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Abstract

We are studying the ultimate limits of force/position-sensing with nano-mechanical systems and

SQUID-based classical accelerometers at extremely low temperatures, with a view towards developing

new force-sensing tests for fundamental physics. Of immediate interest is a type of Cavendish experiment

designed to detect gravity at micron-scale distances and measure departures from Newton’s Law of

Universal Gravitation in the nanometer range. An intermediate apparatus has been designed and built

to oscillate a source mass evaporated onto a membrane, thereby inducing an oscillation (via gravity)

of a test mass evaporated onto another membrane, which is separated from the former membrane by

approximately 100 microns. These masses are screened from each other by a rigid superconducting shield

to prevent electromagnetic cross-talk. The ultimate design has sufficient sensitivity to detect possible

non-Newtonian forces at distance scales shorter than 1 micron.
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1 Introduction

In a nutshell, our classical view of gravity is that it abides by the inverse-square law, i.e. that the

gravitational force is inversely proportional to the square of the distance between two objects. However,

String Theory’s prediction of extra spatial dimensions creates a perturbation to this law, and this modified

gravitational force now has an exponential decay dependence on distance (which becomes invisible at large

enough separations). Our hope is to put a bound on the size and length scales where this perturbation

could exist, or even to discover the perturbation and supply experimental evidence to String Theory.

1.1 Theoretical Motivation

1.1.1 QFT, GR, and Newtonian Gravity

What is gravity? Galileo Galilei (1564-1642) realized it as a force which accelerates any free-falling

object at the same rate. This corrected the naive view of Aristotle, who thought larger objects fell with

a larger acceleration. Isaac Newton then came along in 1687 with his Principia, a journal which defined

the gravitational force as the following (translated from Latin): “Every particle of matter in the universe

attracts every other particle with a force that is directly proportional to the product of the masses of

the particles and inversely proportional to the square of the distance between them.” In other words,

Fg = −GMm
r2 r̂

where G ≈ 6.67428× 10−11m3kg−1s−2 is the empirical gravitational constant (Figure 1). This is known

as Newton’s Law of Universal Gravitation. From this equation, three types of questions arise. In relation

to G, how strong is gravitation? Is its value accurate, and is it always constant? In relation to M and

m, does gravitation couple to mass and to mass only? Is the Equivalence Principle (inertial mass =

gravitational mass) valid? And in relation to r, does the gravitational force drop like the inverse squared

distance? This latter question is studied here.

Figure 1: Gravitational force between objects Figure 2: Curvature of spacetime

Rewriting the force as Fg = mg where g is the gravitational vector field, the inverse-square law

can be recovered from Gauss’ Law O · g = −4πGρ where ρ is mass density. Defining the gravitational

potential by g = −OV , this implies O2V = 0 in a mass-free region, which in R3 corresponds to Fg ∝ 1
r2 .
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This formulation in Classical Mechanics generalizes nicely into General Relativity, where instead of being

viewed as a force, gravity is described by the warping of spacetime (Figure 2). Einstein’s theory of GR

is the unification of special relativity and Newton’s Law, and it relates the presence of matter Tµv to the

curvature of space Gµv ≡ Rµv − 1
2Rgµv via Einstein’s field equations Gµv + Λgµv = 8πG

c4 Tµv.

In addition to gravity there are three other fundamental forces. Listed from strongest to weakest,

these four fundamental forces are the strong force, the electromagnetic force, the weak force, and the

gravitational force. The strong force concerns binding in atoms. The electromagnetic force concerns

charges and light, and the weak force concerns radioactivity and decay. With the exception of gravity,

these three forces can be described as the quantum exchange of virtual bosons. In other words, Quantum

Mechanics generalizes nicely using QFT (quantum field theories) to handle all of the fundamental forces

except gravity. When we try to associate a QFT to gravity, i.e. we suppose gravitational interactions

are mediated by ‘gravitions’, we encounter problems. While the quantized theory does extend to GR in

the classical limit, it breaks down at the Planck-scale MP =
√

~c
G (in particular, near the singularity of

a black hole). But there are simpler disconnections between gravity and the other forces, namely, the

Hierarchy Problem and the Cosmological Constant Problem (CCP).

The CCP arises from the evidence of Hubble that the expansion of the universe is accelerating, which

can be explained by the cosmological constant Λ = 8πρvac appearing in Einstein’s field equations. Here

ρvac is the vacuum energy density. The problem is that certain theories predict Λ = 0, whereas other

theories predict Λ to be on the order of M4
P , and both of these claims disagree with the measured con-

stant (of vacuum energy) which is on the order of 10−120M4
P .

The Hierarchy Problem questions the huge strength difference Fweak/Fg ∼ 1032 between the weak

scale and the gravity scale. As the electromagnetic force and weak force can be unified into the elec-

troweak force, we may view this as the difference between two fundamental energy scales in nature, the

electroweak-scale MEW ∼ 1012eV and the Planck-scale MP ∼ 1027eV .

Further review of the history and problems of gravity can be found in [2].

1.1.2 String Theory and Non-Newtonian Forces

Obviously, a grand unified theory is needed to fundamentally connect QM to GR. One proponent

is String Theory (or its extension M-Theory). String Theory asserts that the fundamental forces are

“strings.” The difference between gravity and the other three forces is that gravity is represented by a

closed loop while the others are represented by open strings. The open strings are stuck to the universe

like hair on our arms, but the closed string can propagate away from the universe, and interacts more

on smaller scales where extra spatial dimensions are supposed to exist (hence appears weaker to us).

Indeed, M-Theory asserts the existence of six compact spatial dimensions (in addition to our familiar
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three dimensions), which are 6-dimensional Calabi-Yau manifolds present at every point in space. A good

way to picture this is the following. Suppose you are walking on a suspended rope; you only have one

direction of movement (back or forth). But if you shrunk yourself down to the size of an ant, you would

see that at every point along the forward-backward dimension there is a second compact dimension,

the diameter of the rope, that you can move around. As gravity interacts with these additional spatial

dimensions, the Newtonian formulation is modified. In fact, theoretical explanations yield the Yukawa

potential,

V = −GMm
r (1 + αe−r/λ)

where the exponential decay term is a non-Newtonian perturbation. The behavior of gravity and the

size of the extra dimensions are absorbed in the constants α (the characteristic strength) and λ (the

characteristic length). So String Theory recasts the Hierarchy Problem into the question, “What is the

size of these extra spatial dimensions?”

