
Decoding the Pair Distribution Function of Uranium in Molten
Fluoride Salts from X‑Ray Absorption Spectroscopy Data by
Machine Learning
Kaifeng Zheng, Nicholas Marcella, Anna L. Smith, and Anatoly I. Frenkel*

Cite This: https://doi.org/10.1021/acs.jpcc.4c01898 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Thermal properties of actinides in molten salts are linked to the
strongly disordered local environment of actinide ions. We illustrate both the
limitations of the commonly used fitting method for analysis of extended X-ray
absorption fine structure (EXAFS) spectra in molten UF4 and a possible
solution using an “objective neural network-EXAFS” (ONNE) method. ONNE
provides both extraction of the pair distribution function, as validated by its
application to the EXAFS spectra calculated on molecular dynamics trajectory,
and the EXAFS data reconstruction. The ONNE analysis of the molten UF4
has revealed reduction of the first nearest neighbor U−F coordination number,
expansion of the U−F bond length, and smaller contribution to the second
shell compared to current molecular dynamics models. This method is
therefore an attractive alternative to conventional EXAFS analysis and
molecular dynamics simulations for studies of disordered environment of
actinides in molten salts.

■ INTRODUCTION
Unlocking the details of the local atomic environment in
functional materials is critical to understanding their physical
and chemical properties and gaining mechanistic insights. For
example, subtle changes in the bonding environment within
the first coordination shell of Ge in phase change materials
may result in crystallization or amorphization, leading to
changes in their optical properties.1 Other examples include
catalysts,2−12 electrocatalysts,13 battery,14,15 and fuel cell16

materials, in which the local environment of the active sites
may change in reaction conditions, directly affecting their
activity, selectivity, and/or stability. While numerous examples
exist where the local structure−property relationship has been
deciphered, their success on a case-by-case basis also illustrates
the key challenge: extracting detailed information about the
local structure of the active sites is often ambiguous and error-
prone in materials with heterogeneously distributed active
species and sites.
These challenges are further amplified when considering the

paucity of experimental tools, e.g., X-ray diffraction and
electron microscopy, for probing the local coordination
environments. Furthermore, a workhorse method of structural
analysis of disordered materials, extended X-ray absorption fine
structure (EXAFS) spectroscopy, is still limited in its ability to
extract structure characteristics of the local environment of X-
ray absorbing atoms (i.e., coordination numbers, distances, and
mean squared relative disorder) in the presence of hetero-
geneity.17 This challenge is particularly evident in disordered

systems like ionic liquids or molten salts, where co-existing
coordination states of metal ions defy reliable analysis by
EXAFS; commonly used fitting methods in these cases tend to
underestimate coordination numbers and bond length
disorder, underscoring the need for advanced methodologies
that account for the complexity of these environments.18

Among the possible solutions, the most commonly used is
the “forward” modeling of EXAFS data, wherein the atomic
environment is first analyzed theoretically, using semi-empiric
or first-principles molecular dynamics (MD) simulations.19−23

Subsequently, EXAFS is calculated at each time step and
averaged over the MD trajectory to compare it with the
experimental EXAFS spectrum. Good agreement between
MD-simulated EXAFS (MD-EXAFS) and experimental
EXAFS validates the model used in MD simulations, providing
all of the needed information about the structure and dynamics
of the metal ion environment. With a clear advantage over
conventional EXAFS analysis methods, the MD-EXAFS
method has an important and obvious limitation: its model
dependence.24 It is also unclear how to handle disagreements
between MD-EXAFS and the experiment.
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One example of such challenge is the case of molten UF4,
19

an important material for the energy industry, because it
belongs to a large class of molten salts that are promising for
molten salt nuclear reactors (MSRs) as coolants and liquid
fuels.25 The non-ideality and complexity at high temperatures
of the irradiated molten salt system under MSR operating
conditions are key reasons why their underlying behaviors in
working conditions should be fundamentally understood. This
knowledge is essential to be able to build predictive models for
multi-component molten salt systems that can be reliably used
for a thorough safety assessment during operation and
accidental conditions. To uncover those behaviors, under-
standing the local structure of the actinide ion, such as the
details of the coordination environment and chemical
speciation (i.e., formation of a dissociated ionic liquid, of
molecular complexes, or polymerization) at the high temper-
atures, is crucial. Although there are many reports investigating
the local structure of different molten salt systems using
spectroscopy and scattering techniques, such as X-ray/neutron
diffraction,26−30 Raman spectroscopy,31−35 and EXAFS,36−40

