
Scalable Load Balancing in Interference-prone Queueing Systems

Abstract

We study a dispatching problem in large-scale queueing systems, where each server independently alter-

nates between serving jobs at a fast rate (when the server is functioning normally) and at a slow rate (when

the server is undergoing performance degradation). This problem arises in cloud computing settings when

dispatching jobs to a large set of virtual machines (VMs) located across a variety of physical servers. As

not all physical resources are easily partitioned across VMs on the same server, VMs frequently experience

a temporary and unpredictable—yet detectable—form of performance degradation known as interference.

We address the problem of load balancing in interference-prone VMs, where one must immediately dispatch

each incoming job to one of many VMs to minimize average response times. This problem is further compli-

cated because each VM undergoes interference independently of the others. We propose several distributed

dispatching policies that dispatch incoming requests based on the interference and busy status of a randomly

sampled subset of the servers under the power-of-d-choices paradigm. Using a combination of mean field

analysis and recursive renewal reward, we evaluate the performance of these heuristics exactly in a variety of

settings while deducing and proving a number of surprising results. In particular, we find that while using

interference status information when making dispatching decisions can help reduce the mean response time,

making use of this information naively can be very costly.

keywords: Queueing systems; Dispatching policies; Mean field analysis; Interference; Virtual machines

1 Introduction

We study the dispatching problem in many-server systems where the service rate of each server alternates

between a fast state and a slow state in a Markov-modulated fashion. This problem arises in cloud computing, for

example, wherein servers occasionally experience temporary slowdowns due to a phenomenon known as virtual

machine interference. Public cloud services are computing services provided by third-party providers—such as

Amazon, Dropbox, Salesforce, Slack, and Microsoft Azure—over the public internet. These services function

by hosting numerous virtual machines (VMs) on a single physical machine. The most significant advantage

of public cloud services is that they are inherently scalable, allowing for allocating additional resources as an

organization’s computing needs grow. However, this flexibility comes at a cost: the hosted VMs often share

the same physical resources. As a result, delays in the job execution time can occur due to waiting on shared

resources [16,18,29,38].

We model such interference as an unpredictable, yet detectable, drop in the speed (service rate) of a particular

1

VM (server). At any given time, some VMs may undergo interference (functioning at a lower service rate) while

others continue to function normally. Should an incoming job be sent to be queued at an interference-free (fast)

server that is already busy working on other jobs? Or, are we better off sending it to an idle server under

interference, hoping that the server will begin to function normally soon? Addressing such questions is the

primary focus of this paper. Indeed, the policies by which job requests are dispatched to VMs in large-scale

network systems—and how these policies take into account the presence of interference—have significant effects

on the performance (i.e., response times) of such systems.

We position our paper by contrasting how it stands apart from the existing work across several related

literature streams, starting with a brief review of the work on classical dispatching problems. We know that

the Join the Shortest Queue (JSQ) policy is optimal—with respect to a variety of metrics, including the mean

response time—in systems with parallel homogeneous servers with decentralized queues when the service time

has a non-decreasing hazard rate [37]. Moreover, JSQ is still optimal in homogeneous multi-server systems

with exponential service times, even if the dispatcher is informed of the job arrival times in advance [8]. If the

job size information is available to the dispatcher, we can also track the total workload at the servers, which is

more informative than queue length information alone. This more detailed information allows the dispatcher to

implement the Join the Least Workload (JLW) policy, where the job is sent to the server with the minimum

work. It turns out that JLW is optimal for homogeneous server systems when the job size information is

available to the dispatcher and when the job size variability is low [13]. By contrast, when job sizes are highly

variable, one can outperform JLW by grouping servers to serve different job size ranges [13].

Our work departs significantly from the classical work above in several respects, the most important being

that we consider servers that can run at different speeds at any given time. Load balancing problems in the

presence of heterogeneous servers (with respect to their service rates) are often referred to as slow server problems

in the literature. There is a significant body of work in this area, with a recurring theme being that optimal

dispatching policies are known to exhibit threshold structures in a variety of settings; i.e., the decision of sending

the job to a fast server depends on the number of jobs queued at the slower servers [15, 19, 26, 31]. Meanwhile,

our work lies in a unique middle ground. While, at any given time, our servers run at different speeds (as in

slow server problems), they are stochastically identical (as in classical dispatching, although classical servers do

not change speeds). This middle ground comes with technical challenges that complicate performance analysis.

The fact that servers are stochastically identical also has important qualitative consequences, as we show in this

paper. In particular, policies that favor routing to fast servers tend to be unstable in slow server problems; they

do not exhibit this tendency in our setting.

There also exists a stream of work—lying entirely outside the scope of analytic performance evaluation and

operations research in general—dedicated to mitigating the effects of interference at the hardware level. However,

despite fruitful efforts in this area, interference remains a problem that can frequently cause significant reductions

in job processing speeds [6, 27]. This suggests that there is a need for analytical work that informs the design

of efficient dispatching policies in the presence of interference; this paper aims to address this need partially.

Other work in this area is still scarce. Most notably, [33, 34] study load dispatching policies under interference

2

in a system with a central queue (a queue forms in front of the dispatcher, and there are no queues in front of

the servers). Using a Markov Decision Process (MDP) model, [34] proves that the optimal dispatching policy

minimizes response times by using slow servers only when the current queue length exceeds a threshold. While

the problem formulation is technically valid for any number of servers, most of the analysis in [34] is dedicated

to the two-server setting. Our work is significantly differentiated from the aforementioned papers due to our

consideration of immediate dispatching (an important assumption in settings where requests are dropped if they

are not immediately sent to a VM) as opposed to the management of a central queue. Our dispatching model

also yields a higher state-space dimensionality, which makes the MDP formulation too cumbersome.

Furthermore, unlike all of the work we have mentioned so far, we are interested in scalable policies that are

particularly suitable for settings where the number of servers is very large, as is often the case with large cloud

computing systems featuring many VMs. In such settings keeping track of the complete state information of all

servers tends to be prohibitively difficult. Consequently, policies that leverage complete state information are

often impractical. The power-of-d-choices approach obviates the need to track complete state information by

having the dispatcher query only a small number of d servers uniformly at random whenever a job arrives. The

dispatcher then sends the incoming job to one of the queried servers based on the information capturing the

state of those (and only those) servers; d is typically a small number (e.g., two or three). Therefore, our work

also shares much with the literature on power-of-d dispatching policies. It has been shown that the limiting

probabilities for the JSQ- d policy (where the job is assigned to a server in accordance with the JSQ policy

among the d servers that were queried) in systems with Poisson arrivals and exponential service times converge

as the number of servers tends to infinity and that we can obtain impressive performance results even when d

is as low as two [28].

Another useful and easy-to-implement policy is the JIQ (Join the idle Queue) policy, whereby the dispatcher

knows all idle servers in the system at all times. Since idleness information is much easier to track than complete

queue length information, there is little communication overhead in JIQ. We find works on different variations

of the JIQ policy in the literature [24,36]; however, most works address systems with homogeneous servers. In

heterogeneous server systems, recent work shows that the JIQ policy is delay-optimal [32]; however, if there

are significant differences in the server’s speeds, this heterogeneity-unaware policy can result in high response

times at low to medium system loads [10]. In systems with heterogeneous servers—including those considered in

our work where servers exhibit heterogeneity based on their interference states—the servers’ speed information

plays a crucial role in dispatching decisions to obtain low response times.