Figure 1: (Un)explored regions of non-Newtonian effects

In Figure 1 we see a plot of α against λ, where experimental observations have put bounds on these

values (the yellow-shaded region indicates where the Yukawa term has been excluded). Also shown is our

ultimate goal, the limit of where we plan to detect gravitational signals with our precision measurement

techniques. As indicated in the other shaded regions, theories predict the existence of extra particles

and physics that couple to the non-Newtonian force. As a byproduct we will confirm or destroy these

hypotheses. For further information on the gravitational force and its Yukawa counterpart with String

Theory, see [2].
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1.2 Previous Experiments

In 1797, Henry Cavendish performed the famous and first experiment that measured the gravitational

force between masses in a laboratory. Two small masses (balls) were attached to the ends of a thin rod

that was suspended from a wire, and this lied between two large masses (Figure 1). The gravitational

force between the masses would twist the rod by an angle θ until the torque-force on the wire matched

the gravitational force. By calibrating the angles to the wire’s torsion coefficient, Fg could be accurately

determined. This experiment is equivalent to taking one mass, oscillating it, and detecting the induced

oscillation in the other mass. Since then, there have been many experiments that mimic the Cavendish

experiment, some of which will be briefly described here.

Figure 1: Cavendish’s torsion balance experiment

In 2003, John Chiaverini of Stanford published his experimental work, which made use of a microcan-

tilever [3]; see Figure 2. A mass attached to the cantilever was subjected to a time-varying gravitational

force, namely that of a large mass a small distance away which was oscillated by a piezoelectric actuator.

The cantiliver deflection was measured using fiber-optic interferometry and provided a measure of Fg.

They achieved separation distances between the two masses around 25µm.

In 2004-2007, Eric Adelberger and Charles Hoyle and Daniel Kapner of U. Washington published

their experimental work, which made use of a torsion pendulum [4,5]; see Figure 3. They took a ring

with holes and suspended it over a disk with holes. If the disk had no holes then gravity would pull down

uniformly and no torque would occur. But the holes in the disk that are displaced from the holes in the

ring create a Newtonian-torque, since gravity acts on the mass distribution. The pendulum twist was

monitored using an autocollimator system. They achieved separation distances between the two masses

from 10mm to 55µm.

In 2008, David Weld of Stanford published his experimental work, which made use of a variable

density mass and a microcantiliver [6]; see Figure 4. A disk with a varied density rotates under a test

mass on a cantiliver, and so the induced gravitational force is time-varying. The mass displacement was

measured with a laser interferometer, and the position of the drive mass was simultaneously recorded

using an optical encoder. They achieved separation distances between the two masses around 30µm.

In 2010, Ho Jung Paik of U. Maryland published his experimental work, which made use of two
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oscillating membranes [7]. As their proposal is in essence the same as the one of this paper, we will not

discuss it. They achieved separation distances between the two masses around 260µm.

As of 2010, Stephan Schlamminger of U. Washington is doing a pendulum mass-distribution experi-

ment; see Figure 5. The gravitational field of a homogenous infinite sheet of material is independent of

position, g(z) = 2πGρ. Therefore, if a pendulum is placed near the sheet and the pendulum has a mass

distribution which is only displaced in the z-direction (orthogonal to sheet), then no torque is produced.

In other words, torque can only be produced if there are non-Newtonian forces, such as the Yukawa force

g(z) = 2πGρ(1 + αe−z/λ).

As of 2010, researchers at NIST (Boulder, Colorado) have proposed an experiment where masses are

separated by a few nanometers [8]; see Figure 6. A light beam will levitate a glass bead, and a large gold

mass will oscillate near it to induce oscillations in the glass bead. No further information is known as of

now (unless you give them a call).

Further information on previous experiments can be found in [3,9].

Figure 2: Chiaverini Figure 3: Adelberger Figure 4: Weld

Figure 5: Schlamminger Figure 6: NIST
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2 Our Proposal

The underlying concept of our experiment is the detection of a gravitationally induced oscillation

of a test mass due to a driven oscillation of a nearby source mass. The apparatus will be suspended

in a cryogenic vibration-isolation assembly, i.e. on an ultra low noise dilution refrigerator housed in

an ultra low vibration and radio-frequency shielded laboratory. Both masses will be made of lead and

will be evaporated onto respective membranes. Lead is very dense (ρPb = 11.34g/cm3) and is also

superconducting, making it ideal for forming a large mass at low temperatures. One of the membranes

will be Kapton and the other will be Silicon Nitride. Kapton HN (from DuPont) is very flexible and

can be put under great tension, and retains its flexibility at low temperatures. Silicon Nitride (from

Norcada or SPI Supplies) has a high quality factor at low temperatures, making it ideal for reacting

to a gravitational pulse. Jack Harris determined its quality factor to be Q ≈ 107 at 300mK [10]. It is

important to localize the masses on the centers of the membranes. This reduces any change in tension

and change in quality factor, and it reduces energy dissipation (lead is a lossy material).

2.1 Capacitive Membrane

In order to drive one of the masses (the source mass on the Kapton membrane) we make use of

a coupling mechanism, microphonics. By evaporating a thin layer of gold (ρAu = 19.30g/cm3) across

the membrane and separating it from a fixed conducting plate, the membrane becomes a capacitive

membrane, the top flexible electrode of a capacitor in a microelectromechanical system (MEMS); see

Figure 1. The radius of the membrane is a, the radial direction is r, the vertical direction is z, the plate

separation is d, the unit normal vector is n̂, and the membrane deflection is z(r, t). We assume d << a to

not only get a large capacitance, but also to ignore fringing electric fields. From basic electromagnetism,

the voltage between two plates held at a potential difference V0 is given by V = V0(1 − z
d ), so that

OV = V0

d n̂. As the charge density on the plates is σ = ε0|OV · n̂| and the electric field due to the bottom

plate is E = σ
2ε0

n̂, we obtain an attractive pressure on the top plate

Pe = σE =
ε0V

2
0

2d2 .

Therefore, by applying a voltage between the membrane and the bottom fixed electrode we can deflect

the membrane due to the attractive electrostatic force.

Figure 1: Capacitive membrane schematic
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It is important to know how the membrane behaves when a voltage is applied, noting that the

electrostatic pressure (force) is nonlinear in separation distance d. For convenience we are assuming that

Pe is uniform across the membrane – this really only occurs when the Kapton membrane is completely

covered by the gold layer and is of the same diameter as the bottom fixed electrode. The damped driven

wave equation is TO2z + Pee
iωt = µ∂

2z
∂t2 + R∂z

∂t , where µ is mass/area, T is tension/length, R is the

damping coefficient, and k = ω/c = ω/
√

T
µ . Due to our quality factor and dimensions, we can ignore

damping (and R just gets absorbed into k anyway, k2 7→ κ2 = ω2

c2 −i
ωR
T ). Using spherical coordinates the

equation becomes 1
r
d
dr [r dzdr ] + ε0V

2

2T
1

(d−z)2 = 0. We can linearize the driving force under small displace-

ments z, with 1
(d−z)2 ≈

1
d2 [1 + 2

dz+ 3
d2 z

2 + · · · ], but calculations become messy. We instead assume that

the distance in Pe is constant, and then the wave equation solution becomes z(r, t) = Pe
k2T [ J0(kr)

J0(ka) −1]eiωt.

