Publications

Paulissen, E., Martin, B.L. Live imaging Transverse Sections of Zebrafish Embryo Explants. Bio Protoc. 2024  (In Press).

 

Paulissen, E., Martin, B.L. A chemically inducible muscle ablation system for zebrafish. Zebrafish. 2024  (In Press).

 

Rothschild, S.C., Row, R.H., Martin, B.L., Clements, W.K. Sclerotome is compartmentalized by parallel Shh and Bmp signaling downstream of CaMKII. bioRxiv. 2023 (Preprint). https://doi.org/10.1101/2023.07.21.550086

 

Martinez, M.A.Q., Zhao, C.Z., Moore, F.E.Q., Yee, C., Zhang, W., Shen, K., Martin, B.L., Matus, D.Q. Breaking the C. elegans invasion/proliferation dichotomy. bioRxiv. 2023 (Preprint). https://doi.org/10.1101/2023.03.16.533034

 

Paulissen, E., Martin, B.L. Myogenic regulatory factors Myod and Myf5 are required for dorsal aorta formation and angiogenic sprouting. Dev Biol. 2022 Oct;490:134-143. doi: 10.1016/j.ydbio.2022.07.009.

 

Mondal, C., Gacha-Garay, M. J., Larkin, K., Adikes, R., Di Martino, J., Chien, C. C., Fraser, M., Eni-aganga, I., Agulla-Pascual, E., Ozbek, U., Naba, A., Gaitas, A., Fu, T. M., Upadhyayula, S., Betzig, E., Matus, D., Martin, B. L., Bravo-Cordero, J. J. A Proliferative to Invasive Switch is Mediated by srGAP1 Downregulation Through the Activation of TGFβ2 Signaling. Cell Reports. 2022 Sept 20;40(12):111358. doi.org/10.1016/j.celrep.2022.111358

 

Martin, B.L., Steventon, B. A fishy tail: Insights into the cell and molecular biology of neuromesodermal cells from zebrafish embryos. Dev Biol. 2022 Jul;487:67-73. doi: 10.1016/j.ydbio.2022.04.010.

 

Martin, B.L. Mesoderm induction and patterning: Insights from neuromesodermal progenitors. Semin Cell Dev Biol. 2022 Jul; 127:37-45. doi: 10.1016/j.semcdb.2021.11.010.

 

Paulissen, E., Palmisano, N. J., Waxman, J. S., Martin, B.L. Somite morphogenesis is required for axial blood vessel formation. eLife. 2022 Feb 9;11:e74821. doi: 10.7554/eLife.74821.

 

Morabito, R. D., Adikes, R. C., Matus, D. Q., Martin, B. L. Cyclin-Dependent Kinase Sensor Transgenic Zebrafish Lines for Improved Cell Cycle State Visualization in Live Animals. Zebrafish. 2021 Oct 20. doi: 10.1089/zeb.2021.0059.

 

Adikes R.C., Kohrman A.Q., Martinez M.A.Q., Palmisano N.J., Smith J.J., Medwig-Kinney TN, Min M, Sallee M.D., Ahmed OD, Kim N., Liu S., Morabito R., Weeks N., Zhao Q., Zhang W., Feldman J., Barkoulas M., Pani A.M., Spencer S.L., Martin B.L., Matus D.Q. Visualizing the metazoan proliferation-quiescence decision in vivo. eLife. 2020 Dec 22;9:e63265. doi: 10.7554/eLife.63265.

 

Kinney, B.A., Al Anber, A., Row, R.H., Tseng, Y.J., Weidmann, M.D., Knaut, H., Martin, B.L. Sox2 and canonical Wnt signaling interact to activate a developmental checkpoint coordinating morphogenesis with mesodermal fate acquisition. Cell Rep. 2020 Oct 27;33(4):108311. doi: 10.1016/j.celrep.2020.108311.

 

 

Martin BL. Progenitor Cells in Vertebrate Segmentation. In: CELLULAR PROCESSES IN SEGMENTATION. 1 ed. Chipman AD, editor. USA: CRC Press; 2020. Chapter 5; p.99-123.

 

Al Anber, A., Martin, B.L. Transformation of a neural activation and patterning model. EMBO Rep. 2019 Aug;20(8):e48060.

 

D’Amico, S., Shi, J., Martin, B.L., Crawford, H.C., Petrenko, O., Reich, N.C. STAT3 is a master regulator of epithelial identity and KRAS driven tumorigenesis. Genes Dev. 2018 Sep 1;32(17-18):1175-1187.

 

Row, R.H., Pegg, A., Kinney, B., Farr, G.H. 3rd, Maves, L., Lowell, S., Wilson, V., Martin, B.L. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife. 2018; 7: e31018. 

 

So, J., Khaliq, M., Evason, K., Ninov, N., Martin, B.L., Stainier, D.Y.R., Shin, D. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating Notch activity. Hepatology. 2018 June; 67(6): 2352-2366.