the interpretation of the data is very limited due to the strongly
disordered nature of these materials that contain multiple co-
existing coordination states.22,40 The local structure of molten
UF4 and its mixtures with other alkali halides was studied by
the MD-EXAFS method;41−43 however, the predicted EXAFS
spectra from MD simulations often showed significant
discrepancies with the experimental data.
One direction that can offer a solution to this problem is the

use of an “inverse” modeling approach, such as Reverse Monte
Carlo (RMC),44−50 regularization method,51−55 and one
enabled by the application of supervised machine learning
methods.56,57 Recently, a method of extracting the pair
distribution function (gρ(r)) around an X-ray absorbing atom
from an EXAFS spectrum was developed.58,59 However, the
theoretical training set for the artificial neural network (NN)
that maps EXAFS on gρ(r) was constructed using MD-EXAFS;
hence, the resultant gρ(r) function extracted using the neural
network approach was model-dependent. A recently developed
follow-up method, utilizing an “objective” training approach,24

was shown to provide reliable results for Ni complexes in
molten salt mixtures, and thus is a good starting point for
extending this method to the molten actinide salt research. In
the remainder of this article, we demonstrate the use of the
latter method for the case of uranium EXAFS data in molten
UF4. The method extends naturally to the task of comparing
local environments around U in UF4 mixtures with other salts,
to other uranium halides and their mixtures, and to other
actinide-containing salts.

■ METHODS
Traditional EXAFS Analysis. Commonly used, fitting-

based, EXAFS analysis encodes the unknown local structure of
the atomic environment based on the concept of photoelectron
scattering paths that, in the case of single-scattering paths
(corresponding to the coordination shells around the X-ray
absorbing atoms), allows the determination of three character-
istics of each coordination shell: coordination number (N),
bond length (R), and Debye−Waller factor (σ2) explicitly
listed in the EXAFS equation:
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where k is the photoelectron wavenumber, and S0
2 is the

passive electron reduction factor. In addition, the types of
neighbors to each absorbing atom can be discerned based on
the differences in their photoelectron scattering functions, f(k),
δ(k), and λ(k). The summation is performed over all paths j,
and the multiple-scattering paths are also represented by the
same terms in eq 1, where the meaning of the bond length is
generalized to the “half-path length.” This equation relies on
the assumption that the bond length disorder in the material is
Gaussian or quasi-Gaussian. Using eq 1, the unknown
structural variables (N, R, σ2) are determined from the
nonlinear least-squares fitting of the EXAFS equation to the
experimental spectra. The assumption of Gaussian or quasi-
Gaussian bond length disorder notably fails in the case of metal
complexes in pure and mixed molten salts.22,40

Molecular Dynamics (MD)-EXAFS. The MD-EXAFS
method offers a significant improvement over the traditional
fitting method. The EXAFS spectrum is calculated for a series
of extracted MD trajectories, whereby a very large number of
atomic configurations (typically 25 000) are averaged, so as to
reproduce the effect of the Debye−Waller factor and
anharmonic vibrations, and compared to the experimental
EXAFS. Based on MD trajectory, one can explicitly study the
local structure: the short-range order and medium-range order
of selected atoms using the pair distribution function (gρ(r)),
which can be used to define the time- and configuration-
average EXAFS spectrum and the coordination number and
the distance over a given shell (with thickness Δr):
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In this definition (eq 1), χ(k,ri) is the EXAFS signal
originating from scattering from a neighbor at distance ri, and
ΔN denotes the number of atoms in a shell with thickness Δr.
Comparing eqs 1 and 2, the latter contains more degrees of
freedom and does not include an approximation about the type
of the bond length distribution, such as the Gaussian
distribution. The caveat, as already mentioned, is that the
atomic configurations sampled by the MD simulation are a
function of the force fields used to describe the simulated
system and, thus, are dependent on the accuracy of the
underlying force field, which may not be fully satisfactory to
represent the interactions, resulting in a wrong calculation of
EXAFS. An alternative to the classical MD, ab initio MD
(AIMD), generally provides more accurate dynamics of
systems but is limited to very small sizes of the simulated
systems (tens of atoms). We propose that a spectral inversion
method, such as the one relying on a machine learning
algorithm described above, is a viable alternative to the forward
modeling methods.
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Neural Networks. Artificial neural networks (ANNs) have
been applied in materials science to solve inverse spectral
problems, such as studying structure descriptors from X-ray
absorption spectroscopy60−62 to help discover new materi-
als,63−67 and studying structure−property relationships.68−72

Using NNs, we have obtained the pair distribution function
(gρ(r)) for monometallic and bimetallic systems, relying on
MD and MD-EXAFS simulations to generate the training set
for the ANN.58,73,74 That method is inherently problematic for
solving the problem of metals in molten salts, particularly
actinides, which is the focus of this article, due to the intrinsic
difficulty of first-principle calculations and classical MD
simulations, to tackle the complexity of co-existing, disordered
coordination states of metal complexes in molten salts.
Therefore, an alternative method, such as ONNE (“objectively
trained NN-EXAFS”) developed by us earlier,24 is an attractive
tool for creating a theoretical training set for extracting the pair
distribution function information for the nearest coordination
shells of U in molten UF4.

