2021-2024
Hayashi, S.Y., Pak, S., Torlentino, A., Rizzo, R.C., and Miller, W.T. (2024). Mutations in Mig6 reduce inhibition of the epidermanl growth factor receotor. FASEB J. 38(22):e70194. doi: 10.1096/fj.202401330R.
Guillet, S. et al. (2024). ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. Elife 13:RP96085. doi: 10.7554/eLife.96085.
H. Krishnan, S. Ahmed, S.R. Hubbard, and W.T. Miller (2024). Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J. doi: 10.1111/febs.17303.
S.Y. Hayashi, B. P. Craddock, and W. T. Miller (2024). Effects of heterologous kinase domains on growth factor receptor specificity. Cellular Signalling. Jul 22;122:111307. https://doi.org/10.1016/j.cellsig.2024.111307.
EBioMedicine. Dec 6;99:104906. doi: 10.1016/j.ebiom.2023.104906.
CD248 promotes insulin resistance by binding to the insulin receptor and dampening its insulin-induced autophosphorylation.Y. Kim, S. Ahmed, W.T. Miller (2023). Colorectal cancer-associated mutations impair EphB1 kinase function. The Journal of biological chemistry, 105115. Advance online publication. https://doi.org/10.1016/j.jbc.2023.105115
S.Y. Hayashi, B.P. Craddock, W. T. Miller (2023). Phosphorylation of Ack1 by the Receptor Tyrosine Kinase Mer. Kinases and Phosphatases. 1(3):167-180. https://doi.org/10.3390/kinasesphosphatases1030011
Y. Kan, Y. Paung, M.A. Seeliger, and W. T. Miller (2023). Domain architecture of the nonreceptor tyrosine kinase Ack1. Cells 2219147. doi: 10.3390/cells12060900
Y. Kan, Y. Paung, Y. Kim, M.A. Seeliger, and W. T. Miller (2023). Biochemical studies of systemic lupus erythematosus-associated mutations in nonreceptor tyrosine kinases Ack1 and Brk. Biochemistry 62: 1124-1137. doi: 10.1021/acs.biochem.2c00685
S.J. Collins, J. Gun, RC. Rizzo, and W. T. Miller (2023). Inhibition of mutationally activated HER2. Chem. Biol. Drug Des. doi: 10.1111/cbdd.14125.
S. Ahmed and W. T. Miller (2022). The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J Biol Chem. doi: 10.1016/j.jbc.2022.102664
D. Sridaran, S. Chouhan, K. Mahajan, A. Renganathan, C. Weimholt, S. Bhagwat, M. Reimers, E.H. Kim, M.K. Thakur, M.A. Saeed, R.K.Pachynski, M.A. Seeliger, W.T. Miller, F.Y. Feng, and N.P. Mahajan (2022). Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nature Communications doi: 10.1038/s41467-022-34724-5
Y. Kan and W. T. Miller (2022). Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett. doi: 10.1002/1873-3468.14505.
P. Suresh, W.T. Miller, and E. London (2021). Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. J. Biol. Chem. 297, 101010.
L. Tapia, N. Solozabal, J. Sola, Y. Perez, W.T. Miiler, and I. Alfonso (2021). Modulation of Src kinase activity by selective substrate recognition with pseudopeptidic cages. Chemistry 27, 9542.
2015-2020
W.T. Miller (2020). Temperature sensitivities of metazoan and pre-metazoan Src kinases. Biochem. Biophys. Rep. 23, 100775.
C.J. McClendon and W.T. Miller (2020). Structure, function, and regulation of the SRMS tyrosine kinase. Int. J. Mol. Sci. 21, 4233
M.K. Josh, R.A. Burton, H. Wu, A.M. Lipchik, B.P. Craddock, H. Mo, L.L. Parker, W.T. Miller, and C.B. Post (2020). Substrate binding to Src: a new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics. Prot. Sci. 29, 350-359.
R.J. Delle Bovi, J. Kim, P. Suresh, E. London, and W. T. Miller (2019). Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. BBA Biomembranes 1861, 819-826.
S.M. Hanson, G. Georghiou, M.K. Thakur, W.T. Miller, J.S. Rest, J.D. Cheddar, and M.A. Seeliger (2019). What makes a kinase promiscuous for inhibitors? Cell Chem.Biol. 26, 390-399.