Under homogeneous server settings, when the number of servers tends to infinity, the systems exhibit the

asymptotic independence property under the JSQ- d and JLL- d (join the least loaded queue after querying d

servers) policies; i.e., servers are asymptotically independent of one another if the state of any given server is

independent of the state of any other subset of servers [3,4]. Crucially, asymptotic independence allows for the

application of Mean Field Analysis (MFA) to study the performance of many queueing systems [5, 14, 21–23].

Few papers use MFA to analyze systems with server speed heterogeneity [1, 2, 10, 12, 17]. However, none of

them account for changing server speeds. By contrast, in our model, server speeds change over time, and the

3

current speed state of a server is only known once it is queried.

Our contribution is fourfold: (i) we introduce a novel and applicable model that—as we have argued above—

is uniquely positioned within the literature, (ii) we propose a set of simple dispatching policies as well as a

method to evaluate their performance using a novel blend of techniques, (iii) we observe and prove several

intriguing results on these simple dispatching policies, and (iv) after studying the performance of the set of

simple dispatching policies, we develop a more complex policy by leveraging optimization that outperforms all

the simple dispatching policies.

The remainder of this paper is organized as follows: In §2, we present our load balancing problem of

interest, and we propose a number of easily implementable (and easily understood) power-of-d dispatching

policies that make dispatching decisions based on the information about the interference and/or idleness status

of a randomly queried subset of the servers. In §3, we analytically measure the performance of these policies

using both MFA and an adaptation of the recursive renewal reward (RRR) method [9] to Markov chains that

exhibit non-unidirectional phase transitions, resulting in a novel combination of analytic techniques. While

our analysis requires finding the roots of polynomials numerically, it is otherwise exact. In §4, we analyze the

performance of the heuristic policies presented in §2 across a variety of problem parameters and highlight certain

interesting results and properties; we provide formal proofs for several of these results. In §5, we introduce a

new improved policy that is more complex than the heuristic policies in §2 in that this policy is constructed by

optimally choosing policy parameters; we compare the performance of this new policy against the performance

of the simpler policies. The motivation for the idea of the new policy is obtained from a recent work in the

heterogeneous dispatching literature [10]. We summarize the major results of our paper in §6.

2 Model and Dispatching Policies

We consider a K-server system under the asymptotic regime (i.e., K → ∞). Jobs arrive according to a Poisson

process with a rate of Kλ. Each server’s service rate alternates independently between a fast rate µf (when it

is not under interference) and a slow rate µs (when it is under interference). Servers work at rate µf (resp., µs)

for an exponentially distributed duration of time with rate αf (resp., αs) before switching to working at the

slower (resp., faster) rate. Each server has a dedicated queue and serves its jobs according to the FCFS (First

Come, First Serve) discipline; our results generalize to any other work-conserving service policies. When a job

arrives at the system, a central dispatcher immediately queries d ≪ K servers for their current interference and

idleness states and uses this information to dispatch the job to one of the queried servers. We do not allow for

job migration or jockeying, i.e., once a job is dispatched to a server, it stays there until its service completion.

Fig. 1 shows a graphical presentation of the model.

We analyze and evaluate the performance of a set of easy-to-implement and scalable heuristic dispatching

policies and compare them with respect to their mean response times E[T], measured as the end-to-end duration

of time jobs spend in the system from arrival until service completion and departure. We consider the following

six dispatching policies, one of which uses only the speed information of the queried servers, another of which

4

Figure 1: The dispatching model (left); servers interference states (right)

uses only the idleness information of the queried servers, and the remaining four of which use both types of

information:

• JIQ- d: The dispatcher queries d servers and dispatches an arriving job randomly to an idle server, if

available; if all d servers are busy, the job is dispatched randomly to one of the d servers.

• JIQFP- d: The dispatcher queries d servers and dispatches an arriving job randomly to an idle server,

if available, prioritizing interference-free (fast) servers; if all d servers are busy, the job is dispatched

randomly to one of the d servers (speed information is not used among the queried busy servers). Hence,

dispatching is done in the following order among the queried servers: (i) fast idle, (ii) slow idle, and (iii)

busy.

• JIQBR- d: The dispatcher follows the same procedure as in JIQFP- d, except if all d servers are busy, the

job is dispatched to a random busy fast server with probability
µfαs

µfαs + µsαf
and to a random busy slow

server with probability
µsαf

µfαs + µsαf
).

• JFQ- d: The dispatcher queries d servers and dispatches an arriving job randomly to a fast server, if

available; if all d servers are under interference (functioning at the slow rate), the job is dispatched

randomly to one of the d servers.

• JIFQ- d: The dispatcher queries d servers and dispatches an arriving job randomly to a server using

both the idleness and speed statuses, prioritizing idleness over speed. Hence, dispatching is done in the

following order among the queried servers: (i) fast idle, (ii) slow idle, (iii) fast busy, and (iv) slow busy.

• JFIQ- d: The dispatcher follows the same procedure as in JIFQ- d, except it prioritizes speed over idleness.

Hence, dispatching is done in the following order among the queried servers: (i) fast idle, (ii) fast busy,

(iii) slow idle, and (iv) slow busy.

In §3, we derive the expected response times, as the main performance of interest, under the policies listed

above. In §5, we introduce another policy (JIFQOPT) that provides more flexibility in job assignments and

5

Number of jobs in the tagged server

F (fast speed state)

S (slow speed state)

0, f 1, f 2, f 3, f · · ·

0, s 1, s 2, s 3, s · · ·

λ0f

λ0s

µf

µs

α
s

α
f

λ1f

λ1s

µf

µs

α
s

α
f

λ1f

λ1s

µf

µs

α
s

α
f

λ1f

λ1s

µf

µs

α
s

α
f

Figure 2: Markov chain for a tagged server

allows optimization over its parameters. Throughout the paper, we also occasionally consider the Random

policy (RND), which dispatches jobs to one of the K servers randomly (with equal probabilities); RND serves

as a benchmark policy that does not use any information about the status of the servers.

3 Performance Analysis

In this section, we determine the expected response time E[T] for the dispatching policies described in §2

via mean-field approximation (MFA). Given K is large, we apply MFA under the asymptotic independence

assumption; i.e., as K → ∞, the number of jobs at an arbitrary server becomes independent of the number of

jobs at the other servers at any point in time when the system is in steady state (we assess the validity of this

assumption via simulation in §4). Therefore, the average response time for the system is the same as the average

response time for a tagged-server subsystem. Accordingly, we tag a server and study its stochastic evolution.

Fig. 2 presents the general state transition diagram for a tagged server under any of our policies with the state

variable (n, x) where n ∈ {0, 1, 2, · · · } represents the number of jobs in the tagged server’s subsystem (including

the job in service, if any) and x ∈ {f, s} represents its speed (or, interference) state (with f and s denoting the

fast interference-free and slow under-interference states, respectively). Jobs are processed at rates µf and µs

in the fast and slow states, respectively. The rate of change of the interference state is αf when in the fast

state and αs when in the slow state (i.e., interference hits an interference-free server at rate αf and leaves an

under-interference server at rate αs). Since the policies of interest introduced in §2 exhibit symmetry—in the

sense that they treat all servers with the same idleness and interference state in the same way—there must

exist arrival rates λ0f , λ0s, λ1f , and λ1s, which respectively correspond to the rate at which jobs arrive to the

idle fast, idle slow, busy fast, and busy slow states. Therefore, the Markov chain in Fig. 2 has a repeating

structure with identical transition rates for the fast states (n, f), and for the slow states (n, s) for all n ≥ 1. The

rates λ0f , λ0s, λ1f , and λ1s depend on the choice of dispatching policy, so we will derive these rates separately

for each policy introduced in §3.1.