ONNE Method. ONNE is used to invert the EXAFS to
gρ(r). Rather than employing MD to generate training data,
this approach uses an algorithm to create local structures based
on a combination of simple Gaussian functions describing pair
distributions.24 The method can generate training structures
from any combination of bond length distributions, including
partial (absorber−scatterer-specific) bond length distributions
from coordination shells beyond the first nearest neighbors.
This approach is the logical choice for analyzing highly
disordered multi-atom bonding environments and does not
require MD or AIMD data. In fact, the only use of MD or
AIMD data (if available) is for the purpose of demonstration
that the inversion of the absorption spectra results to gρ(r) is
done correctly (because the “ground truth” gρ(r) is available
from MD/AIMD simulations for comparison with the
predicted one). The proof-of-principle work reporting on the
ONNE was demonstrated for the Ni−Cl complexes in ZnCl2−
KCl molten salt mixture modeled by AIMD.24 There was in
that particular case no benefit of applying the ONNE method
to the experimental data in ref 24�because the quality of
reproduction of experiment by theory was very high, and no
unique results could be obtained by ONNE compared to what
is already available from AIMD simulations.
For actinides, an additional challenge for the AIMD and

semi-classical approaches comes from the complex nature of
[Rn]5fn electron systems that can follow a more localized or
delocalized (itinerant) character,75,76 depending on the nature
of the actinide materials, and conditions of temperature,
pressure, etc. Thus, the latter methods are less likely to be
accurate and predictive for modeling the local structure and
dynamics. The ONNE method stands out as uniquely
applicable for extracting the gρ(r). To apply this method on
experimental measurements, one requires special data pre-
treatment. We implemented data truncation for all calculations
to adapt the feasible k-range of the experimental data. In
addition, we also tuned reference energy (E0) for UF4 MD-
EXAFS to match it with the experimental counterpart, and
applied the optimized E E E0 0cal exp

= to all calculations (see
Figure S1 for more details). After the training and prediction,
we demonstrated reversibility using EXAFS theory�recon-
struction of EXAFS from predicted gρ(r)�to validate the
prediction with experimental “ground truth” directly.

■ IMPLEMENTATION OF ONNE METHOD AND
RESULTS

This study used the ONNE method to analyze the U L3 edge
EXAFS spectra in UF4, reported in the literature.

42 The details
of ONNE implementation are in Figures S2 and S3. Here, we
present the details of the training and validation of the ONNE
neural network model. Training data were generated from the
ONNE method to construct clusters objectively, only by
specifying the necessary information on the studied system,
such as the element of the center atom, the concentration of
species, and the rules of atoms distributed in the system to
construct gρ(r). To illustrate the details of the ONNE method,
one snapshot of the generated structures is shown in Figure 1.

In the method, one starts by defining the absorber-specific pair
distribution function gρ(r) with abstract statistical distribution
functions such as a uniform distribution and Gaussian
distribution. Next, atoms are sampled within the real space,
adhering to the given pair distribution function constraint. This
process leads to the formation of several small clusters, each
exhibiting unique local structures established under the same
gρ(r) configuration but differing in their local environments.
These distinct clusters are then utilized for the EXAFS
calculations. In our work, we generated 100 structures for each
gρ(r) configuration. Each of our structures contained
approximately 60 atoms within a radius of up to 6.5 Å from
the center U atom, as shown in Figure 1a. The gρ(r) is
calculated on the structures to ensure nothing went wrong
when constructing the real space models. In addition, the
average of all gρ(r) values for a given configuration is compared
to the initial abstract statistical distribution function, ensuring
they converge. The EXAFS spectra were calculated using the
FEFF10 code.77 In parallel to gρ(r), the EXAFS spectra were
also averaged for each configuration.
We moreover prepared a UF4 MD trajectory to test our

method and compare the predicted with the known (from
MD) trajectory gρ(r). The time-spatial averaged gρ(r) and
EXAFS was calculated by averaging 30 000 uranium local
environments in the MD trajectory. In addition, molten UF4
experimental data from ref 42 was prepared for predicting the