The Bessel function J0(χ) is approximated by 1− 3χ2 for χ < 1, so that for ka, kr << 1 we get

z(r) ≈ 3Pe
T (a2 − r2) .

In other words, the vertical displacement of the membrane from equilibrium is a Bessel function, which

under suitable approximations becomes a parabola.

The fundamental frequency for the circular Kapton membrane is ω0 = 2.405c/a ≈ 1kHz, assuming

a = 5 × 10−2m and T = σyt ≈ 600Pa ·m, where σy ≈ 60MPa is the yield point stress (for permanent

deformation) and t ≈ 10−5m is the membrane thickness. The fundamental frequncy for the square SiN-

membrane is ω0 = π
L

√
2σt
ρSiN

≈ 27kHz, assuming density ρSiN = 3g/cm3 and size L = 5mm and tensile

stress σt = 250MPa.

For more details on membrane deflections and microphonics, see [11,12,13].

2.2 Electrode Biasing

As shown above, we can apply an AC voltage to oscillate the capacitive membrane. But the electro-

static force exerted by a capacitor F = CV 2

2d is not linear in the voltage. In order to make it linear (and

amplify it), we apply a high DC voltage Vdc on top of the AC excitation Vaccos(ωt) with Vdc >> Vac.

Then

F ≈ C
2d [V 2

dc + VdcVaccos(ωt)] = F0 + CVdc
2d · V

where V is the AC excitation voltage and F0 is the new equilibrium force. This constant equilibrium

force simply puts a permanent deflection in the membrane, hence shifts the equilibrium spacing between

the two masses. Therefore, electrode biasing can be used to feasibly manipulate the separation between

masses, allowing us to probe and plot gravitational interactions.
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2.3 Shielding

As any electromagnetic signals will overwhelm our expected gravity-signal, appropriate shielding

must be used. The Meissner Effect states that superconductors expel magnetic fields. More precisely,

a weak external magnetic field ~H penetrates the superconductor only a small distance λ =
√

mec2

4πnse2

(the London penetration depth), where ns is the superfluid electron density; the magnetic field obeys

the London equation ∇2 ~H = 1
λ2
~H. In particular, for a magnetic dipole moment mẑ brought near the

entrance (z = 0) of an infinitely long superconducting cylinder of radius r = r0, the magnetic field is given

by Bz(r, z) ≈ 3.83µ0m
2πr30

J0(3.83r/r0)
J0(3.83)2 e−3.83z/r0 for z >> 1 [14]. Thus we should house our SiN-membrane

in a tubular superconducting shield since magnetic fields are exponentially screened. Furthermore,

between the two membranes there will be a thin superconducting sheet of Niobium (from Alfa Aesar)

which deflects magnetic fields. Note that the Niobium thickness must be larger than the London depth

λ ≈ 39nm as well as the coherence length ξ ≈ 38nm (the approximate spatial dimension of the Cooper

pairs to form superconductivity).

This shielding does not take care of electrostatic fields, but grounding does. Our apparatus will act

as a Faraday cage. And as the separation distances between membranes are greater than 100nm, we can

ignore Casimir forces and cross-talk.

2.4 Gravitational Force

2.4.1 Newtonian versus non-Newtonian

Recall that the Newtonian gravitational potential is VN = −GMm
r and the Yukawa potential is

VY = −GMmα
r e−r/λ. For a point mass m separated from an infinite sheet of density ρ and thickness 2t,

the Newtonian force is FN = −4πGρtm, independent of separation distance. So thanks to Gauss’ Law

we can ignore the membranes themselves in the gravitational force, and only the localized masses will

have any contribution.

Consider a point mass m separated a distance z0 away from the center of mass of a circular plate

of density ρ, radius a, and thickness 2t, with a >> z0 ∼ t. Then VN = −Gm
∫ 2π

0

∫ a
0

∫ t
−t

ρr dr dθ dz√
(z0−z)2+r2

,

and hence the Newtonian force is FN = −dVNdz |z0 ≈ −4πGρtm(1 − z0
a ). As for the Yukawa term VY =

−Gmα
∫ t
−t

∫ a
0

∫ 2π

0
ρr dr dθ dz√
(z0−z)2+r2

e−
√

(z0−z)2+r2

λ we can make the approximation
√

(z0 − z)2 + a2 ≈ a so that

VY = 2πGmραλ
∫ t
−t dz[e

−
√

(z0−z)2+a2

λ −e(z−z0)/λ] ≈ 4πGmραλ[te−a/λ−λe−z0/λsinh t
λ ]. The Yukawa force

is then FY ≈ 4πGmραλe−z0/λsinh t
λ . Now consider the same scenario but extend the point mass m to

a disk of radius ε << a and thickness δ, with separation distance h from the larger disk. Changing

m 7→ dm = πε2ρm dz0 = πε2 m
πε2δdz0 = m

δ dz0 and integrating the two forces by
∫ h+t+δ

h+t
dz0, we obtain
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|FN | = 4πGρtm(1− δ
2a −

h+t
a ) , |FY | = 4πGmραλ2 1

δ e
−h+tλ [1− e− δ

λ ]sinh t
λ .

Setting these two values equal to each other will allow us to establish a bound on the α and λ values

that we can observe.

2.4.2 Force Sensitivity

Assume that the source mass (coupled with the Kapton membrane) is an infinite sheet mass of surface

density σ, and that the test mass is a point mass m with equilibrium separation x0. The source mass

is driven at Ae−iωt, and the Yukawa force is |FY | = 2πGσmαe−s/λ where s = x0 + x + Ae−iωt is the

separation distance. We can take the force to linear order in s/λ, giving |FY | ≈ 2πGσmαe−x0/λ[1− (x+

Ae−iωt)/λ]. The damped driven harmonic oscillator equation is then

mẍ+ bẋ+ (k + 2πGσmαe−x0/λ)x = −F0 + 2πGσmα
λ e
−x0/λAe−iωt .

It has a periodic drive force, and we can ignore the constant term F0 since it simply shifts the displacement

x(t). After approximating the damping coefficient γ2 = (k + 2πGσmα
λ e
−x0/λ)/mQ2 by (ω0/Q)2, the

amplitude at resonant frequency is given by

δx = 2πGmAσαe−x0/λ/λ√
(2πGσmαe−x0/λ/λ)2+m2ω4

0/Q
2

.

Using expected values α = 1, λ = x0 = 10−5m, σ = 10−2kg/m2, A = 10−6m, m = 10−7kg, Q = 105,

and ω0 = 1kHz, the signal displacement is δx ≈ 10−14m. Using the SQUID-based detection scheme

(discussed in Section 3.3.2), we should be able to resolve this signal above the noise.
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3 Experimental Techniques

3.1 Cryogenics

We need an ultra low temperature environment to suppress intrinsic thermomechanical noise of the

system that can overwhelm our signal. The equation of motion of a damped harmonic oscillator in a

thermal bath is mẍ = −kx − bẋ +
√

4kBTb, with solution xth =
√

4kBTQ
mω3

0
at resonant frequency [15].