Under system stability (sufficient conditions presented in Proposition 2; see §4.1), the evolution of state

(n, x) of the tagged server is governed by a positive recurrent Markov chain. This observation allows us to

6

leverage the Renewal Theorem [30, Chapter 3] to determine the steady-state probabilities distribution over the

state space for the tagged server (and hence, for any server), from which we can determine the mean response

time at the tagged server (which corresponds to the overall mean response time for the system as a whole). To

calculate the exact response times under our policies of interest, we develop a method that is primarily based

on the RRR approach [9], which allows us to take advantage of the fact that the Markov chain shown in Fig. 2)

exhibits the following repeating structure:

• The probability that the tagged-server subsystem visits state (0, y) before (0, y′) (where y′ ∈ {s, f} \ {y})

when it is currently in state (1, x) equals the probability that it visits state (n − 1, y) before (n − 1, y′)

when it is in state (n, x), for all n ≥ 1 and any x, y ∈ {s, f}. We denote this probability by Pxy.

• The expected time it takes the tagged-server subsystem to visit level 0 (i.e., state (0, f) or (0, s)) when it

is in state (1, x) equals the expected time it takes it to visit level n− 1 (i.e., state (n− 1, f) or (n− 1, s))

when it is in state (n, x), for all n ≥ 1 and x ∈ {f, s}. We denote this expected time by Tx.

One way to interpret Pxy and Tx is to think in terms of busy periods: a busy period begins when a subsystem

consists of a single job until it next becomes empty (i.e., until the server becomes idle). Pxy is the probability

that a busy period starting in interference state x ends in interference state y. Meanwhile, Tx is the expected

duration of a busy period beginning in interference state x.

We define a renewal cycle as a duration that begins when the tagged-server subsystem visits state (0, f) and

ends the next time the subsystem re-visits that state; i.e., the tagged-server subsystem renews itself each time

it visits state (0, f). We let T denote the expected duration of a renewal cycle. We consider the instantaneous

reward rate at time t as R(t) = i(t) where i(t) is the total number of jobs residing in the tagged-server subsystem

(including the one in service, if any). Let R be the expected reward accumulated during a renewal cycle based on

the instantaneous reward rate function R(t). By the renewal reward theorem, we have the following expression

for the time-average number of jobs in the tagged-server subsystem, E[N]:

E[N] = lim
s→∞

∫ s

0
R (t) dt

s
=

E
[∫

cycle
R (t) dt

]
Expected renewal cycle duration

=
R
T
. (1)

As long as we can determine the arrival rate to the tagged server, Eq. (1) and Little’s Law yield the expected

response time at the tagged server E[T]. To determine this arrival rate, recall that we are considering a stable

system for which the asymptotic independence assumption holds, and we further require that the dispatching

policy treats all servers with the same idleness and interference state in the same. Hence, each server must

experience the same average long-run arrival rate. Specifically, jobs must arrive at any given server—and hence,

the tagged server in particular—at an average rate of λ, as the arrival rate to the entire K-server system is Kλ.

It then follows from Eq. (1) and Little’s Law that

E[T] =
E[N]

λ
=

R
λT

. (2)

7

In Proposition 1, we present a system of equations that allows us to obtain R and T . These equations

are valid for all dispatching policies of interest and are in terms of the expected times Tf and Ts, the prob-

abilities Pff , Pfs, Psf , and Pss, and the arrival rates λ0f , λ0s, λ1f , and λ1s. To facilitate the presentation of

Proposition 1, we define the following auxiliary expected reward values:

• Rx (for x ∈ {f, s}): The expected reward accumulated during a time interval starting with the tagged-

server subsystem entering state (1, x) until it first visits either state (0, f) or (0, s) (whichever happens

first). Alternatively, Rx corresponds to the expected reward accumulated in a system that initially has

exactly one job and is in interference state x until the system becomes empty (in either interference state).

• R0s: The expected reward accumulated during a time interval starting with the tagged-server subsystem

entering state (0, s) and ending when the system next visits state (0, f). Alternatively, R0s corresponds to

the expected reward accumulated in an initially empty and under-interference system (i.e., in interference

state s) until that system becomes simultaneously interference-free (i.e., in interference state f) and empty.

As a consequence of the repeating structure of the transition rates, for all n ≥ 1, the expected reward

accumulated in a time interval when the tagged server enters state (n, x) (for x ∈ {f, s}) until it first visits

either state (n − 1, f) or (n − 1, s)—or equivalently, the reward accumulated in a system that initially has

exactly n jobs and is in interference state x until that system has one fewer job—will be Rx + (n− 1)Tx.

Proposition 1. The expected reward accumulated during a renewal cycle R is obtained by solving the following

system of equations:

Rf =
1 + λ1f (Tf +Rf + PffRf + PfsRs) + αfRs

λ1f + µf + αf

Rs =
1 + λ1s (Ts +Rs + PsfRf + PssRs) + αsRf

λ1s + µs + αs

R0s =
λ0s(Rs + PssR0s)

λ0s + αs

R =
λ0f (Rf + PfsR0s) + αfR0s

λ0f + αf
,

(3)

and the expected duration of a renewal cycle T follows:

T =
β0f + β0s + λ0fβ0sTf + λ0sβ0fTs

(αf + λ0f)β0s
, (4)

where βjx = αx + λjxPxy and γx = λ1x − µx, j ∈ {0, 1}, x ∈ {f, s}, and y ∈ {f, s} \ {x}.

The proofs of all propositions and lemmas are provided in the appendix.

Obtaining R and T in Eqs. (3) and (4) requires us to derive the expressions for Pxy, Tx, λ0x, and λ1x,

for x, y ∈ {f, s}; once these values are known, the system of equations given in (3) is linear in the reward

variables. We first derive the general equations for Pxy and Tx, which can be applied to all dispatching policies

of interest, in Lemmas 1 and 2. Subsequently, in §3.1 we derive expressions for the arrival rates λ0x and λ1x

(for x ∈ {s, f}); unlike the aforementioned Pxy and Tx values, these arrival rates depend on the choice of the

8

dispatching policy. Finally, we conclude this section in §3.2 by presenting Proposition 1, which can be used

alongside the other results presented in this section to derive the primary performance metric of interest: the

expected response time E[T].

Lemma 1. The probabilities Pff , Pfs, Psf , and Pss correspond to a solution to the following system of non-linear

equations that satisfies Pff , Pfs, Psf , Pss ∈ [0, 1]:

Pff =
λ1f

(
P 2
ff + PfsPsf

)
+ αfPsf + µf

λ1f + µf + αf
,

Pfs = 1− Pff ,

Psf =
λ1s (PsfPff + PssPsf) + αsPff

λ1s + µs + αs
,

Pss = 1− Psf .

As we discuss in the proof of Lemma 1 (see Appendix A.2), this system of non-linear equations has a unique

solution if the system is stable. The condition for a system to be stable in our setting is presented in §4.1.

Lemma 2. The expected times Tf and Ts follow

Tx =
γy − β1f − β1s

γfβ1s + γs (αf + µf − λ1fPff)
, x ∈ {f, s}, y = {f, s} \ x, (5)

where β1x = αx + λ1xPxy and γx = λ1x − µx.

So far, all the equations we have presented are valid for all the policies we are studying. The only remaining

pieces for solving the equations in Proposition 1 and Lemmas 1 and 2 and eventually finding the expected

response time E[T] based on Eq. (2) are the dispatching policy-dependent arrival rates λ0f , λ0s, λ1f , and λ1s.