H. Krishnan, W.T. Miller, F.J. Blanco, and G.S. Goldberg (2019). Src and podoplanin forge a path to destruction. Drug Discovery Today 24, 241-249.
J. Guo, S. Collins, W.T. Miller, and R.C. Rizzo (2018). Identification of a water-coordinating HER2 inhibitor by virtual screening using similarity-based scoring. Biochemistry 57, 4934-4951.
H. Suga and W.T. Miller (2018). Src signaling in a low-complexity unicellular kinome. Sci. Rep. 8: 5362.
R.J. Delle Bovi and W. T. Miller (2017). Expression and purification of functional insulin and insulin-like growth factor 1 holoreceptors from mammalian cells. Analytical Biochem. 536: 69-77.
S. Aleem, G. Georghiou, R.E. Kleiner, K. Guja, B.P. Craddock, A. Lyczek, A.I. Chan, M. Garcia-Diaz, W.T. Miller, D.R. Liu, and M.A. Seeliger (2016). Structural and biochemical basis for inhibition of breast cancer cell migration and drug-resistant kinase mutants by Src-specific macrocycles. Cell Chem. Biol, 23, 1103-1112.
M.Z. Cabail, E.I. Chen, A. Koller, and W.T. Miller (2016). Auto-thiophosphorylation activity of Src tyrosine kinase.BMC Biochem. 17, 13.
M.Z. Cabail, S. Li, E. Lemmon, M.E. Bowen, S.R. Hubbard, and W.T. Miller (2015). The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nature Commun. 6, 6406.
N. Yokoyama and W.T. Miller (2015). Molecular characterization of WDCP, a novel fusion partner for the anaplastic lymphoma kinase ALK. Biomed. Rep 3, 9-13.
G. Fan, S. Aleem, M. Yang, W.T. Miller, and N.K. Tonks (2015). Protein tyrosine kinase and phosphatase specificity in regulation of Src and Brk. J. Biol. Chem.290, 15934-15947.
H. Krishnan, E.P. Retzbach, M.I. Ramirez, T. Liu, H. Li, W.T. Miller, and G.S. Goldberg (2015). PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility. Exp. Cell Res. 335, 115-122 .
T. Tsui and W.T. Miller (2015). Cancer-associated mutations in Breast tumor kinase/PTK6 differentially affect enzyme activity and substrate recognition. Biochemistry 54, 3173-3182.
M.H. Touchette, G.R. Bommineni, R.J. Delle Bovi, J. Gadbery, C.D. Nicora, A.K. Shukla, J.E. Kyle,T.O. Metz, D.W. Martin, N.S. Sampson, W.T. Miller, P.J. Tonge, and J.C. Seeliger (2015). Diacyltransferase activity and chain length specificity of Mycobacterium tuberculosis PapA5 in the synthesis of alkyl beta-diol lipids. Biochemistry 54, 5457-5468.
S. Aleem, B.P. Craddock, and W.T. Miller (2015). Constitutive activity in an ancestral form of Abl tyrosine kinase.PLoS ONE 10, e0131062.
2008-2014
S.R. Hubbard and W.T. Miller (2014). Closing in on a mechanism for activation. eLife 3, 04919.
K.P. Schultheiss, B.P. Craddock, H. Suga, and W.T. Miller (2014). Regulation of Src and Csk nonreceptor tyrosine kinases in the filasterean Ministeria vibrans. Biochemistry 53, 1320-1329.
H. Krishnan, J.A. Ochoa-Alvarez, Y. Shen, E. Nevel, M. Lakshminarayanan, M.C. Williams, M.I. Ramirez, W.T. Miller, and G.S. Goldberg (2013). Serines in the intracellular tail of podoplanin (PDPN) regulate cell motility. J. Biol. Chem 288, 12215-12221.
K.P. Schultheiss, B.P. Craddock, M. Tong, M. Seeliger, and W.T. Miller (2013). Metazoan-like signaling in a unicellular receptor tyrosine kinase. BMC Biochem.14: 4.
B.P. Craddock and W.T. Miller (2012). Effects of somatic mutations in the C-terminus of insulin-like growth factor 1 receptor on activity and signaling.J. Signal Trans.804801.
