage predictions (solid lines) and standard deviations (green
shadow). Qualitative agreement is observed, such as the bi-
modality and skewness of gZn(r) in comp 1 and comp 2,
but it only permits coarse conclusions about the material’s
local structure. Average coordination number comparison re-
veals 26 and 15% errors for comp 1, and 18 and 40% for
comp 2, comparable to conventional EXAFS analysis errors
(up to 20%). Moreover, consistent systematic changes in CN
are noted between comp 1 (predicted: CNNi−Cl = 3.18 ± 0.08
and CNNi−Zn = 2.13 ± 0.07, vs true: CNNi−Cl = 4.01 and
CNNi−Zn = 2.51) and comp 2 (predicted: CNNi−Cl = 3.11 ±
0.07 and CNNi−Zn = 2.34 ± 0.09, vs true: CNNi−Cl = 3.68
and CNNi−Zn = 1.66). Although gaining information about
the second shell [gZn(r)] is an advantage over the current state
of the art, we aim to improve ONNE to enhance the resolution
of information from the EXAFS in these systems. Upon fur-
ther investigation (presented in Supplemental Material, Fig.
S2 [51]), we determined that the source of the error stems
from an incomplete sampling of the configuration space,
which is very large for a system of this complexity. Thus, in
the future development of ONNE, we need to develop a more
robust protocol for interpolating the configurational space.
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FIG. 3. Objective training and fine-tuning NN-EXAFS for NiClZnK Ni K-edge EXAFS spectra inversion. (a) The objective training sets
and AIMD test data. (b) Objectively trained Neural Network EXAFS (ONNE) predictions (left column) of the partial Ni-Cl and Ni-Zn g(r) for
AIMD-simulated NiClZnK of comp 1) (top row) and comp 2 (bottom row) at 550 °C. ONNE is compared to fine-tuning (right column), where
the data from composition 1 were used to fine-tune.

C. Fine-tuning ONNE

In the final part, we demonstrate how ONNE can be “fine-
tuned” using the available AIMD simulations. Since ONNE
is already trained and has learned the general relationship
between EXAFS and partial gCl(r) and gZn(r), we employ a
transfer learning [50] procedure called fine-tuning to enhance
the model for immediate use in our research. Fine-tuning aug-
ments a pretrained NN with more layers, freezing the previous
ones (Supplemental Material, Fig. S1 [51]). This method is
effective if the pretrained NN’s data domain is similar to these
data, which is true here. It is important to note that the use
of AIMD data in this context is optional, serving primarily
to refine the model’s precision for specific scenarios and is
not a fundamental aspect of the training process. Care must
be taken not to overfit the model to this smaller dataset.
Fine-tuning can be further refined by using enhanced sam-
pling methods beyond AIMD, such as machine learning based
molecular dynamics or temperature-accelerated dynamics.
Two fine-tuning datasets were created from AIMD for training
and testing to ensure the NN did not memorize the training
data.

The AIMD datasets were constructed by grouping tra-
jectories based on the Ni-Cl and Ni-Zn distribution centers,
yielding 86 unique configuration averages, 26 examples of
which were reserved for validation, with the remaining 60
for training. The ten previously trained NNs are fine-tuned
using the on-the-fly synthetic data generator approach, with
full details in the Supplemental Material [51].

The fine-tuning results for comp 1 and 2 [Fig. 3(b), right]
outperform the original ONNE, and the generalization to
comp 2 is promising. Though a more robust ONNE training
process may achieve similar outcomes, this offers a signifi-

cant improvement “hack” for this system and an approach to
training NN-EXAFS models when MD or AIMD availability
is limited.