In §3.1, we derive the equations for these arrival rates for each of our policies of interest. Note that the set of

equations presented in Lemmas 1 and 2 and those presented in §3.1 for the arrival rates result in a larger system

of equations that must be solved simultaneously; we explain the solution procedure for solving this larger system

in §3.2, after completing our presentation of the equations that make up this system.

3.1 Deriving the Arrival Rates

In order to determine the arrival rates λ0f , λ0s, λ1f , and λ1s, we need to find the steady-state probabilities of

the tagged-server subsystem for states (0, f) and (0, s). Let πnx denote the limiting probability of state (n, x)

(i.e., πnx is the steady-state probability that the tagged subsystem has n jobs and is in interference state x,

where x ∈ {f, s}). Let π0 ≡ π0f + π0s (resp., πx ≡
∑∞

n=0 πnx) so that π0 (resp., πx) is the steady-state

9

probability that the tagged server is idle (resp., in interference state x):

πf =

∞∑
n=0

πnf =
αs

αf + αs
,

πs =

∞∑
n=0

πns =
αf

αf + αs
.

Lemma 3 provides a general equation to find π0f and π0s; these two probabilities will then allow us to

determine the state-dependent arrival rates of interest (i.e., λ0f , λ0s, λ1f , and λ1s) associated with the various

policies that we study in this paper.

Lemma 3. Let x ∈ {f, s}, with y ∈ {f, s} \ {x} (i.e., x corresponds to one interference state and y to the

other). The steady state probabilities π0f and π0s are given by

π0x =
β0y

β0f + β0s + λ0fβ0sTf + λ0sβ0fTs
, (6)

where βjx = αx + λjxPxy for j ∈ {0, 1} and γx = λ1x − µx.

In order to obtain the arrival rates of interest, we leverage the fact that under all of our power-of-d policies,

the rate at which the tagged server is queried is given by:

P(Tagged server is among the d queried servers)× System arrival rate =

(
K−1
d−1

)(
K
d

) Kλ = dλ.

Arrival rates: JIFQ- d. The state-dependent arrival rates under JIFQ- d follow Lemma 4.1:

Lemma 4.1. The state-dependent arrival rates under JIFQ- d can be expressed in terms of the limiting proba-

bilities, λ, and d as follows:

λ0f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0f)
i
(1− π0f)

d−1−i,

λ1f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(πf − π0f)
i
(πs − π0s)

d−1−i,

λ0s = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0s)
i
(1− π0)

d−1−i,

λ1s = λ(πs − π0s)
d−1.

We briefly explain the equation for λ0f (i.e., the job arrival rate to the tagged server when the server is in

state (0, f)). When the tagged server is in the state (0, f), there can be up to d − 1 servers in the state (0, f)

among the remaining servers in the query. The number of combinations that i out of the d−1 servers are in the

state (0, f) is
(
d−1
i

)
, and the probability of each combination is (π0f)

i
(1− π0f)

d−1−i. Since each of the (i+ 1)

queried servers (including the tagged server sub-system) has an equal chance of receiving the job, we have the

division by i+ 1. Other expressions in Lemma 4.1 follow a similar logic.

10

Arrival rates: JFIQ- d. The state transition diagram for a tagged server under JFIQ- d is the same as that

under JIFQ- d (Fig. 2). The state-dependent arrival rates under JFIQ- d follow Lemma 4.2.

Lemma 4.2. The state-dependent arrival rates under JFIQ- d can be expressed in terms of the limiting proba-

bilities, λ, and d as follows:

λ0f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0f)
i
(1− π0f)

d−1−i,

λ0s = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0s)
i
(πs − π0s)

d−1−i,

λ1f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(πf − π0f)
i
(πs)

d−1−i,

λ1s = λ(πs − π0s)
d−1.

Arrival rates: JIQ- d. The JIQ- d policy uses only the idleness information. We see that the tagged server

experiences an arrival rate of λ0 when the server is idle and λ1 when busy. Lemma 4.3 gives the expressions for

λ0 and λ1. The resulting state transition diagram for the tagged server under JIQ- d is the same as that under

JIFQ- d (see Fig. 2) where λ0f = λ0s and λ1f = λ1s.

Lemma 4.3. The state-dependent arrival rates under JIQ- d can be expressed in terms of the limiting proba-

bilities, λ, and d as follows:

λ0f = λ0s = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

π0
i(1− π0)

d−1−i,

λ1f = λ1s = λ(1− π0)
d−1.

Arrival rates: JIQFP- d. Under this policy, the tagged server will experience an arrival rate depending on

its interference state when idle. However, its arrival rate when busy is independent of its interference state.

Lemma 4.4 expresses the arrival rates experienced under the JIQFP- d policy.

Lemma 4.4. The state-dependent arrival rates under JIQFP- d can be expressed in terms of the limiting

probabilities, λ, and d as follows:

λ0f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0f)
i
(1− π0f)

d−1−i,

λ0s = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0s)
i
(1− π0)

d−1−i,

λ1f = λ1s = λ(1− π0)
d−1.

Arrival rates: JIQBR- d. Under this policy, the tagged server will experience an arrival rate depending on

its interference state when idle or busy. When at least one of the queried servers is idle, the job will be sent

11

to a randomly chosen idle fast server, if at least one such server was queried, and to a randomly chosen idle

server, otherwise. If all of the servers are busy and both fast and slow busy servers were queried, the job

will be sent to a randomly chosen busy fast (respectively, busy slow) server with probability
µfαs

µfαs + µsαf

(respectively,
µsαf

µfαs + µsαf
). Lemma 4.5 expresses the arrival rates experienced under the JIQBR- d policy.

Lemma 4.5. The state-dependent arrival rates under JIQBR- d can be expressed in terms of the limiting

probabilities, λ, and d as follows:

λ0f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0f)
i
(1− π0f)

d−i−1,

λ0s = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0s)
i
(1− π0)

d−i−1,

λ1f = dλ

(
(πf − π0f)

d−1

d
+

µfαs

µfαs + µsαf

d−2∑
i=0

(
d−1
i

)
i+ 1

(πf − π0f)
i
(πs − π0s)

d−i−1

)
,

λ1s = dλ

(
(πs − π0s)

d−1

d
+

µsαf

µfαs + µsαf

d−2∑
i=0

(
d−1
i

)
i+ 1

(πs − π0s)
i
(πf − π0f)

d−i−1

)
.

Arrival rates: JFQ- d. This policy uses only speed information. We see that the tagged server experiences

an arrival rate of λ0f = λ1f when the server’s speed is fast and λ0s = λ1s when the server’s speed is slow; these

rates are given by Lemma 4.6. The resulting state transition diagram for the tagged server under JFQ- d is the

same as that under JIFQ- d (see Fig. 2), where λ0f = λ1f and λ0s = λ1s.

Lemma 4.6. The state-dependent arrival rates under JFQ- d can be expressed in terms of the limiting proba-

bilities, λ, and d as follows:

λ0f = λ1f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(πf)
i
(πs)

d−1−i
,

λ0s = λ1s = λ (πs)
d−1

.

3.2 Finding the Expected Response Time

Below, we list the steps used to numerically determine the expected response time under a dispatching policy

given system parameters λ, µf , µs, αf , and αs:

1. We simultaneously solve the set of nonlinear equations given in Lemmas 1-4 (the corresponding lemma for

the policy of interest) to obtain a unique feasible solution for arrival rates λ0x, λ1x > 0, x ∈ {s, f}, limiting

probabilities π0f and π0s ∈ [0, 1], and properties Pff , Pfs, Psf , Pss ∈ [0, 1] and Tf , Ts ≥ 0. We discuss the

uniqueness of the solution in Appendix B.