W.T. Miller (2012). Tyrosine kinase signaling and the emergence of multicellularity. Biochim Biophys Acta 1823, 1053-7.
H. Krishnan, W.T. Miller, and G.S. Goldberg (2012). Src points the way to biomarkers and chemotherapeutic targets. Genes & Cancer 3, 426-435.
K.P. Schultheiss, H. Suga, I. Ruiz-Trillo, and W.T. Miller (2012). Lack of Csk-mediated negative regulation in a unicellular Src kinase. Biochemistry 51, 8267-8277.
V. Prieto-Echagüe and W.T. Miller (2011). Regulation of Ack1-family nonreceptor tyrosine kinases. J. Signal Trans.742372.
V. Prieto-Echagüe, P.M. Chan, B.P. Craddock, E. Manser, and W.T. Miller (2011). PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis. PLoS ONE 6, e19296.
V. Prieto-Echagüe, A. Gucwa, B.P. Craddock, D.A. Brown, and W.T. Miller (2010). Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J. Biol. Chem. 285, 10605-10615.
V. Prieto-Echagüe, A. Gucwa, D.A. Brown, and W.T. Miller (2010). Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC Biochemistry 11, 42.
W. Li, S. Scarlata, and W.T. Miller (2009). Evidence for convergent evolution in the signaling properties of a choanoflagellate tyrosine kinase. Biochemistry 48, 5180-5186.
P. Patwardhan, K. Shiba, C. Gordon, B.P. Craddock, M. Tamiko, and W.T. Miller (2009). Synthesis of functional signaling domains by combinatorial polymerization of phosphorylation motifs. ACS Chem. Biol 4, 751-758.
S.S. Yadav, B.J. Yeh, B.P. Craddock, W.A. Lim, and W.T. Miller (2009). Reengineering the signaling properties of a Src family kinase. Biochemistry 48, 10956-10962.
W.T. Miller (2009). Making sense of signal transduction. Science Signaling 2, pe79.
N. King, M.J. Westbrook, S.L. Young, A. Kuo, M. Abedin, J. Chapman, S. Fairclough, U. Hellsten, Y. Isogai, I. Letunic, M. Marr, D. Pincus, N. Putnam, A. Rokas, K.J. Wright, R. Zuzow, W. Dirks, M. Good, D. Goodstein, D. Lemons, W. Li, J. Lyons, A. Morris, S. Nichols, D.J. Richter, A. Salamov, JGI Sequencing, P. Bork, W.A. Lim, G. Manning, W.T. Miller, W. McGinnis, H. Shapiro, R. Tjian, I.V. Grigoriev, and D. Rohhsar (2008). The genome of the choanoflagellate Monosiga brevicollis and the origins of metazoans. Nature 451, 783-788.
W. Li, S.L. Young, N. King, and W.T. Miller (2008). Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J. Biol. Chem. 283, 15491-15501.
G. Manning, S.L. Young, W.T. Miller, and Y. Zhai (2008). The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any metazoan. Proc. Natl. Acad. Sci. USA. 105, 9674-9679.
J. Wu, W. Li, B.P. Craddock, K.W. Foreman, M.J. Mulvihill, Q.Ji, W.T. Miller, and S.R. Hubbard (2008). Small-molecule inhibition and activation loop trans-autophosphorylation of the IGF1 receptor. EMBO Journal. 27, 1985-1994.
B. Xiang, K. Chatti, H. Qiu, B. Lakshmi, A. Krasnitz, J. Hicks, W.T. Miller, and S.K. Muthuswamy (2008). Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proc. Natl. Acad. Sci. USA. 105, 12463-12468.
S.S. Yadav and W.T. Miller (2008). The evolutionarily conserved arrangement of domains in Src family kinases is important for substrate recognition. Biochemistry 47, 10871-10880.
E. Ozkirimli, S.S. Yadav, W.T. Miller, and C.B. Post (2008). An electrostatic network and long-range regulation of Src kinases. Protein Science 17, 1871-1880.