Using expected parameters m = 10−5kg, Q = 105, ω0 = 103Hz, we have that xth ≈ (10−11m) ·
√
T (per

square-root hertz). Thus at T = 10mK we can sufficiently suppress thermal noise (xth = 10−12m/
√

Hz)

to resolve possible Yukawa-type displacements of 10−14m.

Our apparatus will be suspended in a cryogenic vibration isolation assembly on an ultralow noise

dilution refrigerator (Figure 1). We will operate at a temperature of approximately 10mK, at pressures

below 10−7torr. Consequently, precautions must be taken when cooling from room temperature to

10mK because thermal cycling of materials can easily collapse the experiment. The components of our

dilution refrigerator from the still and downward are from Janis Cryogenics. Minoru Yamashita designed

the remainder, including the 1K pot and pumping lines and vacuum can. Two parallel charcoal nitrogen

traps are placed next to the refrigerator and are used to filter out dirt that has gotten into the Helium-3

circulating through the refrigerator (the gas is absorbed into the charcoal pores).

Figure 1: Dilution Refrigerator

Our dilution refrigerator reaches 4mK and is based on the separation of helium into two mixtures,

the He3 rich-phase and the He4 rich-phase (both containing the other isotope). At low enough tempera-

tures (obtained by submersing the refrigerator in liquid helium and using its 1K-pot), the He3 rich-phase

becomes pure He3. But the He4 rich-phase goes to a constant He3 concentration of 6.6% (minimum).

Thus by pumping He3 (using heat exchangers and the mixing chamber) from the poor-phase to the
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rich-phase, the He3 from the rich-phase will flow to the poor-phase to restore equilibrium, and the latent

heat of mixing (by crossing the phase boundary) cools the system down to an even lower temperature.

Reaching these near-absolute zero temperatures is necessary to make use of the properties of super-

conductors. The Meissner effect is used for magnetic shielding, and the zero-resistance effect is used

for the helium-level indicator. The helium-level indicator is a superconducting rod with specified total

resistance and length, and it measures how much liquid helium is in the dewar. When liquid helium rises

up a certain length of the rod, that portion becomes superconducting and loses its resistance, thereby

decreasing the total resistance of the rod and telling us the length of that portion.

As for thermometry, we can use either thermocouples or resistance thermometers. Thermocouples use

the Seebeck effect to generate voltages, where two metals respond differently to a temperature difference.

Resistance thermometers use the change in resistance due to changes in temperature. In particular, our

apparatus uses a carbon reistor thermometer. As temperature rises, resistances rises, so we calibrate the

resistances to the [Kelvin] temperatures (especially at room 300K, nitrogen 77K, and helium 4K).

Further information on cooling and cryogenic equipment can be found in [16,17].

3.2 Vibration Isolation

We need an ultra low vibration environment to suppress background vibration noise that can over-

whelm our signal. Our apparatus and dilution refrigerator will be housed in an ultralow vibration and

radio-frequency shielded laboratory (Figure 1).

Figure 1: RF shield room, and sound room suspension

The RF (radio-frequency) shield room has a 30 ton foundation and suspended in an acoustically-

shielded room via 6 air springs which serve as passive vibration isolators. Loaded into this room is a

triangular table filled with lead, where the dilution refrigerator floats on it via 3 additional air springs.
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This all exists in the basement of Clark Hall, and will be used for the final stage of our experiment. If

we ever want further suppression, a 7-stage cryogenic vibration isolation system (cascaded spring-mass

system) has been designed; detailed information is found in [18]. But it is not needed for our desired

goal.

For immediate purposes, we simply make use of a small metal table floated on 3-air springs resting on

the ground, which supports a large dewar. Of course, this will not be sufficient to resolve non-Newtonian

signals, but it allows for more accurate readings of changes in capacitance. This crude vibration isolation

system was demonstrated to suppress low-hertz noise by a factor of about one order of magnitude, using

a geophone test. The geophone operates on the principle of electromagnetic induction, and converts

ground displacements into voltage. It contains a suspended magnet surrounded by a coiled wire, so that

external vibrations displace the magnet and hence generate a voltage (due to flux through the wire).

Explicitly, for a coil with N turns, the voltage is V = N dΦ
dt = (N dΦ

dx )ẋ.

Further information on vibration isolation can be found in [16].

3.3 Detection

Here we discuss the theory and utilization of a SQUID-based position sensor and a balanced Wheat-

stone capacitance bridge. Both are sensitive measurement devices which are very effective at low tem-

peratures when vibrationally-isolated. We then briefly review how a lock-in amplifier works.

3.3.1 Wheatstone Capacitance Bridge

Once the capacitive membranes are built and assembled onto the apparatus, we must accurately de-

termine their equilibrium capacitances and equilibrium separations from their respective fixed electrodes.

To do this we use a balanced Wheatstone capacitance bridge (Figure 1), which is made up of a ratio

transformer, a reference capacitor, and the experimental capacitor. The complete circuit also contains

a lock-in amplifier, isolation transformer, DC bias voltage supply, and preamplifer. Our physical circuit

uses an SR830 DSP Lock-in Amplifier, a Triad Magnetics SP-70 Isolation Transformer, an ESI DT-72A

Dekatran Ratio Transformer, and an SR560 Low-Noise Preamplifier. The ratio transformer is a device

which splits a variable inductor (of total inductance L) using a grounded “tap,” giving two inductors

with values (1− α)L and αL.

Figure 1: Capacitance bridge circuit
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The main idea is that given a source voltage E0cos(ωt) and reference capacitance Cref , we can

“balance the bridge” by tuning α until Vout = 0. When this occurs (at αb), the bridge is balanced and

the experimental capacitance is given by

Cexp = ( 1
αb
− 1)Cref

We shall sketch a proof (using Figure 2):

Figure 2: Simplified bridge

Here the impedances are Z1 = iω(1− α)L, Z2 = iωαL, Z3 = (iωCref )−1, Z4 = (iωCexp)
−1. Kirchhoff’s

law gives E0 = I1(Z1 + Z2) = (I − I1)(Z3 + Z4) and Vout = I1Z1 − (I − I1)Z3 = −I1Z2 + (I − I1)Z4.

Solving for Vout = E0
(1−α)Cref−αCexp

Cref+Cexp
, we get the desired relation between the capacitances at Vout = 0

(tuned α→ αb).