2. We use the above solution as the input to the linear system of equations in Proposition 1 to find R and T .

3. We use Eq. (2) to find the expected response time E[T].

12

0.24

0.28

0.32

0.36

0 100 200 300 400 500
Number of Servers - K (in Simulation)

E[
T
]

Simulation

MFA

(a) JIQ- d Policy

0.15

0.18

0.21

0.24

0 100 200 300 400 500
Number of Servers - K (in Simulation)

E[
T
]

Simulation

MFA

(b) JFQ- d Policy

0.09

0.10

0.11

0.12

0 100 200 300 400 500
Number of Servers - K (in Simulation)

E[
T
]

Simulation

MFA

(c) JIFQ- d Policy

0.09

0.12

0.15

0.18

0 100 200 300 400 500
Number of Servers - K (in Simulation)

E[
T
]

Simulation

MFA

(d) JFIQ- d Policy

0.25

0.30

0.35

0 100 200 300 400 500
Number of Servers - K (in Simulation)

E[
T
]

Simulation

MFA

(e) JIQFP- d Policy

0.10

0.11

0.12

0.13

0.14

0.15

0 100 200 300 400 500
Number of Servers - K (in Simulation)

E[
T
]

Simulation

MFA

(f) JIQBR- d Policy

Figure 3: Simulated expected response times converge to the MFA results when the number of servers K is
large; parameters: λ = 13 ·K,µf = 25, µs = 10, αf = 0.05, αs = 0.1, d = 2; number of jobs run = 100, 000 ·K,
warm-up = 500 ·K jobs

4 Analytic & Numerical Results

In this section, we first discuss the validity of the asymptotic independence assumption for the dispatching

policies described in §2. We do not formally prove this assumption; rather, like several other related papers

(e.g., [11,12,36]), we test the assumption’s validity by simulating the systems of various sizes (i.e., server counts,

K). For example, the plots in Fig. 3 show that once K is sufficiently large, the simulated expected response

times match our analytical derivations in §2 based on the asymptotic independence assumption for all policies.

In the remainder of this section, we compare the performance of the dispatching policies analytically and

numerically. In §4.1, we present our analytic results: first, we specify the system stability condition, then we

prove several results about how some policies outperform others with respect to the expected response time.

13

In §4.2, we numerically compare the performance of the policies under different parameter settings.

4.1 Stability and Analytical Comparisons

Given the average service rate
αsµf + αfµs

αf + αs
, we define the system load as in Eq. (7), based on which we establish

the condition for system stability for all policies of interest in Proposition 2:

ρ =
λ (αf + αs)

αsµf + αfµs
. (7)

Proposition 2. If the system load, as defined in Eq. (7), is below one (i.e., ρ < 1) and asymptotic independence

holds, the system is stable (i.e., E[T] < ∞) under all policies of interest, including the random policy. Otherwise,

when ρ > 1, the system is unstable (i.e., E[T] = ∞) under any dispatching policy.

This result is significant because in models that consider heterogeneous servers without addressing interfer-

ence (i.e., the servers run at fixed speeds), implementing the policies that favor fast servers (i.e., JFQ- d, JIFQ- d,

and JFIQ- d) can result in an unstable system when the dispatching policy queries servers without taking their

speeds into consideration. Moreover, even under speed-aware querying in such models, the stability of policies

that favor fast servers depends on precisely how this querying is carried out [10]. This hindrance does not exist

in our setting as all servers are stochastically identical, i.e., all servers are treated the same in the long run

because all fast servers will eventually become slow and vice-versa.

In the next proposition, we prove that some of our policies outperform others with respect to mean response

time.

Proposition 3. For any d, we have the following weak dominance relationships between our policies:

(a) JFIQ- d (weakly) outperforms JFQ- d; i.e., E[T]JFIQ- d ≤ E[T]JFQ- d.

(b) JIQ- d (weakly) outperforms RND; i.e., E[T]JIQ- d ≤ E[T]RND.

(c) JIQFP- d (weakly) outperforms JIQ- d; i.e., E[T]JIQFP- d ≤ E[T]JIQ- d.

We proceed to study the relative performance of those policies that were not dominated in Proposition 3.

4.2 Numerical Experiments

In Proposition 3, we proved that the JIQFP- d and JFIQ- d policies outperform JIQ- d and JFQ- d, respec-

tively. Accordingly, we exclude JIQ- d and JFQ- d from our analysis in this section, and we run numerical

experiments on JIFQ- d, JFIQ- d, JIQBR- d, and JIQFP- d to understand under what parameter settings each

policy outperforms the others. Though the RND policy is dominated by the JIQ- d policy (as we proved in

Proposition 3), we use the RND policy as an easy-to-implement benchmark throughout this section. We also

investigate the consequences of not implementing the best policy and the associated regret.

In our experiments, we set the fast service rate to µf = 100 and the number of queried servers to d = 2.

The results for larger query sizes (d = 3 and d = 4) are of a similar nature; we discuss these results at the end

14

Table 1: Optimality proportion and improvement over RND when d = 2.

Best-performing
policy

Optimality
proportion

Mean (10th–90th percentile)
improvement over RND

JFIQ- d 413 (39.3%) 76.3% (39.7%–98.7%)
JIFQ- d 368 (35.0%) 45.0% (11.0%–90.2%)
JIQBR- d 176 (16.8%) 57.0% (33.6%–95.9%)
JIQFP- d 93 (8.9%) 45.0% (33.5%–49.9%)

of this subsection. In order to conduct a comprehensive study across all practical parameter settings, we vary

the other parameters in the same ranges used in [34], resulting in a total of 1050 experiments:

• ρ ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 0.95},

• µs/µf ∈ {0.01, 0.02, 0.1, 0.2, 0.5, 0.8, 0.95},

• αs ∈ {0.02, 0.2, 1, 10, 50},

• αf/αs ∈ {0.05, 0.1, 0.2, 0.5, 1}.

For each experiment, we record the expected response time under each of the JIFQ- d, JFIQ- d, JIQBR- d,

JIQFP- d, and RND policies. Table 1 provides statistics for the optimality proportion of each policy and the

improvement over the RND policy when the corresponding policy outperforms the other policies. Based on

Table 1, policies that use both the idleness and speed information perform better in most experiments with 39%

and 35% optimality proportion for JFIQ- d and JIFQ- d, respectively. All policies listed in Table 1 result

in significant improvement over the easy-to-implement RND policy, with an average improvement ranging

from 45%–76.3%.

The color-coded Table 2 specifies the best-performing policy (i.e., the one with the minimum expected

response time among the policies evaluated) for each experiment. The value recorded in each cell of Table 2

reports the percentage improvement of expected response time under the best-performing policy against the

benchmark policy RND:

E[T]RND −min

{
E[T]JFIQ- d, E[T]JIFQ- d, E[T]JIQFP- d, E[T]JIQBR- d

}
E[T]RND

× 100

Below, we draw insights based on the results presented in Table 2.