H. Chen, C. Xu, J. Ma, A.V. Eliseenkova, W. Li, P.M. Pollock, N. Pitteloud, W.T. Miller, T.A. Neubert, and M. Mohammadi (2008). A crystallographic snapshot of tyrosine trans-autophosphorylation in action. Proc. Natl. Acad. Sci. USA 105, 19660-19665.
2004 – 2007
S.R. Hubbard and W.T. Miller (2007). Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol. 19, 117-123.
B.P. Craddock, C. Cotter, and W.T. Miller (2007). Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region. FEBS Lett. 581, 3235-3240.
S.S. Yadav and W.T. Miller (2007). Cooperative activation of Src-family kinases by SH3 and SH2 ligands. Cancer Lett 257, 116-123.
P. Patwardhan and W.T. Miller (2007). Processive phosphorylation: mechanism and biological importance. Cell Signal. 19, 2218-2226.
H. Chen, J. Ma, W. Li, A.V. Eliseenkova, C. Xu, T.A. Neubert, W.T. Miller, and M. Mohammadi (2007). A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Molecular Cell. 27, 717-730.
J. DaSilva, H.-J. Kim, L.Z. Xu, W.T. Miller, and D. Bar-Sagi (2006). Regulation of Sprouty stability by MNK1-dependent phosphorylation. Mol. Cell. Biol. 26, 1898-1907.
N. Yokoyama and W.T. Miller (2006). Purification and enzyme activity of ACK1. Methods Enz. 406, 250-260.
L. Liu, Y. Gao, W.T. Miller, V. Poli, and N.C. Reich (2006). Identification of STAT3 as a specific substrate of the breast tumor kinase (Brk). Oncogene 25, 4904-4912.
P. Patwardhan, Y. Shen, G. Goldberg, and W.T. Miller (2006). Individual Cas phosphorylation sites are dispensable for processive phosphorylation by Src and anchorage-independent cell growth . J. Biol. Chem 281, 20689-20697.
W. Li and W.T. Miller (2006). Role of the activation loop tyrosines in regulation of the insulin-like growth factor I receptor tyrosine kinase. J. Biol. Chem 281, 23785-23791.
N. Yokoyama, I. Ischenko, M.J. Hayman, and W.T. Miller (2005). The C-terminus of the RON tyrosine kinase plays an autoinhibitory role. J. Biol. Chem 280, 8893-8900.
H. Qiu, F. Zappaosta, W. Su, R.S. Annan, and W.T. Miller (2005). Interaction between Brk kinase and insulin receptor substrate-4. Oncogene 24, 5656-5664.
N. Yokoyama, C.D. deBakker, F. Zappacosta, M.J. Huddleston, R.S. Annan, K.S. Ravichandran, and W.T. Miller (2005). Identification of tyrosine residues on ELMO1 that are phosphorylated by the Src-family kinase Hck. Biochemistry 44, 8841-8849.
L. Carlisle-Moore, C.R. Gordon, C.A. Machutta, W.T. Miller, and P.J. Tonge (2005). Substrate recognition by the human fatty acid synthase. J. Biol. Chem 280, 42612-42618.
N. Yokoyama, J. Lougheed, and W.T. Miller (2005). Phosphorylation of WASP by the Cdc42-associated kinase ACK1: Dual hydroxyamino acid specificity in a tyrosine kinase. J. Biol. Chem 280, 42219-42226.
H. Qiu and W.T. Miller (2004). Role of the Brk SH3 domain in substrate recognition. Oncogene 23, 2216-2223.
Alexander, D.B., Ichikawa, I., Bechberger, J.F., Valiunas, V., Ohki, M., Naus, C.C.G., Kunimoto, T., Tsuda, H., W., Miller, W.T., and Goldberg, G.S (2004). Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and Src activity. Cancer Research 64, 1347-1358.
W. Li, S. Favelyukis, J. Yang, Y. Zeng, J. Yu, A. Gangjee, and W.T. Miller (2004). Inhibition of insulin-like growth factor I receptor autophosphorylation by novel 6-5 ring-fused compounds. Biochem. Pharm 68, 145-154.
2000 – 2003
W.T. Miller (2003). Determinants of substrate specificity in nonreceptor tyrosine kinases. Accounts of Chemical Research, 36, 393-400.
N. Yokoyama, N.C. Reich, and W.T. Miller (2003). Determinants for the interaction between Janus kinase 2 and protein phosphatase 2A. Arch Biochem Biophys 417, 87-95.