D. Application to experimental data

ONNE and fine-tuned ONNE (ONNEF) were used to in-
vert the experimental NiClZnK data from Ref. [39] and the
results are presented in Fig. S3 in the Supplemental Material
[51]. We have obtained the partial Ni-Cl (first shell) and Ni-Zn
(second shell) radial distribution functions from the NiClZnK
system, which is remarkable when considering that there is
no second-shell information seen in the Fourier-transformed
EXAFS (FT-EXAFS) data in Fig. S3. The qualitative differ-
ences between comp 1 and comp 2 seen in the first shell
are in excellent agreement with the FT-EXAFS for both
ONNE and ONNEF. The trends in the second shell cannot
be distinguished using ONNE, as expected from the valida-
tion testing with the AIMD data, but they are distinct using
ONNEF.

IV. SUMMARY

We have demonstrated that the training of NN-EXAFS
models does not require AIMD (or, indeed, any MD) simu-
lations to generate the training set. Instead, the NN can learn
the underlying relationship between photoelectron scattering
and the bond-length distribution over which it scatters from
arbitrary examples generated by our algorithm. The caveat is
that the configurational space over which the examples are
generated must be fully sampled. This method of training
the NN is objective because it is model independent—i.e,
agnostic to any interaction model for the purpose of the 3D
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structure generation for real-space scattering calculations. In
the simple case of bulk Ni, ONNE performs very well due
to the limited configurational space. For the more complex
NiClZnK molten salt system, ONNE’s predictions are less ac-
curate due to the insufficient sampling. Transfer learning can
be employed to fine-tune ONNE, enabling structural analysis
of the next coordination shells via NN-EXAFS. Future efforts
will focus on enhancing ONNE by developing a more robust
method for sampling in systems with greater configurational
complexity.

The digital data for all figures, tables, charts, and any other
media contained in this paper and its associated supporting
information files will be made accessible on the Zenodo repos-
itory [55].
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APPENDIX: THE TOY EXAMPLE OF
AN OSCILLATING DIMER

We begin with the toy example investigating a pair of atoms
in a harmonically oscillating dimer with the simplified form of
Eq. (1) that we used for creating the “toy” spectrum:

χt (k, r) =
∫ b

a

1

r2
sin [2kr]g(r)dr. (A1)

Due to the omission of the amplitude factor and photoelectron
scattering functions—-see the more general Eq. (1)—-this
demonstration can be easily generalized to any other test
g(r) functions using a sample code (see Supplemental
Material, Notes) [51]. In the toy example, we can work
with the macrostates directly since we remove the need for
scattering calculations, and thus we use the following imple-
mentation (for the full details of dataset construction, neural
network training, and code repository, see Supplemental Ma-
terial [51]). The macrostates are created by utilizing RVS
of 1000 numbers (pair lengths) from f1(x|μ, σ ) for a range
of different μ and σ . The macrostates are binned accord-
ing to the r-space grid and normalized by � r, resulting in

FIG. 4. (a) Left: Examples of the training data distribution with
three random examples highlighted (red, black, and orange). Right:
One instance of the trained NN prediction vs true gt (r). (b) Examples
of the validation and testing data in which the trained NN predicts on
χt (k) created from non-Gaussian gt (r). (c) A demonstration of the
generalization power of the trained NN. (Left) A dimer bond-length
distribution is simulated numerically as a harmonic oscillator. (Right)
The results of the trained NN prediction on χt (k) created from the
harmonic oscillator.

the training distribution function gt (r) = N
σ
√

2π
exp[− (r−r0 )2

2σ 2 ],

which is normalized by the condition: ∫b
a g(r)dr = N , where

N is the number of neighbors to the absorber in the distance
range a < r < b (e.g., N = 1 for a dimer). Equation (2) is
used to calculate χt over a grid of uniform k space from 0
to 12 Å−1. A basic multilayer perceptron NN was trained on
10 000 macrostates. The results are given in Fig. 4, where the
training [Fig. 4(a)], and validation (testing) data [Fig. 4(b)]
are compared in terms of true vs predicted gt (r). In a test
of generality, we find that the NN, which was trained to
invert χt calculated on Gaussian g(r), does an excellent job
of predicting gt (r) from χt calculated on asymmetric and
multimodal distributions. As a final test, we demonstrated its
applicability to an extreme case of a non-Gaussian gt (r), that
of a harmonic oscillator, in which the gt (r) can be calculated
analytically (see Supplemental Material [51]). The excellent
agreement confirms that a NN trained on combinations of
Gaussian-distributed macrostates can generalize to more com-
plex macrostates [Fig. 4(c)]. This implies that NN-EXAFS
learns a general relationship between the EXAFS signal and
the pair-distribution function, more general than the underly-
ing shape of the training data.