The impact of parameters on the best-performing policy : Figs. 4 and 5 graphically summarize the

information in Table 2. The plots of Fig. 4 show the marginal impact of parameters (varying a parameter while

fixing other parameters) on the optimality proportion of each policy. Based on Fig. 4a, the JFIQ- d policy,

which prioritizes speed information over idleness information among queried servers, outperforms the other

policies when the impact of service degradation due to interference is more severe (a smaller µs/µf ratio). As

the fast and slow service rates become more comparable, the policies prioritizing idle servers over fast servers

15

α
s

0.
02

0
.2

1
10

50
α
f
/α

s
0.
05

0.
1

0.
2

0.
5

1
0
.0
5

0
.1

0
.2

0
.5

1
0
.0
5

0
.1

0
.2

0
.5

1
0
.0
5

0
.1

0.
2

0
.5

1
0.
05

0.
1

0
.2

0
.5

1

ρ

0.
1

µ
s
/µ

f

0.
01

9
9
.5

9
9
.3

9
4
.7

7
9
.7

6
4
.1

9
5
.0

9
5
.5

9
1
.8

7
8
.1

6
2
.9

8
0
.3

8
5
.1

8
4
.0

7
2
.9

5
8
.5

3
4
.7

4
4
.9

5
1
.7

4
9
.8

4
0
.6

1
5
.4

1
9
.4

2
3
.5

2
4
.9

2
1
.4

0.
02

9
9
.4

9
9
.6

9
9
.5

9
3
.9

8
2
.2

9
4
.8

9
6
.4

9
5
.8

8
8
.2

7
6
.2

7
9
.3

8
5
.3

8
6
.1

7
8
.0

6
5
.2

3
3
.7

4
3
.9

5
1
.0

4
9
.8

4
0
.9

1
5
.3

1
9
.2

2
3
.2

2
4
.6

2
1
.3

0.
1

8
6
.6

8
8
.9

8
8
.5

8
1
.8

6
9
.7

7
3
.0

8
0
.8

8
3
.7

7
9
.2

6
7
.9

5
5
.5

6
7
.0

7
3
.5

7
1
.7

6
1
.8

2
6
.5

3
5
.5

4
3
.3

4
5
.4

3
9
.0

1
4
.1

1
7
.4

2
0
.9

2
2
.7

2
0
.4

0.
2

3
2
.0

4
2
.7

5
1
.7

5
5
.1

4
9
.3

3
1
.4

4
2
.0

5
1
.1

5
4
.5

4
8
.8

2
9
.4

3
9
.5

4
8
.4

5
2
.1

4
6
.7

2
0
.2

2
6
.8

3
3
.7

3
7
.4

3
3
.3

1
2
.9

1
5
.5

1
8
.5

2
0
.6

1
9
.0

0.
5

1
3
.0

1
5
.9

1
9
.7

2
3
.7

2
3
.7

1
3
.0

1
5
.9

1
9
.6

2
3
.7

2
3
.6

1
2
.9

1
5
.7

1
9
.4

2
3
.3

2
3
.2

1
2
.2

1
4
.4

1
7
.4

2
0
.4

2
0
.0

1
0
.8

1
2
.1

1
3
.7

1
5
.2

1
4
.7

0.
8

1
0
.0

1
0
.7

1
1
.7

1
3
.0

1
3
.3

1
0
.0

1
0
.7

1
1
.7

1
3
.0

1
3
.3

1
0
.0

1
0
.7

1
1
.6

1
3
.0

1
3
.2

9
.9

1
0
.5

1
1
.3

1
2
.4

1
2
.5

9
.6

1
0
.0

1
0
.6

1
1
.2

1
1
.1

0.
95

9
.3

9
.4

9
.6

9
.9

1
0
.0

9
.3

9
.4

9
.6

9
.9

1
0
.0

9
.3

9
.4

9
.6

9
.9

1
0
.0

9
.3

9
.4

9
.6

9
.8

9
.9

9
.2

9
.3

9
.4

9
.6

9
.6

0.
25

µ
s
/µ

f

0.
01

9
9
.0

9
6
.0

9
0
.1

7
6
.0

6
0
.4

9
5
.3

9
4
.0

8
9
.0

7
5
.4

6
0
.0

8
3
.2

8
6
.6

8
4
.5

7
2
.9

5
8
.3

4
2
.4

5
1
.2

5
7
.0

5
4
.7

4
5
.4

2
4
.9

2
7
.8

3
0
.7

3
0
.9

2
8
.0

0.
02

9
9
.6

9
9
.1

9
3
.7

7
9
.9

6
4
.7

9
5
.9

9
6
.3

9
2
.2

7
9
.1

6
4
.2

8
3
.3

8
7
.7

8
6
.6

7
5
.8

6
1
.7

4
1
.9

5
0
.8

5
6
.9

5
5
.1

4
6
.2

2
4
.8

2
7
.7

3
0
.5

3
0
.7

2
8
.0

0.
1

9
9
.3

9
9
.6

9
9
.7

9
9
.7

9
9
.3

9
3
.9

9
6
.3

9
7
.4

9
6
.9

9
3
.8

7
7
.0

8
4
.9

8
8
.8

8
7
.7

8
0
.4

3
7
.4

4
5
.9

5
3
.0

5
4
.3

4
7
.7

2
3
.9

2
6
.3

2
8
.7

2
9
.9

2
8
.0

0.
2

9
7
.5

9
8
.4

9
8
.3

9
1
.1

7
7
.5

8
2
.9

8
8
.3

9
0
.4

8
6
.1

7
5
.1

5
9
.8

7
0
.1

7
6
.4

7
6
.3

6
8
.1

3
1
.9

3
8
.6

4
5
.1

4
7
.9

4
3
.3

2
2
.9

2
4
.9

2
7
.2

2
8
.7

2
7
.3

0.
5

2
4
.8

2
8
.2

3
2
.2

3
6
.1

3
5
.6

2
4
.8

2
8
.1

3
2
.1

3
5
.9

3
5
.4

2
4
.5

2
7
.6

3
1
.5

3
5
.1

3
4
.6

2
2
.9

2
5
.1

2
7
.7

3
0
.3

2
9
.7

2
1
.3

2
2
.3

2
3
.5

2
4
.7

2
4
.2

0.
8

2
0
.7

2
1
.3

2
2
.2

2
3
.3

2
3
.5

2
0
.7

2
1
.3

2
2
.1

2
3
.3

2
3
.5

2
0
.7

2
1
.3

2
2
.1

2
3
.2

2
3
.4

2
0
.6

2
1
.1

2
1
.8

2
2
.6

2
2
.6

2
0
.4

2
0
.7

2
1
.1

2
1
.5

2
1
.4

0.
95

2
0
.1

2
0
.2

2
0
.4

2
0
.6

2
0
.6

2
0
.1

2
0
.2

2
0
.4

2
0
.6

2
0
.6

2
0
.1

2
0
.2

2
0
.4

2
0
.6

2
0
.6

2
0
.1

2
0
.2

2
0
.3

2
0
.5

2
0
.5

2
0
.1

2
0
.1

2
0
.2

2
0
.3

2
0
.3

0.
50

µ
s
/µ

f

0.
01

9
8
.3

9
6
.1

9
1
.7

8
0
.1

6
5
.5

9
5
.6

9
4
.6

9
0
.8

7
9
.6

6
5
.1

8
6
.0

8
8
.8

8
7
.2

7
7
.5

6
3
.6

5
1
.7

5
9
.0

6
3
.8

6
1
.3

5
1
.7

3
6
.7

3
8
.7

4
0
.6

4
0
.3

3
7
.1

0.
02

9
9
.3

9
7
.2

9
2
.9

8
1
.6

6
7
.2

9
6
.4

9
5
.6

9
2
.0

8
1
.0

6
6
.8

8
6
.2

8
9
.4

8
8
.1

7
8
.7

6
5
.1

5
1
.5

5
8
.8

6
3
.8

6
1
.6

5
2
.3

3
6
.6

3
8
.6

4
0
.5

4
0
.4

3
7
.2

0.
1

9
9
.6

9
9
.8

9
9
.8

9
5
.7

8
5
.2

9
6
.1

9
7
.7

9
8
.3

9
4
.0

8
3
.8

8
4
.2

8