As Cexp = ε0A
X , the equilibrium spacing in vacuum is

X = αb
1−αb

ε0A
Cref

Now when the capacitive membrane is displaced from equilibrium by 4 << X, we have CX+4 =

ε0A

X(1+4X )
≈ ε0A

X (1 − 4X ) = CX + δCX , hence a perturbation δCX = −CX4X (denoting the original

experimental capacitance by CX). This then perturbs the balanced α-value, giving α = αb + δα, and

presents an off-balance AC output signal VB = να · δα. Here να is a constant associated to αb that can

be determined directly by manually detuning α and recording VB . The bridge equation gives CX+4 =

( 1
αb+δα

− 1)Cref ≈ CX + δCX ⇒ δCX = −Cref ·δα
α2
b

. Putting this all together, the output is

VB = η · 4 , where η = ναCref
(1−αb)2
ε0A

.

This provides a detection-scheme for measuring the oscillations of a capacitive membrane. The above

description is unaltered when we add in stray capacitance Cs, except that it will shift the measured

experimental capacitance. Care must also be taken to stabilize α and avoid drifting, and such is done

by working at low temperatures and in a vibrationally-isolated room. The reference capacitor should be

thermally coupled to liquid helium to help stabilization.

We lastly note how to obtain the spring constant K of the membrane. By applying a DC bias voltage

VDC , the experimental capacitance increases because the electrostatic pressure displaces the capacitive

membrane towards the fixed electrode. Since δC
CX

varies quadratically with the bias voltage |VDC |, we
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can step-up the bias voltage in discrete increments and fit the data to a straight line and extract its slope

S. Equating the spring force to the electrostatic force, CXV
2

2X = k4 ≈ k δCCXX, we obtain

K ≈ C2
X

2X2S

There may be asymmetry when sweeping through negative to positive bias voltages, so one should

obtain respective spring constants K+ and K− and take the average. A more accurate way to obtain K

is explained in Appendix B of [19], giving K ≈ 1
2
να
νV

C2
X

Cref

α2
b

X2 (1 + 2 · lnAdAe ). Here Ad is the full membrane

area and Ae is the overlapping electrode area (of the evaporated material on the membrane), and the

functional relationship VB = νV V
2
DC allows us to extract νV .

For further information on the methods used with the capacitance bridge, see Appendix B of [19].

3.3.2 dc SQUID

A Cooper pair in a superconductor is a bound state of two electrons with opposite momenta and

spins. They obey Bose-Einstein statistics, and the wavefunctions of the pairs overlap to a large degree.

Consider cooper pair tunneling between two superconducting materials separated by a thin barrier (of

cross-sectional area σ); this barrier is called a Josephson junction. The net current flowing through this

junction contains a supercurrent component IS = IC sinφ where IC = 2|K|nseσ/~ and φ = φR − φL

represents the Josephson phase (difference in wavefunction-phases of the cooper pairs to the right/left

of the junction); here K is a constant which depends on the characteristics of the junction. A chemical

potential µ can result across the junction in the form of a potential difference V , giving µ = −2eV .

The Josephson phase is related to this potential difference via ∂φ
∂t = − 1

~µ = 2e
~ V = 2π

Φ0
V , where

Φ0 = h
2e ≈ 2.07 × 10−15Wb is the flux quantum (a phenomenon associated with superconductors is

magnetic flux quantization Φ ≡
∮
~B · d~a = nΦ0). The above tunneling process is called the Josephson

Effect.

Superconducting Quantum Interference Devices (SQUIDs) are extremely sensitive magnetometers

which make use of the Josephson effect and magnetic flux quantization. The dc SQUID consists of

two Josephson junctions in parallel in a superconducting loop. It ultimately converts magnetic flux to

a voltage, V = αΦ where α is the gain of the device with units in volts per flux quantum. Further

information can be found in [19,20,21].

There are two main techniques to use the dc SQUID as a position sensor, one depending on an os-

cillating magnet and the other depending on an oscillating superconducting surface. For completeness,

both are described below.
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Figure 1: Magnet SQUID sensor Figure 2: SC-shield SQUID sensor

The first position sensor is depicted in Figure 1 (the detection coil has turn density nx and cross-

sectional area σ). A magnet moves a distance δx relative to the detection coil. Such a displacement

induces a change in flux at the detection coil, δΦx = σ ∂B∂x δx. This causes an induced current I to preserve

flux in the loop, nxδΦx + (Lx +LT +LS)I = 0. Via the mutual inductance MS we obtain a flux change

in the SQUID sensor, δΦS = MSI = −MS
σnx

Lx+LT+LS
∂B
∂x δx. The SQUID converts this into a voltage,

giving

δV = η · δx , where η ≡ δV
δx = αMS

σnx
Lx+LT+LS

∂B
∂x

The second position sensor, which is the one we will be using in our experiment, is depicted in Figure

2 (the oscillating membrane is superconducting and is located a distance X away from the detection

coil). Taking the whole circuit to be superconducting, the wires are heated up (they become non-

superconducting) and currents Ix and IS are injected into the wires. Then the heat source is removed

so that the wires become superconducting; the currents are now trapped in the circuit. The importance

of this is that through both circuit loops there can be no change in flux. Now the superconducting

membrane moves a distance δx relative to the detection coil. The detection inductor has inductance

Lx = µ0n
2
xσX, so such a displacement induces a change in inductance δLx = Lx

X δx. Since magnetic flux

and inductance are related by Φ = LI, a change in inductance δLx induces a change in the current Ix in

order to preserve the constant flux in the first loop, and this in turn induces a change in the current IS ,

ultimately giving δIS = −Ix δLx
Lx(1+

LS
Lx

+
LS
LT

)
. Via the mutual inductance M we obtain a flux change in the

SQUID sensor, δΦS = M · δIS = −MIx
X

1

(1+
LS
Lx

+
LS
LT

)
δx. The SQUID converts this into a voltage, giving

δV = η · δx , where η ≡ δV
δx = αMIx

X
1

(1+
LS
Lx

+
LS
LT

)

The test membrane and the SQUID should be enclosed in a sealed niobium box for electromagnetic

and flux shielding. The fundamental flux noise of our SQUID (from Quantum Designs company) is

approximately 10µΦ0/
√

Hz, and at one volt per flux quantum, with its sensitivity coefficient η ≡ δV
δx ≈

1V/nm, it inherits a background displacement noise of xnoise ≈ 10−14m/
√

Hz. But in our lab we actually

obtain a resolution of 10−16m/
√

Hz at 20mK [22].
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For further information on the methods used with the SQUID, including construction, see Appendix

A of [19] and Section 2.2.2 of [23].

3.3.3 Lock-in Amplifier

A lock-in amplifier can extract a signal which is modulated due to a noisy environment. It cleans the

signal by using a reference signal and a low-pass filter.

Let Ṽs = Vssin(ωst+ θs) be the input signal Ṽr = Vrsin(ωrt+ θr) be the amplifier’s reference signal.