N. von Bubnoff, D.R. Veach, W.T. Miller, W. Li, . Sanger, C. Peschel, W.G. Bornmann, B. Clarkson, and J. Duyster (2003). Inhibition of wild-type and mutant Bcr-Abl by pyrimido-pyrimidine type small molecule kinase inhibitors. Cancer Research,63, 6395-6404.
G.S. Goldberg, D.B. Alexander, P. Pellicena, Z.-Y. Zhang, H. Tsuda, and W.T. Miller (2003). Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells. J. Biol. Chem 278, 46533-46540.
N. Yokoyama and W.T. Miller (2003). Biochemical properties of the Cdc42-associated tyrosine kinase ACK1: substrate specificity, autophosphorylation, and interaction with Hck. J. Biol. Chem 278, 47713-47723.
P. Pellicena and W.T. Miller (2002). Coupling kinase activation to substrate recognition in Src-family tyrosine kinases. Front. Biosci. 7, 256-267.
B. Nagar, W. Bornmann, P. Pellicena, T. Schindler, D. Veach, W.T. Miller, B. Clarkson, and J. Kuriyan (2002). Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and Imatinib (STI-571). Cancer Research 62, 4236-4243.
M.P. Scott, F. Zappacosta, E.Y. Kim, R.S. Annan, and W.T. Miller (2002). Identification of novel SH3 domain ligands for the Src family kinase Hck: WASP. WIP, and ELMO1. J. Biol. Chem 277, 28238-28246.
H. Qiu and W.T. Miller (2002). Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. J. Biol. Chem 277, 34634-34641.
W.T. Miller (2001). Double trouble. Nature Struct. Biol. 8, 16-18.
N. Yokoyama, N.C. Reich, and W.T. Miller (2001). Involvement of protein phosphatase 2A in the interleukin-3 stimulated Jak2/STAT5 signalling pathway. J. Interferon Cytokine Research 21, 369-378.
P. Pellicena and W.T. Miller (2001). Processive phosphorylation of p130Cas by Src is dependent on SH3-polyproline interactions. J. Biol. Chem 276, 28190-28196.
N. Yokoyama and W.T. Miller (2001). Protein phosphatase 2A interacts with the Src kinase substrate p130Cas. Oncogene 20, 6057-6065.
V. Boonyaratanakornkit, M.P. Scott, V. Ribon, L. Sherman, S.A. Anderson, J.L. Maller, W.T. Miller, and D.P. Edwards (2001). Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases.Molecular Cell 8, 269-280.
M. Amoui, B.P. Craddock, and W.T. Miller (2001). Differential phosphorylation of IRS-1 by insulin and insulin-like growth factor 1 receptors in Chinese hamster ovary cells. J. Endocrinology 171, 153-162.
K. Zou, W.T. Miller, R.S. Givens, and H. Bayley (2001). Caged thiophosphotyrosine peptides. Angew. Chem. Int. Ed. 40, 3049-3051.
N. Yokoyama and W.T. Miller (2001). Inhibition of Src by direct interaction with protein phosphatase 2A. FEBS Letters 505, 460-464.
S. Favelyukis, J.H. Till, S.R. Hubbard, and W.T. Miller (2001). Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Structural Biol. 8, 1058-1063.
T.Schindler, W. Bornmann, P. Pellicena, W.T. Miller, B. Clarkson, and J. Kuriyan (2000). Structural mechanism for the inhibition of Abelson tyrosine kinase by a small molecule inhibitor that is effective in the treatment of chronic myelogenous leukemia. Science 289, 1938-1942.
M. Porter, T. Schindler, J. Kuriyan, and W.T. Miller (2000). Reciprocal regulation of Hck activity by phosphorylation of Tyr527 and Tyr416. J. Biol. Chem. 275, 2721-2726.
J.T. Nguyen, M. Porter, M. Amoui, W.T. Miller, R.N. Zuckermann, and W.A. Lim (2000). Improving SH3 domain ligand selectivity using a non-natural scaffold. Chemistry & Biology 7, 463-473.
M. Amoui and W.T. Miller (2000). The substrate specificity of the catalytic domain of Abl plays an important role in directing phosphorylation of the adaptor protein Crk. Cell Signal. 12, 637-643.