9
.9

9
2
.4

8
8
.7

7
8
.8

4
8
.9

5
6
.2

6
2
.1

6
2
.5

5
5
.3

3
6
.2

3
8
.0

3
9
.9

4
0
.3

3
8
.0

0.
2

9
9
.4

9
9
.6

9
9
.8

9
9
.8

9
9
.6

9
4
.2

9
6
.6

9
7
.8

9
8
.0

9
6
.7

7
8
.7

8
6
.0

9
0
.2

9
1
.2

8
7
.1

4
5
.1

5
1
.4

5
7
.3

5
9
.6

5
4
.5

3
5
.7

3
7
.3

3
9
.1

3
9
.8

3
8
.2

0.
5

7
0
.4

7
3
.3

7
3
.0

6
8
.6

6
2
.2

5
6
.9

6
3
.8

6
7
.7

6
6
.4

6
1
.0

4
6
.5

5
2
.9

5
8
.4

6
0
.6

5
7
.0

3
7
.1

3
9
.7

4
2
.7

4
5
.2

4
4
.0

3
4
.4

3
5
.2

3
6
.2

3
7
.0

3
6
.5

0.
8

3
4
.3

3
5
.1

3
6
.1

3
7
.4

3
7
.6

3
4
.3

3
5
.0

3
6
.0

3
7
.3

3
7
.5

3
4
.2

3
4
.9

3
5
.9

3
7
.0

3
7
.1

3
3
.9

3
4
.3

3
4
.9

3
5
.6

3
5
.5

3
3
.6

3
3
.8

3
4
.0

3
4
.3

3
4
.2

0.
95

3
3
.4

3
3
.5

3
3
.5

3
3
.7

3
3
.7

3
3
.4

3
3
.5

3
3
.5

3
3
.7

3
3
.7

3
3
.4

3
3
.5

3
3
.5

3
3
.7

3
3
.7

3
3
.4

3
3
.4

3
3
.5

3
3
.6

3
3
.6

3
3
.4

3
3
.4

3
3
.4

3
3
.5

3
3
.5

0.
75

µ
s
/µ

f

0.
01

9
8
.8

9
7
.6

9
4
.9

8
6
.1

7
2
.7

9
6
.6

9
6
.3

9
4
.1

8
5
.6

7
2
.3

8
8
.3

9
1
.2

9
0
.8

8
3
.5

7
0
.7

5
8
.5

6
4
.9

6
9
.4

6
7
.5

5
7
.9

4
5
.7

4
7
.5

4
9
.1

4
8
.3

4
4
.4

0.
02

9
9
.2

9
8
.0

9
5
.4

8
6
.9

7
3
.8

9
6
.8

9
6
.7

9
4
.6

8
6
.4

7
3
.4

8
8
.3

9
1
.4

9
1
.2

8
4
.2

7
1
.6

5
8
.3

6
4
.7

6
9
.3

6
7
.6

5
8
.3

4
5
.7

4
7
.4

4
9
.0

4
8
.4

4
4
.5

0.
1

9
9
.7

9
9
.8

9
9
.5

9
3
.1

8
2
.9

9
6
.9

9
8
.2

9
8
.2

9
2
.4

8
2
.2

8
7
.1

9
1
.8

9
3
.6

8
9
.2

7
9
.4

5
6
.5

6
2
.8

6
7
.9

6
8
.1

6
0
.7

4
5
.4

4
7
.0

4
8
.5

4
8
.5

4
5
.6

0.
2

9
9
.6

9
9
.8

9
9
.8

9
9
.8

9
5
.5

9
5
.9

9
7
.6

9
8
.5

9
8
.4

9
3
.8

8
4
.1

8
9
.8

9
2
.9

9
3
.4

8
8
.1

5
4
.2

6
0
.0

6
5
.4

6
7
.2

6
2
.2

4
4
.9

4
6
.3

4
7
.8

4
8
.2

4
6
.2

0.
5

9
8
.5

9
9
.1

9
9
.4

9
9
.5

9
9
.2

8
7
.7

9
2
.2

9
4
.7

9
5
.5

9
3
.7

6
7
.4

7
5
.3

8
1
.2

8
4
.0

8
1
.2

4
7
.4

5
0
.3

5
3
.8

5
6
.6

5
5
.1

4
3
.7

4
4
.4

4
5
.2

4
5
.8

4
5
.2

0.
8

4
8
.4

5
1
.3

5
4
.1

5
5
.9

5
2
.8

4
6
.8

4
9
.3

5
1
.9

5
4
.3

5
1
.6

4
4
.9

4
6
.3

4
8
.3

5
0
.7

4
8
.7

4
3
.1

4
3
.4

4
4
.0

4
5
.2

4
4
.3

4
2
.9

4
2
.9

4
3
.0

4
3
.4

4
3
.2

0.
95

4
3
.0

4
3
.1

4
3
.2

4
3
.3

4
3
.5

4
3
.0

4
3
.0

4
3
.2

4
3
.3

4
3
.4

4
2
.9

4
3
.0

4
3
.1

4
3
.2

4
3
.3

4
2
.9

4
2
.9

4
2
.9

4
3
.0

4
3
.0

4
2
.9

4
2
.9

4
2
.9

4
2
.9

4
2
.9

0.
90

µ
s
/µ

f

0.
01

9
9
.3

9
8
.7

9
7
.0

9
0
.0

7
7
.5

9
7
.2

9
7
.5

9
6
.2

8
9
.5

7
7
.1

8
9
.5

9
2
.7

9
3
.1

8
7
.4

7
5
.3

6
1
.8

6
7
.9

7
2
.5

7
1
.3

6
2
.2

5
0
.0

5
1
.5

5
3
.0

5
2
.2

4
8
.0

0.
02

9
9
.5

9
8
.9

9
7
.3

9
0
.6

7
8
.4

9
7
.3

9
7
.7

9
6
.5

9
0
.1

7
8
.0

8
9
.5

9
2
.7

9
3
.3

8
7
.9

7
6
.1

6
1
.6

6
7
.7

7
2
.3

7
1
.4

6
2
.5

4
9
.9

5
1
.5

5
3
.0

5
2
.2

4
8
.2

0.
1

9
9
.7

9
9
.8

9
9
.3

9
4
.8

8
5
.6

9
7
.2

9
8
.4

9
8
.3

9
4
.1

8
4
.9

8
8
.3

9
2
.6

9
4
.3

9
1
.3

8
2
.3

6
0
.1

6
6
.1

7
1
.1

7
1
.7

6
4
.9

4
9
.6

5
1
.0

5
2
.5

5
2
.3

4
9
.2

0.
2

9
9
.6

9
9
.8

9
9
.9

9
9
.2

9
4
.0

9
6
.5

9
8
.0

9
8
.7

9
8
.1

9
2
.9

8
6
.0

9
1
.1

9
4
.0

9
4
.1

8
8
.8

5
8
.1

6
3
.6

6
8
.8

7
1
.0

6
6
.4

4
9
.2

5
0
.4

5
1
.7

5
2
.0

4
9
.9

0.
5

9
8
.9

9
9
.4

9
9
.6

9
9
.7

9
9
.6

9
0
.9

9
4
.4

9
6
.4

9
7
.1

9
6
.7

7
3
.1

8
0
.4

8
5
.8

8
8
.2

8
7
.2

5
1
.6

5
4
.5

5
8
.1

6
0
.3

5
9
.3

4
7
.9

4
8
.4

4
9
.2

4
9
.6

4
8
.8

0.
8

9
0
.1

9
3
.4

9
4
.9

9
5
.4

9
0
.6

6
2
.6

6
8
.2

7
2
.6

7
7
.1

7
1
.7

4
9
.8

5
1
.3

5
3
.4

6
0
.2

5
7
.6

4
7
.5

4
7
.5

4
7
.6

4
9
.3

4
8
.7

4
7
.4

4
7
.3

4
7
.3

4
7
.6

4
7
.5

0.
95

4
8
.2

4
8
.7

4
9
.4

4
9
.9

5
0
.3

4
7
.8

4
8
.1

4
8
.5

4
8
.8

4
9
.1

4
7
.5

4
7
.6

4
7
.7

4
7
.8

4
8
.1

4
7
.4

4
7
.4

4
7
.4

4
7
.4

4
7
.5

4
7
.4

4
7
.4

4
7
.4

4
7
.4

4
7
.4

0.
95

µ
s
/µ

f

0.
01

9
9
.5

9
9
.1

9
7
.7

9
1
.4

7
9
.1

9
7
.4

9
7
.9

9
7
.0

9
0
.9

7
8
.7

8
9
.9

9
3
.2

9
3
.8

8
8
.7

7
6
.9

6
2
.8

6
8
.9

7
3
.5

7
2
.7

6
3
.7

5
1
.2

5
2
.7

5
4
.2

5
3
.4

4
9
.1

0.
02

9
9
.6

9
9
.2

9
8
.0

9
1
.9

8
0
.0

9
7
.5

9
8
.0

9
7
.2

9
1
.4

7
9
.6

8
9
.8

9
3
.2

9
4
.0

8
9
.1

7
7
.7

6
2
.6

6
8
.7

7
3
.3

7
2