 

Liu, T. L., Upadhyayula, S., Milkie, D. E., Singh, V., Wang, K., Swinburne, I. A., Mosaliganti, K. R., Collins, Z. M., Hiscock, T. W., Shea, J., Kohrman, A. Q., Medwig, T. N., Dambournet, D.,  Forster, R., Cunniff, B., Ruan, Y., Yashiro, H., Scholpp, S., Meyerowitz, E.M., Hockemeyer, D., Drubin, D. G., Martin, B. L., Matus, D. Q., Koyama, M., Megason, S. G., Kirchhausen, T., Betzig, E. Observing the Cell in Its Native State: Imaging Subcellular Dynamics in Multicellular Organisms. Science. 2018 Apr 20; 360 (6386).

 

 

Row, R.H., Martin, B.L. itFISH: Enhanced staining by iterative fluorescent in situ hybridization. Zebrafish. 2017 Dec; 14(6): 578-580.

 

Moravec, C.E., Yousef, H., Kinney, B.A., Salerno-Eichenholz, R., Monestime, C., Martin, B.L., Sirotkin, H.I. Zebrafish sin3b mutants are viable but have size, skeletal and locomotor defects. Dev Dyn. 2017 Nov; 246(11): 946-955.

 

Goto, H., Kimmey, S.C., Row, R.H., Matus, D.Q., Martin, B.L. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. Development. 2017 Apr 15; 144(8): 1412-1424.

Development’s featured movie of the month

 

Fu, Q. Martin, B.L., Matus, D.Q., and Gao, L. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat Commun. 2016 Mar 23; 7: 11088.

Coverage in Nature Methods

 

Row, R.H., Tsotras, S.R., Goto, H., Martin, B.L. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development. 2016 Jan 15; 143(2): 244-54.

Recommended on Faculty of 1000

Development’s featured movie of the month

 

Martin, B.L. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol. 2016 Jan; 49: 59-67.

 

Ulrich F., Ortega J.C., Menendez J., Sun B., Lancaster E., Pershad V., Trzaska S., Veliz E., Narvaez C., Kamei M., Prendergast A., Kidd K.R., Shaw K.M., Castranova D.A., Pham V.N., Lo B.D., Martin B.L., Raible D.W., Weinstein B.M., and Torres-Vazquez J. Reck enables cerebral vascular development by promoting canonical Wnt signaling. Development. 2016 Jan 1; 143(1): 147-59.

 

Veldman M.B., Zhao C., Gomez G.A., Lindgren A.G., Huang H., Yang H., Yao S., Martin B.L., Kimelman D., Lin S. Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2. PLoS Biol. 2013 Jun; 11(6): e1001590.

 

Taibi A.*, Mandavawala K.P.*, Noel J.*, Okoye E.V., Milano C.R., Martin B.L., Sirotkin H.I. Zebrafish churchill regulates developmental gene expression and cell migration. Dev Dyn. 2013 Jun; 242(6): 614-21.

 

So J., Martin B.L., Kimelman D., Shin D. Wnt/beta-catenin signaling cell-autonomously induces endodermal cells to a liver fate. Biol Open. 2013 Jan 15; 2(1): 30-6. PMCID: PMC3545266

 

McCarroll, M.N., Lewis, Z.R., Culbertson, M.D., Martin, B.L., Kimelman, D., Nechiporuk, A.V. Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development. 2012 Aug; 139(15): 2740-50.

 

Martin B. L., Kimelman, D. Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell. 2012 Jan; 22(1): 223-32.

Recommended on Faculty of 1000

 

Kimelman, D., Martin, B. L. Anterior-Posterior Patterning in Early Development: Three Strategies. WIREs Dev Biol. 2012. doi: 10.1002/wdev.25

 

Row R. R., Maitre J-L., Martin B. L., Stockinger P., Heisenberg, C-P., Kimelman D. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Dev Biol. 2011 Jun 1; 354(1):102-10.

 

Martin B. L., Kimelman, D. Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev. 2010 Dec 15; 24(24): 2778-83.

 

Peyrot S. P.*, Martin B. L.*, Harland R. M. Lymph heart musculature is under distinct developmental control from lymphatic endothelium. Dev Biol. 2010 Mar 15; 339(2): 429-38.

 

Martin B. L., Kimelman, D. Wnt signaling and the evolution of posterior embryonic development. Curr. Biol. 2009 Mar 10; 19(5): R215-9.

 

Martin B. L., Kimelman, D. Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev. Cell. 2008 Jul; 15(1): 121-33.

Recommended on Faculty of 1000

 

Martin B. L., Kimelman, D. Developmental biology: micro(RNA)-managing nodal. Curr. Biol. 2007 Nov 20; 17(22): R975-7.

 

Martin B. L., Peyrot S. P., Harland R. M. Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis. Dev Biol. 2007 Apr 15; 304(2): 722-34.

 

Martin B. L., Harland R. M. A novel role for lbx1 in Xenopus hypaxial myogenesis. Development. 2006 Jan;133(2):195-208.

 

Martin B. L., Harland R. M. The developmental expression of two Xenopus laevis steel homologues, Xsl-1 and Xsl-2. Gene Expr Patterns. 2004 Dec;5(2):239-43.

 

Grimaldi A., Tettamanti G., Martin B. L., Gaffield W., Pownall M. E., Hughes S. M. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Development. 2004 Jul;131(14):3249-62.

 

Martin B. L., Harland R. M. Hypaxial muscle migration during primary myogenesis in Xenopus laevis. Dev Biol. 2001 Nov 15;239(2):270-80.