104201-6



NEURAL NETWORK BASED ANALYSIS OF MULTIMODAL … PHYSICAL REVIEW B 109, 104201 (2024)

[1] Y. Li and A. I. Frenkel, Deciphering the local environment
of single-atom catalysts with X-ray absorption spectroscopy,
Acc. Chem. Res. 54, 2660 (2021).

[2] L. Asor, J. Liu, Y. Ossia, D. C. Tripathi, N. Tessler, A. I.
Frenkel, and U. Banin, InAs nanocrystals with robust p-type
doping, Adv. Funct. Mater. 31, 2007456 (2021).

[3] J. Liu, Y. Amit, Y. Li, A. M. Plonka, S. Ghose, L. Zhang, E. A.
Stach, U. Banin, and A. I. Frenkel, Reversed nanoscale
Kirkendall effect in Au–InAs hybrid nanoparticles,
Chem. Mater. 28, 8032 (2016).

[4] S. K. Gill, J. Huang, J. Mausz, R. Gakharm, S. Roy, F. Vila, M.
Topsakal, W. C. Phillips, B. Layne, S. Mahurin et al., Connec-
tions between the speciation and solubility of Ni(II) and Co(II)
in molten ZnCl2, J. Phys. Chem. B 124, 1253 (2020).

[5] A. M. Plonka, Q. Wang, W. O. Gordon, A. Balboa, D. Troya,
W. Guo, C. H. Sharp, S. D. Senanayake, J. R. Morris, C. L. Hill
et al., In situ probes of capture and decomposition of chemical
warfare agent simulants by Zr-based metal organic frameworks,
J. Am. Chem. Soc. 139, 599 (2017).

[6] E. Makagon, E. Wachtel, L. Houben, S. R. Cohen, Y. Li, J. Li,
A. I. Frenkel, and I. Lubomirsky, All-solid-state electro-chemo-
mechanical actuator operating at room temperature, Adv. Funct.
Mater. 31, 2006712 (2021).

[7] J. J. Rehr and R. C. Albers, Theoretical approaches to X-ray
absorption fine structure, Rev. Mod. Phys. 72, 621 (2000).

[8] A. Filipponi, A. Di Cicco, and C. R. Natoli, X-ray-absorption
spectroscopy and n-body distribution functions in condensed
matter. I. Theory, Phys. Rev. B 52, 15122 (1995).

[9] J. J. Rehr and R. C. Albers, Scattering-matrix formulation of
curved-wave multiple-scattering theory: Application to X-ray-
absorption fine structure, Phys. Rev. B 41, 8139 (1990).

[10] J. Kas, F. Vila, C. Pemmaraju, T. Tan, and J. Rehr,Advanced
calculations of X-ray spectroscopies with FEFF10 and Corvus,
J. Synchrotron Radiat. 28, 1801 (2021).

[11] J. J. Rehr, R. C. Albers, and S. I. Zabinsky, Scattering-matrix
formulation of curved-wave multiple-scattering theory: Appli-
cation to x-ray-absorption fine structure, Phys. Rev. Lett. 69,
3397 (1992).

[12] G. Bunker, Application of the ratio method of EXAFS analysis
to disordered systems, Nucl. Instrum. Methods Phys. Res. 207,
437 (1983).

[13] J. Timoshenko, A. Anspoks, A. Cintins, A. Kuzmin, J. Purans,
and A. I. Frenkel, Neural network approach for characterizing
structural transformations by X-ray absorption fine structure
spectroscopy, Phys. Rev. Lett. 120, 225502 (2018).