Both signals are multiplied to get an amplified signal V0 = ṼsṼr = 1
2VsVr[cos(4ω ·t+4θ)−cos(ω0t+θ0)],

where 4ω = ωs − ωr and ω0 = ωs + ωr (similarly for 4θ and θ0). AC signals are then removed via a

low-pass filter. If 4ω = 0 then V0 = 1
2VsVrcos(4θ), and if 4ω 6= 0 then V0 = 0. The above process is

then repeated using Ṽs and a new reference Ṽre
−iπ/2, which gives an amplified signal V1 = 1

2VsVrsin(4θ).

The magnitude of the signal vector is taken to get rid of the phase-dependency, R =
√
V 2

0 + V 2
1 = 1

2VsVr,

and this is then calibrated to obtain the output Vs.

The lock-in works by sweeping through ωr-values until 4ω = 0 (giving output Vs), noting that when

this frequency-difference is nonzero the output is zero.

3.4 Procedures

3.4.1 Cleaning

It is obviously important to clean all of the materials you handle. Dirt and even dust particles can

easily destroy spacing between membranes and break vacuum seals. And once the apparatus is being

pumped on to reach vacuum, those dirt particles will present a virtual leak that will show up on the leak

detector.

The general procedure for cleaning an object is to first submerse it in acetone in a beaker and place

it in the sonicator (for approximately 5-10 minutes). Once that is done, wash it with IPA (isopropyl

alcohol). It is ideal to do this procedure without any stycast on the object, because the acetone will eat

away at it. But as long as the acetone is on the stycast for a small period of time and you rinse it off,

there is no problem. But for a more extensive cleaning process for objects that have stycast on them,

skip the acetone and wash it with soapy water, and then with just water, and then with IPA.

Once the pieces are assembled together or the membranes are glued onto the pieces, you should simply

use a swab with a little acetone (and then IPA).

For drying, letting the pieces just air-dry and wiping them with Kimwipes suffices.
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3.4.2 Epoxy, Stycast

Epoxy is a copolymer, a “glue” that results from the mixture of two components (the resin and

hardener). Except for the silver epoxy, this is used as an insulator to separate metals from each other,

and is used to attach membranes to their rings. For temporary gluing purposes, or for objects that won’t

be placed in vacuum and cold temperatures, the cheap five-minute epoxy works great.

Stycast is a type of epoxy of high quality that works under many conditions. There are the two

components, partA and partB, that are mixed at a certain ratio and cured over a specified time interval.

This time interval can be decreased if you cure the stycast at a higher temperature, and you should check

the stycast’s data sheet for further information. The procedure for making stycast requires two weighing

trays, a syringe, a small wooden stick, and a small rod. Use the wooden stick to pour some partA into

a weighing tray, and weight it (x grams, aim for x & 1g). Then pour some partB into another weighing

tray, and use the syringe to drop partB into partA until the total weight is x(1 +m), where m is the mix

ratio of partB-to-partA. Finally, mix the stycast using the rod for approximately 10 minutes, and let it

cure (harden) for the appropriate amount of time (as found on the stycast’s data sheet).

Silver epoxy is an electrically conductive silver-filled epoxy for connections which cannot be soldered.

For the silver epoxy in our lab, the mix ratio is 1 : 1.

STYCAST 1266 (from Emerson & Cuming) is a clear, low viscosity encapsulant which, when fully

cured, has outstanding toughness and impact strength. Its mix ratio is 28 : 100.

STYCAST 2850 GT (from Emerson & Cuming) is a two component, thermally conductive epoxy

encapsulant that is used with Catalyst 24LV (partB). It features a low coefficient of thermal expansion

and excellent electrical insulative properties. Its appearance is black, and its mix ratio is 7 : 100. This

stycast cannot really be machined (it will break your drill-bits) and is only casted. The great advantage

to its use is that it has an almost identical thermal expansion coefficient to that of brass, which is

important when thermal cycling of the apparatus occurs.

Figure 1: Thermal expansion rates, 8 = Brass, 9 = Stycast 2850GT
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3.4.3 Vacuum Seal

We make use of indium in the form of an O-ring to create a vacuum seal between the 4K-plate and the

vacuum can. The procedure is to first clean both surfaces. Be gentle and place indium wire around the

vacuum can to form the ring at the right size. Apply a small amount of vacuum grease to the indium and

place it back on the vacuum can. Push the two ends of the indium wire together to form the ring. Try to

get a uniform thickness at the joint, which is helped by cutting a diagonal on both ends. Ultimately, the

indium seal is very forgiving, so the joint and the tightness around the vacuum can need not be perfect.

But do check for hair strands and other particles that might get on the indium O-ring and hence destroy

the seal. When attaching the vacuum can to the 4K-plate, apply even pressure so that the indium seal

deforms uniformly and does not break.

3.4.4 Leak Checks

Leak checks must be done to ensure that the vacuum seal, welding/soldering joints, and O-rings

between tubing are not damaged. Any leak will not only stop you from reaching high vacuum (low

pressures), but it can allow water to condense on the apparatus. The leak test procedure uses the

diaphragm and turbo pumps, the leak detector, and a helium-spray.

Make sure all valves on your system and pumps are closed. First turn on the diaphragm pump; this

is a rough pump which handles higher pressures. Then turn on the turbo pump; this is a more sensitive

pump which uses thin blades at high speeds and gets you down to low enough pressures. Then open the

valve between the two pumps, and open the valve to the rest of the system/apparatus. At low enough

pressures, close the valve between the pumps, turn on the leak detector, and turn off the diaphragm

pump. Replace the diaphragm pump with the leak detector and start pumping with the leak detector.

Next, stop the detector pump, open the valve between the pumps, and restart the detector pump. This

is a safety measure to not damage the detector pump.

We now use a spray-nozzle hooked up to a helium gas bottle. Try to localize where the helium gas

flows, which might require “bagging” certain parts of the system. Spray the gas in short bursts. Check

every possible joint. If there is a leak, the gas will enter the system and be picked up by the leak detector.

Any [repeatable] increase in the helium leak rate above the background level is a problem.

To end the procedure, stop the detector pump, close the valve between the pumps, vent the detector,

and shut off both pumps. Close off the valve to the system so that the apparatus remains in vacuum.

Note that helium-4 gas will leak through the fiber neck glass of the dewar, so there will no longer be

vacuum in the dewar jacket. Thus the dewar jacket needs to be pumped out every month or so.
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4 Construction and Progress

Although the ultimate design of the experiment involves one capacitive membrane (with microphonics

for driving oscillations) and one SiN membrane (with SQUID-based detection), an intermediate exper-

iment will simply replace the SiN membrane with another copy of the capacitive membrane of smaller

size. Instead of the SQUID-based detection scheme, the Wheatstone capacitance bridge would be used

to detect changes in capacitance (hence membrane displacements), as explained in Section 3.3.1. This

simultaneously tests half of the apparatus from the ultimate design, and attempts to detect Newtonian

gravity. The schematic of this intermediate apparatus is depicted in Figure 1, alongside its realization

(red lines are capacitive membranes and blue line is Niobium shield). Each part was designed using

SolidWorks, a CAD-software, and then sent to the machinists at Cornell to be built.