P.M. Chan, H.P. Nestler, and W.T. Miller (2000). Investigating the substrate specificity of the HER2/Neu tyrosine kinase using peptide libraries. Cancer Lett. 160, 159-169.
M.P. Scott and W.T. Miller (2000). A peptide model system for processive phosphorylation by Src-family kinases. Biochemistry 39, 14531-14537.
1994 – 1999
J.E.A. Michaels, K. Shiba, and W.T. Miller (1999). Autonomous folding of a C-terminal inhibitory fragment of E. coli isoleucine-tRNA synthetase. Biochim. Biophys. Acta 1433, 103-109.
N. Yokoyama and W.T. Miller (1999). Identification of residues involved in v-Src substrate recognition by site-directed mutagenesis. FEBS Lett. 456, 403-408.
J.H. Till, P.M. Chan, and W.T. Miller (1999). Engineering the Substrate Specificity of the Abl Tyrosine Kinase. J. Biol. Chem. 274, 4995-5003.
P. Chan and W.T. Miller (1998). Use of Peptide Libraries to Determine Optimal Substrates of Tyrosine Kinases. Methods Mol. Biol. 84, 75-86.
P. Pellicena, K.R. Stowell, and W.T. Miller (1998). Enhanced Phosphorylation of Src-family Kinase Substrates Containing SH2 Domain Binding Sites. J. Biol. Chem. 273, 15325-15328.
H. Bayley, C. Chang, W.T. Miller, B. Niblack, and P. Pan (1998). Caged Peptides and Proteins by Targeted Chemical Modification. Methods Enz. 291, 117-135.
M. LaFevre-Bernt, J. Corbin, S. Francis, and W.T. Miller (1998). Phosphorylation and Activation of cGMP-dependent Protein Kinase by v-Src. Biochim. Biophys. Acta 1386, 97-105.
M. LaFevre-Bernt, F. Sicheri, A. Pico, M. Porter, J. Kuriyan, and W.T. Miller (1998). Intramolecular Regulatory Interactions in the Src-family Kinase Hck Probed by Mutagenesis of a Conserved Tryptophan Residue. J. Biol. Chem. 273, 32129-32134.
I. Moarefi, M. LaFevre-Bernt, F. Sicheri, M. Huse, C.-H. Lee, J. Kuriyan, and W.T. Miller (1997). Activation of the Src-Family Tyrosine Kinase Hck by SH3 Domain Displacement. Nature 385, 650-653.
Z.-Y. Zhang, A.B. Walsh, L. Wu, D.J. McNamara, E.M. Dobrusin, and W.T. Miller (1996). Determinants of Substrate Recognition in the Protein-Tyrosine Phosphatase, PTP1. J. Biol. Chem. 271, 5386-5392.
X. Bin and W.T. Miller (1996). Src Homology Domains of v-Src Stabilize an Active Conformation of the Tyrosine Kinase Catalytic Domain. Mol. Cell. Biochem. 158, 57-63.
P. Chan, P.R. Keller, R.W. Connors, W.R. Leopold, and W. T. Miller (1996). Amino-terminal Sequence Determinants for Substrate Recognition by Platelet-Derived Growth Factor Receptor Tyrosine Kinase. FEBS Lett. 394, 121-125.
P. Pellicena, J. Scholten, K. Zimmerman, M. Creswell, C.C. Huang, and W.T. Miller (1996). Involvement of the Alpha Subunit of Farnesyl-Protein Transferase in Substrate Recognition. Biochemistry 35 , 13494 – 13500.
J.E.A. Michaels, P. Schimmel, K. Shiba, and W.T. Miller (1996). Dominant Negative Inhibition by Polypeptide Fragments of a Monomeric Enzyme. Proc. Natl. Acad. Sci. USA 93, 14452-14455.
T.R. Lee, J.H. Till, D.S. Lawrence, and W.T. Miller (1995). Precision Substrate Targeting of Protein Kinases: v-Abl and c-Src. J. Biol. Chem. 270, 27022-27026.
B. Xu, V.G. Bird, and W.T. Miller (1995). Substrate Specificities of the Insulin and Insulin-like Growth Factor I Receptor Tyrosine Kinase Catalytic Domains. J. Biol. Chem.270, 29825-29830.