[14] A. Yevick and A. I. Frenkel, Effects of surface disorder on
EXAFS modeling of metallic clusters, Phys. Rev. B 81, 115451
(2010).

[15] N. V. Ershov, A. L. Ageev, V. V. Vasin, and Y. A. Babanov,
A new interpretation of EXAFS spectra in real space: II. A
comparison of the regularization technique with the Fourier
transformation method, Phys. Status Solidi B 108, 103 (1981).

[16] D. S. Yang and G. Bunker, Improved R-space resolution of
EXAFS spectra using combined regularization methods and
nonlinear least-squares fitting, Phys. Rev. B 54, 3169 (1996).

[17] G. Khelashvili and G. Bunker, Practical regularization methods
for analysis of EXAFS spectra, J. Synchrotron Radiat. 6, 271
(1999).

[18] A. Kuzmin and J. Purans, Dehydration of the molybdenum
trioxide hydrates MoO3· nH2O: In situ X-ray absorption

spectroscopy study at the Mo K edge, J. Phys.: Condens. Matter
12, 1959 (2000).

[19] A. Kuzmin and J. Purans, Local atomic and electronic structure
of tungsten ions in AWO4 crystals of scheelite and wolframite
types, Radiat. Meas. 33, 583 (2001).

[20] M. Kunicke, I. Y. Kamensky, Y. A. Babanov, and H. Funke,
Efficient determination of optimal regularization parameter for
inverse problem in EXAFS spectroscopy, Phys. Scr. T115,
237 (2005).

[21] Y. A. Babanov, Y. A. Salamatov, I. Y. Kamensky, A. V.
Ryazhkin, and V. V. Ustinov, Efficient determination of opti-
mal regularization parameter for inverse problem in EXAFS
spectroscopy, J. Electron Spectrosc. Relat. Phenom. 175, 27
(2009).

[22] Y. A. Babanov, D. A. Ponomarev, V. V. Ustinov, A. N. Baranov,
and Y. V. Zubavichus, Local atomic structure of solid solutions
with overlapping shells by EXAFS: The regularization method,
J. Electron Spectrosc. Relat. Phenom. 211, 1 (2016).

[23] I. Jonane, A. Cintins, A. Kalinko, R. Chernikov, and A.
Kuzmin, Probing the thermochromic phase transition in
CuMoO4 by EXAFS spectroscopy, Phys. Status Solidi B 255,
1800074 (2018).

[24] Y. A. Babanov, V. V. Vasin, D. A. Ponomarev, D. I.
Devyaterikov, L. N. Romashev, and V. V. Ustinov, Atomic
structure of multilayered low-contrast Fe/Cr thin films: Math-
ematical formalism and numerical experiments, Phys. Met.
Metallogr. 120, 756 (2019).

[25] E. A. Stern, Y. Ma, O. Hanske-Petitpierre, and C. E. Bouldin,
Radial distribution function in X-ray-absorption fine structure,
Phys. Rev. B 46, 687 (1992).

[26] A. Frenkel, E. A. Stern, A. Voronel, A. Rubshtein, Y. Ben-Ezra,
and V. Fleurov, Redistribution of La-Al nearest-neighbor dis-
tances in the metallic glass Al0.91La0.09, Phys. Rev. B 54, 884
(1996).

[27] A. Kuzmin and R. A. Evarestov, Quantum mechanics–
molecular dynamics approach to the interpretation of X-ray
absorption spectra, J. Phys.: Condens. Matter. 21, 055401
(2009).

[28] F. Vila, J. J. Rehr, J. Kas, R. G. Nuzzo, and A. I. Frenkel,
Dynamic structure in supported Pt nanoclusters: Real-time
density functional theory and X-ray spectroscopy simulations,
Phys. Rev. B 78, 121404(R) (2008).

[29] B. J. Palmer, D. M. Pfund, and J. L. Fulton, Direct modeling of
EXAFS spectra from molecular dynamics simulations, J. Phys.
Chem. 100, 13393 (1996).