Figure 1. Pair distribution function and structure construction. (a) A
snapshot of a structure in one gρ(r) configuration (big blue atoms are
U, and small green atoms are F). (b) Configurational average gρ(r) for
training set construction. The top gρ(r) values considered all pairs of
atoms, which we used in the neural network study. Middle and
bottom considered only U−F and U−U bond distributions separately.
In the PDF construction, layer 1, layer 2, the transition region, and
layer 4 are all F atoms, while layer 3 contains U atoms.
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unknown gρ(r). The difference in the reference energy E0 of
EXAFS between simulations and experimental data poses
challenges in comparing the EXAFS spectra. To minimize the
artifacts introduced by E0, we added a ΔE0 correction to all
calculations, which acts on EXAFS to redistribute k grids and
correct the phase and intensity. We found the optimized ΔE0 =
5.92 eV using an optimization algorithm discussed in the
Supporting Information. We also explored the use of a
reduction factor S0

2 = 0.71 applied to simulations to address the
intensity differences between simulated and experimental
spectra. Further elaboration on this can be found in Sections
S3 and S4, Figure S6 and Table S1).
For data construction, we used the k3-weighted EXAFS and

cut the k-range smoothly with the Hanning window to
minimize the influence of the low-k and high-k regions. We
prepared two sets of EXAFS data, employing two k ranges: [2,8
Å−1] and [2,10 Å−1] and train separately, to illustrate the
quality of predictions regarding the length of k ranges. For
training data, we introduced noise with a maximum level of 0.1
Å−3 in the spectra to the model to improve the generalization
of convolutional neural network (CNN) model, and used un-
noised data to validate the training step. Figure 2 illustrates one

batch of unknown data for the validation step in the training
process. More information related to training and the CNN
model used is presented in the Supporting Information.
After training, the neural network model was tested using

MD-EXAFS data. To obtain the uncertainty from the model,
we ran the same model 10 times, saved checkpoints of each

model, and considered the fluctuation of the predictions. The
predicted results are shown in Figure 3a,b). The agreement
between the prediction and the “ground truth” (MD-EXAFS
data) is very good in the first peak (U−F) region. The weak
feature at around 1.75 Å−1 is smaller than the uncertainty
(shown by fuzzy curves in Figure 3) due to the variation in NN
hyper-parameters. The second peak, characterizing the U−U
and second shell U−F pairs, shows that the NN-EXAFS
method, although qualitatively replicating the trend, under-
estimates the gρ(r) intensity in that region. Nevertheless, the
prediction using the k-range [2,10 Å−1] outperforms the one
derived from the shorter range. It offers an explanation that
employing longer k-range can result in a better approximation
to the higher shell.
The coordination numbers were calculated by integrating

the predicted PDF in the 1.8−3 Å range. The predicted result
of the experimental data using a k-range up to 10 Å−1 is shown
in Figure 3c. From experimental prediction, the coordination
number was obtained to be 7.4 ± 0.7 (we used the cutoff
distance up to 3 Å), versus 8.0 ± 0.6 from the MD prediction
using the model training with k-range from 1.5 to 10 Å−1. We
also calculated the bond length (r) from MD simulations and
the NN-EXAFS predictions, as summarized in Table 1. Most

notably, the observed increases in bond length calculated using
the experimental data compared to the MD predictions (Table
1) are consistent with the findings in ref 42. The relative
reduction in the coordination number in the experimental data
compared to that obtained in MD simulation is consistent with
the trends in the first shell peak intensity visible in Figure 3c.

Reversibility Test. We furthermore traced the predicted
PDF back to EXAFS�like functions using eqs 2 and 3 to
validate the reversibility of the EXAFS spectra. The f i(k), λ(k),
and δ(k), the scattering path-dependent functions, were
calculated using FEFF10. This work only used the parameters
from the first single scattering path. The experimental data
were employed for comparison after back Fourier transform
solely on the first shell (refer to Figure S7). The results are

Figure 2. One batch of “clean” data for validation of our method. The
calculated EXAFS (a) for the corresponding PDF (b) is shown by
black curves. Each EXAFS spectrum and PDF are averages from 100
different structures. A Hanning window function (red curve) with the
“window sills” (dk) of 1 Å−1 was used to truncate theoretical and
experimental EXAFS data.