Figure 1: Intermediate apparatus

4.1 Assembling Capacitors

The capacitor in our apparatus has five main parts: the base, the bottom plate, the rigid capacitor

plate, and the capacitive membrane ring (Figure 1). The rigid capacitor plate is specified to be flat

within 25µm. All pieces are cleaned before being assembled. The size of this capacitor is as large as it

can be, because it must fit inside the vacuum can (diameter 4.5in) and ultimately fit onto the dilution

refrigerator (determined by still shield diameter 4.5in).

Figure 1: Larger capacitor
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The Kapton membrane is put onto the membrane ring via a 2-stage process. In addition to the

membrane ring there is a larger ring that circumvents the membrane ring. A little bit of 5-minute epoxy

is poured along the larger ring, and is placed face down on top of a piece of Kapton film (50µm) on

a flat surface. Once the glue dries, a little bit of Stycast 1266 is poured along the membrane ring and

the larger ring slides over the membrane ring, acting as a weight to put tension on the Kapton film

along the membrane ring (it uniformly stretches over the ring). Once this epoxy cures (10 hours at room

temperature), the Kapton film is trimmed along the membrane ring.

To put a layer of gold onto this membrane, a mask is screwed onto the ring (Figure 2). The mask is a

cutout of a circular electrode and a tab, and it can swivel on the membrane ring before it is screwed down

in order to freely orient the tab. This tab is used for wire-connections to the membrane. The mask-ring

object is then brought to the CCMR facility at Cornell, where it is placed in a vacuum chamber and has

gold evaporated onto it. The total thickness of the gold layer is approximately 1µm, and the deposition

rate is .5Å/s (it should be this slow in order for the gold to be layered uniformly and for the membrane

to not become damaged by the heat flow).

Figure 2: Mask Figure 3: Capacitive membrane with wire-connection

On the side of the membrane-ring there is a small cutout with a clearance hole. Stycast 1266 fills

the hole, cures, and is then tapped (i.e. threads are drilled through) for a heli-coil to be inserted. This

allows a bolt to screw into the side of the ring, while being insulated from the ring. To establish a

wire-connection to the membrane, the gold tab is bent and clamped between two brass washers, and this

collection is screwed into the side hole of the ring with a teflon washer between the first brass washer

and the side of the ring. One of the brass washers has a wire with a Samtec female connecter soldered

onto it. The capacitive membrane is then complete (Figure 3).

In order to create the capacitor with a specified spacing between the plates, the base and bottom

plate must be used as place holders. The capacitive membrane is screwed into the base and then layed

upside down with the membrane touching an extremely flat surface. A piece of Kapton film of thickness

100µm then lies on top of the membrane and the rigid capacitor plate lies on top of that – the piece

of Kapton film is a spacer which will give the permanent separation between the rigid capacitor plate
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and the capacitive membrane. The bottom plate is then screwed onto the base, and the bottom plate

has a hole in its center for the shaft of the rigid capacitor plate to go through. Stycast 2850GT is then

poured in that center hole of the bottom plate which bonds to the shaft of the rigid capacitor plate. In

order for the stycast to not pour down onto the capacitor plate itself, a small piece of plastic originally

covers the hole of the bottom plate and is then punctured for the rigid capacitor plate to slide through

(the plastic then acts as a back panel to stop the flow of stycast). It is important to place a weight

on top of the shaft of the rigid capacitor plate so that the stycast doesn’t pull the capacitor plate up

while it contracts due to curing. After the curing is finished, the bottom plate (which is now bonded to

the rigid capacitor plate) is taken off of the base, the spacer is removed, and then the bottom plate is

screwed back in. There is now a 100µm spacing (approximately) between the rigid capacitor plate and

the capacitive membrane.

Two microdot bulkhead jacks (from Tyco Electronics) were placed on the bottom plate, one being

used for electrical connection to the bottom capacitor plate, and the other used for electrical connection

to the capacitive membrane (Figure 4+5). The Samtec female connector on the capacitive membrane

connects into a Samtec male connector which is directly attached to the microdot, and this allows the

membrane to be disconnected at any point and replaced with another one.

Figure 4: Wire schematic of capacitor Figure 5: Wire connections on bottom plate

The above setups implicitly referred to the larger capacitor. The smaller capacitor has the same

assembly as the larger capacitor, except that the membrane ring is small enough for a Nb-shield ring to

fully slide over it (Figure 1). The Nb-shield has a thickness 40µm. Annuli cut out from Kapton film are

the spacers that separate the membranes from the Nb-shield, and holes are appropriately made in the

annuli so that screws may pass through when screwing the apparatus together.

The tab the is bent and clamped between washers will always have a “bump” that extends off the

plane of the membrane, and this can touch the Nb-shield when the apparatus is assembled. To remedy

this, place a small piece of Kapton film over the bump so that the Nb-shield will not short to it.
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Figure 1: Smaller capacitor and the Niobium shield

4.2 The 4K-Probe

In order to test the apparatus, a dip probe needed to be built which would submerse the apparatus

(inside a vacuum can) in liquid helium in a specific dewar, allowing the system to reach a temperature

of 4K. This probe consists of a 300K plate at the top where all wires/connections begin, a 4K plate at

the bottom where the vacuum can latches onto and where the SQUID rests, and six radiation shields for

obvious purposes (Figure 1). There is a central tube for wires and it is simultaneously the pump line for

the vacuum can. Another tube with a bent neck has a set of wires. There is a tube for pouring in liquid

nitrogen and liquid helium with a transfer stick, and there is a gas port for pressurization purposes, and

there is another open port for the helium level indicator. On the 4K plate there are “feedthru” towers

which can be transformed at a later point to house certain objects, and they provide better thermal

contact due to increased surface area. There is also the cold finger, a piece of copper that thermally

links the outside of the vacuum can to the inside, ensuring that the apparatus stabilizes at liquid helium

temperatures; a braided copper strand hooks onto the cold finger and the apparatus to provide direct

contact (visible in Figure 2, wrapped around the brass rod).

Figure 1: 4K dip probe Figure 2: Microdot junction and coax-wiring

The wires on the probe are cryogenic coaxial cables (type SS, from Lake Shore). They terminate at

the top of the probe at BNC jacks, where they are only connected at the pin (the outer shield of the
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cable is left in suspension). They terminate at the bottom of the probe at microdot bulkhead jacks that

are thermally linked and secured onto two junctions (Figure 2). The process for soldering coax wires

to microdots is tedious – the instructions are found on the Tyco website. The apparatus then suspends

from the 4K plate via a “gazebo” (four suspension rods) and hooks up to the microdot junction via coax

wires whose ends are microdot angle plugs (Figure 3). All of the wires should run close to conducting

ground plates (i.e. the walls of the tubes) in order to reduce fringing electric fields.