[30] S. W. T. Price, N. Zonias, C.-K. Skylaris, T. I. Hyde, B. Ravel,
and A. E. Russell, Fitting EXAFS data using molecular dynam-
ics outputs and a histogram approach, Phys. Rev. B 85, 075439
(2012).

[31] J. Timoshenko and A. I. Frenkel, Probing structural relaxation
in nanosized catalysts by combining EXAFS and reverse Monte
Carlo methods, Catal. Today 280, 274 (2017).

[32] R. L. McGreevy and L. Pusztai, Reverse Monte Carlo simu-
lation: A new technique for the determination of disordered
structures, Mol. Simul. 1, 359 (1988).

[33] J. Timoshenko, C. J. Wrasman, M. Luneau, T. Shirman, M.
Cargnello, S. R. Bare, J. Aizenberg, C. M. Friend, and A. I.
Frenkel, Probing atomic distributions in mono-and bimetallic
nanoparticles by supervised machine learning, Nano Lett. 19,
520 (2019).

104201-7

https://doi.org/10.1021/acs.accounts.1c00180
https://doi.org/10.1002/adfm.202007456
https://doi.org/10.1021/acs.chemmater.6b03779
https://doi.org/10.1021/acs.jpcb.0c00195
https://doi.org/10.1021/jacs.6b11373
https://doi.org/10.1002/adfm.202006712
https://doi.org/10.1103/RevModPhys.72.621
https://doi.org/10.1103/PhysRevB.52.15122
https://doi.org/10.1103/PhysRevB.41.8139
https://doi.org/10.1107/S1600577521008614
https://doi.org/10.1103/PhysRevLett.69.3397
https://doi.org/10.1016/0167-5087(83)90655-5
https://doi.org/10.1103/PhysRevLett.120.225502
https://doi.org/10.1103/PhysRevB.81.115451
https://doi.org/10.1002/pssb.2221080114
https://doi.org/10.1103/PhysRevB.54.3169
https://doi.org/10.1107/S0909049598018159
https://doi.org/10.1088/0953-8984/12/9/301
https://doi.org/10.1016/S1350-4487(01)00063-4
https://doi.org/10.1238/Physica.Topical.115a00237
https://doi.org/10.1016/j.elspec.2009.07.004
https://doi.org/10.1016/j.elspec.2016.03.003
https://doi.org/10.1002/pssb.201800074
https://doi.org/10.1134/S0031918X19080039
https://doi.org/10.1103/PhysRevB.46.687
https://doi.org/10.1103/PhysRevB.54.884
https://doi.org/10.1088/0953-8984/21/5/055401
https://doi.org/10.1103/PhysRevB.78.121404
https://doi.org/10.1021/jp960160q
https://doi.org/10.1103/PhysRevB.85.075439
https://doi.org/10.1016/j.cattod.2016.05.049
https://doi.org/10.1080/08927028808080958
https://doi.org/10.1021/acs.nanolett.8b04461


MARCELLA, LAM, BRYANTSEV, ROY, AND FRENKEL PHYSICAL REVIEW B 109, 104201 (2024)

[34] M. Rüscher, A. Herzog, J. Timoshenko, H. S. Jeon,
W. Frandsen, S. Kühl, and B. Roldan Cuenya, Tracking
heterogeneous structural motifs and the redox behaviour of
copper–zinc nanocatalysts for the electrocatalytic CO2 reduc-
tion using operando time resolved spectroscopy and machine
learning, Catal. Sci. Technol. 12, 3028 (2022).

[35] P. D’Angelo, A. Di Nola, M. Mangoni, and N. V. Pavel, An
extended x-ray absorption fine structure study by employing
molecular dynamics simulations: Bromide ion in methanolic
solution, J. Chem. Phys. 104, 1779 (1996).

[36] A. Anspoks and A. Kuzmin, Interpretation of the Ni K-
edge EXAFS in nanocrystalline nickel oxide using molec-
ular dynamics simulations, J. Non-Cryts. Solids 357, 2604
(2011).