Figure 3. Predictions from ONNE model adapted for the relatively short k-range [1.5,8 Å−1] (a) and for long k-range [1.5,10 Å−1] (b) on the MD-
EXAFS data and on the experimental data (c). The PDF calculated by MD is shown as a black line for comparison. The improvement of the
extraction of the PDF with ONNE as the k-range increases is evident in the second shell region (b vs a). The orange region represents the
uncertainty obtained by running the model 10 times. The blue range corresponds to the first shell, which is utilized for calculating the coordination
number (CN) and bond length (r), listed in Table 1.

Table 1. Comparison of Coordination Numbers and First-
Shell Bond Lengths Obtained by Different Methods

MD
MD-EXAFS ONNE

prediction kϵ[1.5,10 Å−1]
experimental EXAFS ONNE
prediction kϵ[1.5,10 Å−1]

CN 7.9 8.0(6) 7.4(7)
r (Å) 2.31 2.34(1) 2.38(2)
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shown in Figure 4. The calculated spectrum fits very well with
the experimental data. However, for MD-EXAFS-extracted

gρ(r), the simulation has a phase shift because of the smaller
bond length distance in MD compared to the experiment. This
comparison, therefore, validates our neural network−assisted
inversion of the EXAFS spectrum and its mapping onto the
PDF because this process is demonstrated to be reversible: the
EXAFS reconstructed from a prediction of the PDF matches
well with the experimental spectrum, as illustrated in Figure 4.
Moreover, the reconstruction shows a correction in phase
compared to the reconstruction from the MD-EXAFS result.

■ DISCUSSION
In this work, we constructed a machine-learning workflow to
decode gρ(r) from EXAFS, and for the first time, we used
experimental data as a source for prediction. We also provided
a validation approach to check the reversibility of our
predictions, as discussed earlier. The prediction of gρ(r) from
MD-EXAFS overlaps the ground truth of the first peak and
provides evidence that the neural network method can capture
the features of the first coordination shell. The prediction from
experimental data shows a decrease in the intensity and a shift
to higher radial distances of the first peak (e.g., U−F),
providing longer bond length distance than MD results.
Subsequently, we reconstructed EXAFS from predicted gρ(r).
In this step, we first validated our method by checking the
reversibility of MD-EXAFS (see result in the Supporting
Information), and demonstrated that the reconstruction
matches well with the MD-EXAFS ground truth. After this
validation, we performed the same process for experimental
data, showing that the reconstructed EXAFS is much closer to
ground truth and could correct the existing phase shift in MD-
EXAFS. Compared to the traditional EXAFS fitting method,
the proposed objective training method is more robust without
any prior hypothesis on g(r), and the result can be self-
validated by checking the reversibility with experimental data.

■ CONCLUSIONS AND OUTLOOK
The proposed objective method opens a new avenue to study
local coordination environments for highly disordered and
amorphous materials, which are difficult to understand based
on the limitations of experimental approaches and computa-
tional simulations. For example, molecular dynamics may fail
for complex systems if for instance an inaccurate force field is
used, if MD suffers insufficient sampling, and omits new
environments in the studied system.72 Experimental ap-

proaches, such as EXAFS, based on the strong Gaussian
approximation, can result in a wrong estimation of the
descriptors. In those cases, the objective method shows a
high potential to study the local structure correctly. The
potential of this method is not limited to UF4 and other
molten salts, and can be expanded to other fields, such as the
Co2+ ions doping in a nanostructural glass, where different Co
local geometry can result in optical property changes,78

complex concentrated alloys, where EXAFS fails to capture
local structure,79 and some biological catalysts, such as
enzymes with specific metal active sites.80−82 However, the
current method still needs improvement, such as by improving
the speed and efficiency of objective structure generation.
In general, to understand the local structure of a complex

system, such as the molten UF4 system, different techniques
are often needed to reach a convincing conclusion. The
extracted coordination numbers can vary quite strongly based
on different techniques.83 For reference, a structural refine-
ment of crystalline UCl3 by diffraction methods resulted in the
coordination of U−Cl of 884 or 9,85 but experimental X-ray
diffraction and neutron diffraction, as well as MD and AIMD
data in the melt, indicated coordination numbers as low as 6 or
7.05, and as high as 8.1, depending on the method of
investigation,85 thereby demonstrating again the challenge in
the determination of the “ground truth.” In the case of UF4, it
is worth pointing out that the results obtained herein are in
line with another discrepancy noted in the literature. The
density predictions by MD using the PIM force fields, are
higher than the experimental correlations (see, e.g., Figure 11
in Ref. 41). The density is directly linked to the local structure,
and the higher density matches the lower radial distances and
higher CNs observed in the gρ(r) obtained by MD, and
predicted by our method using MD-EXAFS data.
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