Figure 3: Apparatus on probe Figure 4: Resistor thermometer

Figure 4 shows the carbon resistor that acts as our thermometer. It screws onto the bottom of

our apparatus, and uses a 4-point resistance measurement. Instead of microdots, this thermometer is

connected by four Samtec connectors. As for calibration, at 300K the resistance is 49Ω, at 77K the

resistance is 58Ω, and at 4K the resistance is 252Ω.

The wire connections are labelled at the top of the probe by integers 1− 8 and A,B,C,D (the latter

ones are used for the 4-point thermometer). They way they connect down at the microdot junctions are

as follows. The junction that has eight microdots reads 1− 8 as you move away from the 4K plate, and

the other junction reads D,B,C,A. Anyone can change the ordering around if they want to unscrew

and switch the microdot locations.

Every time this probe is used, the resistances of the wires should be checked to make sure they are at

least in the GΩ-range (otherwise there are probably slight shorts at the microdot/BNC terminals). Leak

tests must be carefully run on the 4K plate, since there are soft solder joints, weld joints, braze joints,

and vacuum seals that may have become cracked from the previous cool down. The O-rings that connect

tubes together (i.e. the pieces at the top of the probe which connect to the pump) must be cleaned with

IPA and should not be touched by bare hands; a little vacuum grease should be put on them before they

are placed between the tubes.
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4.3 Capacitor Tests

The capacitor is made up of a rigid capacitor plate and a capacitive membrane. Since the actual

electrode is the gold layer, the Kapton membrane is a dielectric spacing (with permittivity ∼ 3.5ε0). The

capacitance is thus C =
CKaptonCspace
CKapton+Cspace

≈ ε0πr
2

ds+
2
7dK

, where r is the radius of the smaller circular electrode

and dK is the thickness of the Kapton membrane and ds is the spacing between the membrane and rigid

capacitor plate. The [first] tests on the larger capacitor were done using just the vacuum can and a 4K

flange (Figure 1), along with a makeshift styrofoam dewar to hold liquid nitrogen.

Figure 1: Vacuum can and 4K flange

All tests have only been performed on the larger capacitor. The first test was to measure the

experimental capacitance at both 300K and 77K, in vacuum, using the Wheatstone capacitance bridge

(the input voltage was 200mV and the frequency was 1.8kHz). Because the reference capacitor was

slightly unstable and there were drifts in the capacitance, many measurements had to be taken over

a relatively long time period. The experimental capacitance (in air) was Cexp ≈ 445pF and so the

spacing of the capacitor was xeq ≈ 75µm. Under these conditions the capacitor successfully passed the

DC Bias Test. A biased DC voltage was applied to the capacitor in increments of 1V , sweeping from

−10V to +10V , and the capacitance was measured at each increment (Figures 2+3). The signal-to-noise

(standard deviation divided by mean) had a high resolution of .23ppm, but there was some assymetry in

the capacitance plots when the bias voltage was swept across its range (and the base value of capacitance

occurred at a bias voltage of −1V instead of 0V ). This difference between the positive and negative bias

is explained by a charge stuck on the apparatus, so that charge must be accounted for and calibrated

out of the signal. The plots agree with the fact that δC
C varies quadratically with the bias voltage

|VDC |. From this the spring constant of the membrane was determined to be K+ ≈ 1051N/m and

K− ≈ 1371N/m for positive and negative biases, respectively. When this test was repeated at 77K, the

spring constants changed to K+ ≈ 459N/m and K− ≈ 714N/m, approximately half that of the spring

constants determined at 300K. The reason for this is that when placed in liquid nitrogen, the thermal

cycling of the brass weakened the tension it provided on the membrane, so that the spring constant was

permanently decreased. A subsequent test at 300K agrees with the 77K results.
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Figure 2

Figure 3

As of May 2011, with the apparatus assembled, the capacitance of the smaller capacitor is 27pF and

the capacitance of the larger capacitor is 498pF . The stray capacitances of the coax wires were measured

to be 100pF − 150pF . By using an aero-duster to blow some air on the membranes, the membranes

deflect, so the membranes are not touching their respective rigid capacitor plates. But when cooled

down to 77K, the membranes did collapse onto the Niobium shield. Subsequently, additional spacers

have been added between the shield and membranes, and the Niobium shield was replaced (there were

visible dents on the original shield, which would destroy the spacings).
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5 Future Plans

The immediate next step of the gravity research is to run the DC Bias tests on both capacitors at 4K

and ensuring that the membranes do not collapse onto the Nb-shield. We will then proceed to running

the Cavendish-experiment, where we oscillate the source mass and try to detect Newtonian oscillations

in the test mass via the capacitance bridge technique. For the initial tests the gold layer can act as the

mass, but ultimately we will evaporate a localized piece of lead onto both membranes.

There are some design modifications that will be of use in the future. The central hole in the bottom

apparatus plate (which holds the shaft of the rigid capacitor plate) should be made smaller, so that

less Stycast 2850GT is needed to pour. All wires should be cryogenic coax, and all connections should

be microdot connections (instead of Samtec connectors). Instead of having the membrane ring of the

larger capacitor rest inside the base of the apparatus on that lip, the lip should just be removed and the

membrane ring should be made wider to extend across the whole top of the base – otherwise the two

surfaces (lip of base and the ring) will easily be unlevel with respect to each other, and this is bad for

achieving micron-scale spacing. The reference capacitors should be enclosed in a copper box (filled with

stycast) with microdot connection ports. As for the Niobium shield, we can do better than 40µm by

using perhaps a 5µm SiN-film and evaporating 100nm of Niobium onto both sides.

The protoype for the apparatus using the SiN-membrane is shown in Figure 1. The SiN-membrane

is not circular but square with a square frame, and this will be attached to piece-3. Piece-4 is a tubular

Niobium shield, and piece-5 is the ring for the Niobium film shield.

Figure 1: Protype design of SiN-membrane part of apparatus

There are also potential problems to consider, minus the obvious force sensitivity isssues (vibration

isolation and signal-to-noise). Misalignments of the capacitors will alter the gravitational signals, giving

inaccuracy on the α, λ values. We should thus design/use a capacitive position sensor to measure the

relative tilt of the masses. Effects of thermal cycling must be considered; it weakens membrane tension

and can alter the deflection and separation of the membranes (all of these have occurred). Thus we must
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ensure appropriate spacing between capacitor plates and between membranes.

There will always be stray capacitance, and this gives inaccuracy of the experimental capacitances

and hence displacements. These stray capacitances must be known in order to calibrate them out of the

desired signals. Other stray capacitances should be located and suppressed, because they present noise

to the signals via capacitive couplig. In particular, for a device with total impedance Z, an incoming

signal V (t) will have a noise Vnoise ∼ V (t) Z
Z+ 1

jωCstray

, where the stray capacitance is a capacitor that is

in series with the device impedance.
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