[37] J. Timoshenko, Z. Duan, G. Henkelman, R. M. Crooks, and A. I.
Frenkel, Solving the structure and dynamics of metal nanoparti-
cles by combining X-ray absorption fine structure spectroscopy
and atomistic structure simulations, Annual Rev. Anal. Chem.
12, 501 (2019).

[38] S. T. Chill, R. M. Anderson, D. F. Yancey, A. I. Frenkel, R. M.
Crooks, and G. Henkelman, Probing the limits of conventional
extended x-ray absorption fine structure analysis using thiolated
gold nanoparticles, ACS Nano 9, 4036 (2015).

[39] S. Roy, Y. Liu, M. Topsakal, E. Dias, R. Gakhar, W. C. Phillips,
J. F. Wishart, D. Leshchev, P. Halstenberg, S. Dai et al., A
holistic approach for elucidating local structure, dynamics, and
speciation in molten salts with high structural disorder, J. Am.
Chem. Soc. 143, 15298 (2021).

[40] E. T. Dias, S. K. Gill, Y. Liu, P. Halstenberg, S. Dai, J. Huang, J.
Mausz, R. Gakhar, W. C. Phillips, S. Mahurin et al., Radiation-
assisted formation of metal nanoparticles in molten salts,
J. Phys. Chem. Lett. 12, 157 (2021).

[41] X. Liu, A. Ronne, L. Yu, Y. Liu, M. Ge, C. Lin, B. Layne,
P. Halstenberg, D. S. Maltsev, A. S. Ivanov et al., Formation
of three-dimensional bicontinuous structures via molten salt
dealloying studied in real-time by in situ synchrotron X-ray
nano-tomography, Nat. Commun. 12, 3441 (2021).

[42] P. Liu, V. Johansson, H. Trilaksana, J. Rosdahl, G. G.
Andersson, and L. Kloo, EXAFS, ab initio molecular dynamics,
and NICIS spectroscopy studies on an organic dye model at the
dye-sensitized solar cell photoelectrode interface, ACS Appl.
Mater. Interfaces 9, 19773 (2017).

[43] R. Atta-Fynn, E. J. Bylaska, G. K. Schenter, and W. A. de
Jong, EXAFS, ab initio molecular dynamics, and NICIS spec-

troscopy studies on an organic dye model at the dye-sensitized
solar cell photoelectrode interface, J. Phys. Chem. A 115, 4665
(2011).

[44] D. P. Kovács, C. van der Oord, J. Kucera, A. E. Allen, D. J. Cole,
C. Ortner, and G. Csányi, Linear atomic cluster expansion force
fields for organic molecules: Beyond RMSE, J. Chem. Theory
Comput. 17, 7696 (2021).

[45] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M.
Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky, Linear
atomic cluster expansion force fields for organic molecules:
Beyond rmse, Nat. Commun. 13, 2453 (2022).

[46] A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen,
M. Kornbluth, and B. Kozinsky, Learning local equivariant rep-
resentations for large-scale atomistic dynamics, Nat. Commun.
14, 579 (2023).

[47] C. J. Owen, S. B. Torrisi, Y. Xie, S. Batzner, J. Coulter, A.
Musaelian, L. Sun, and B. Kozinsky, Complexity of many-body
interactions in transition metals via machine-learned force fields
from the TM23 data set, arXiv:2302.12993.

[48] J. Vandermause, Y. Xie, J. S. Lim, C. J. Owen, and B. Kozinsky,
Active learning of reactive Bayesian force fields applied to
heterogeneous catalysis dynamics of H/Pt, Nat. Commun. 13,
5183 (2022).

[49] C. J. Owen, N. Marcella, Y. Xie, J. Vandermause, A. I. Frenkel,
R. G. Nuzzo, and B. Kozinsky, Unraveling the catalytic ef-
fect of hydrogen adsorption on Pt nanoparticle shape-change,
arXiv:2306.00901.

[50] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, A
survey on deep transfer learning, in Artificial Neural Networks
and Machine Learning – ICANN 2018, edited by V. Kůrková
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