W.T. Miller and D.P. Raleigh (1995). Protein Folding: From Basic Science to Biotechnology. Genetic Analysis 12, 169-172.
J.H. Till, R.S. Annan, S.A. Carr, and W.T. Miller (1994) Use of Synthetic Peptide Libraries and Phosphopeptide-selective Mass Spectrometry to Probe Protein Kinase Substrate Specificity. J. Biol. Chem. 269, 7423-7428.
P. Garcia, S.E. Shoelson, J.S. Drew, and W.T. Miller (1994). Phosphopeptide Occupancy and Photoaffinity Cross-linking of the v-Src SH2 Domain Attenuates Tyrosine Kinase Activity. J. Biol. Chem. 269, 30574-30579.
J. Gergel, D.J. McNamara, E.M. Dobrusin, A.R. Saltiel, and W.T. Miller (1994). Identification of Amino Acid Residues in the Phospholipase Cg1 SH2 Domain which Interact with the Epidermal Growth Factor Receptor. Biochemistry 33, 14671-14678.
1986 – 1993
P. Garcia, S.E.Shoelson, S.T. George, D.A. Hinds, A.R. Goldberg, and W.T. Miller (1993) Phosphorylation of Synthetic Peptides Containing Tyr-Met-X-Met Motifs by Nonreceptor Tyrosine Kinases. J. Biol. Chem. 268, 25146-25151.
W.T. Miller and P. Schimmel (1992) A Retroviral-like Metal Binding Motif in an E. coli Aminoacyl-tRNA Synthetase is Important for tRNA Recognition. Proc. Natl. Acad. Sci. USA 89, 2032-2035.
W.T. Miller and P. Schimmel (1992) A Metal Binding Motif Implicated in RNA Recognition by an Aminoacyl-tRNA Synthetase and by a Retroviral Gene Product. Molecular Microbiology 10, 1259-1262.
W.T. Miller (1991) Peptide-based Affinity Labelling of the cAMP-Dependent Protein Kinase. Methods in Enzymology 200, 500-508.
W.T. Miller, Y.-M. Hou, and P. Schimmel (1991) Mutant Aminoacyl tRNA Synthetase that Compensates for a Mutation in the Major Identity Determinant of Its tRNA. Biochemistry 30, 2635-2641.
W.T. Miller, K.A.H. Hill, and P. Schimmel (1991) Evidence for a Cys-His Box Metal-Binding Site in an E. coli Aminoacyl-tRNA Synthetase. Biochemistry 30, 6970-6976.
S.J. Park, W.T. Miller, and P. Schimmel (1990) Synthetic Peptide Model of an Essential Region in an Aminoacyl-tRNA Synthetase. Biochemistry 29, 9212-9218.
C. Radziejewski, W.T. Miller, S. Mobashery, A.R. Goldberg, and E.T. Kaiser (1989) Purification of Recombinant pp60v-src and Phosphorylation of Peptides with Different Secondary Structure Preference. Biochemistry 28, 9047-9052.
W.T. Miller and E.T. Kaiser (1988) Probing the Peptide Binding Site of the cAMP-Dependent Protein Kinase by Using a Peptide-based Photoaffinity Label. Proc. Natl. Acad. Sci. USA 85, 5429-5433.
N.E. Thomas, H.N. Bramson, W.T. Miller, and E.T. Kaiser (1987) The Role of Enzyme-Peptide Substrate Hydrogen Bonding in Determining Protein Kinase Substrate Specificities. Biochemistry 26, 4461-4466.
H.N. Bramson, N.E. Thomas, W.T. Miller, D.C. Fry, A.S. Mildvan, and E.T. Kaiser (1987) The Conformation of Leu-Arg-Arg-Ala-Ser-Leu-Gly Bound in the Active Site of the cAMP-Dependent Protein Kinase. Biochemistry 26, 4466-4470.
W.T. Miller and E.T. Kaiser (1986) Peptide-based Photoaffinity Label of the Catalytic Subunit of the cAMP-Dependent Protein Kinase. Fed. Proc., Fed. Am. Soc. Exp. Biol. 45: 6.