.7

6
4
.0

5
1
.1

5
2
.7

5
4
.1

5
3
.4

4
9
.3

0.
1

9
9
.7

9
9
.8

9
9
.5

9
5
.6

8
6
.8

9
7
.3

9
8
.4

9
8
.5

9
5
.0

8
6
.1

8
8
.7

9
2
.8

9
4
.6

9
2
.1

8
3
.5

6
1
.1

6
7
.0

7
2
.0

7
2
.9

6
6
.3

5
0
.8

5
2
.2

5
3
.6

5
3
.4

5
0
.3

0.
2

9
9
.6

9
9
.8

9
9
.9

9
9
.2

9
4
.4

9
6
.6

9
8
.1

9
8
.8

9
8
.2

9
3
.4

8
6
.5

9
1
.4

9
4
.2

9
4
.4

8
9
.5

5
9
.1

6
4
.5

6
9
.6

7
2
.1

6
7
.7

5
0
.4

5
1
.5

5
2
.8

5
3
.0

5
1
.0

0.
5

9
9
.0

9
9
.4

9
9
.6

9
9
.7

9
9
.4

9
1
.3

9
4
.5

9
6
.4

9
7
.4

9
6
.0

7
3
.7

8
0
.7

8
6
.0

8
9
.3

8
6
.9

5
2
.5

5
5
.3

5
9
.0

6
1
.8

5
9
.9

4
9
.1

4
9
.5

5
0
.2

5
0
.8

4
9
.6

0.
8

9
2
.1

9
4
.3

9
5
.0

9
6
.7

9
5
.3

6
3
.9

6
7
.5

6
9
.0

7
9
.5

7
7
.0

5
0
.1

5
0
.8

5
1
.6

6
0
.8

6
0
.3

4
8
.7

4
8
.7

4
8
.7

5
0
.2

5
0
.1

4
8
.7

4
8
.7

4
8
.6

4
8
.8

4
8
.9

0.
95

5
3
.1

5
5
.4

5
7
.5

5
7
.7

5
7
.8

4
9
.4

4
9
.9

5
0
.5

5
0
.8

5
1
.8

4
8
.8

4
8
.9

4
9
.0

4
9
.1

4
9
.6

4
8
.7

4
8
.7

4
8
.7

4
8
.7

4
8
.8

4
8
.7

4
8
.7

4
8
.7

4
8
.7

4
8
.7

J
F
IQ

-
d

J
IF

Q
-d

J
IQ

B
R
-
d

J
IQ

F
P
-
d

T
ab

le
2:

T
h
e
b
es
t
p
o
li
cy

a
n
d
it
s
p
er
ce
n
ta
g
e
im

p
ro
ve
m
en
t
co
m
p
a
re
d
to

R
N
D

.
d
=

2

16

JFIQ- d JIFQ- d JIQBR- d JIQFP- d

0

20

40

60

80

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

O
p
ti
m
al
it
y
p
ro
p
or
ti
on

(%
)

(a)

0

20

40

60

80

0.1 0.25 0.5 0.75 0.9 0.95

ρ

O
p
ti
m
al
it
y
p
ro
p
o
rt
io
n
(%

)

(b)

0

20

40

60

80

0.02 0.2 1 10 50

αs

O
p
ti
m
a
li
ty

p
ro
p
or
ti
on

(%
)

(c)

0

20

40

60

80

0.05 0.1 0.2 0.5 1

αf/ αs

O
p
ti
m
al
it
y
p
ro
p
o
rt
io
n
(%

)

(d)

Figure 4: Marginal effect of system parameters on the best policy

(i.e., JIFQ- d, JIQFP- d, and JIQBR- d) perform better. Almost the same effect explained for µs/µf holds for

the system utilization, based on Fig. 4b. In under-utilized systems (smaller ρ), prioritizing speed over idleness

information results in shorter expected response times (better performance) since most queried servers will be

idle when the utilization is low. However, as the system utilization increases and the chance of having idle servers

among queried servers decreases, it is better to dispatch jobs to idle servers than fast servers. Fig. 4c shows

that as the system spends more time under interference before returning to the normal condition (smaller αs),

prioritizing speed information over idleness is more valuable. On the other hand, when interference periods are

shorter (i.e., as αs increases), the value in speed information begins to decrease in favor of idleness information.

We observe little takeaways in the marginal impact of the ratio αf/αs (Fig. 4d).

Fig. 5 provides the box plots for the marginal effect of parameters on the percentage improvement of the

best dispatching policy over the RND policy. As the red lines in the plots show, the mean improvement over

the RND policy is well above 25% across our parameter space. According to Fig. 5, the improvement over

17

Mean

0

25

50

75

100

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

Im
p
ro
ve
m
en
t
ov
er

ra
n
d
om

(%
)

(a)

0

25

50

75

100

0.1 0.25 0.5 0.75 0.9 0.95

ρ

Im
p
ro
ve
m
en
t
ov
er

ra
n
d
om

(%
)

(b)

0

25

50

75

100

0.02 0.2 1 10 50

αs

Im
p
ro
ve
m
en
t
ov
er

ra
n
d
om

(%
)

(c)

0

25

50

75

100

0.05 0.1 0.2 0.5 1

αf/αs

Im
p
ro
ve
m
en
t
ov
er

ra
n
d
om

(%
)

(d)

Figure 5: Marginal effect of system parameters in the improvement of the best policy over the random policy

the RND policy increases as the difference between the fast and slow speeds increases (Fig. 5a), the system

load increases (Fig. 5b), and the system spends longer sojourns under interference before returning to normal

(Fig. 5c).

Table 2 also shows how the interaction of the parameters affects the best-performing dispatching policy. We

observe:

• As the system load ρ increases, JFIQ- d (specified by red cells) is generally more preferable in systems

with lower αs (spending more time under interference before returning to the normal condition) and

lower µs/µf ratio (more severe degradation of the service rate due to interference).

• JIFQ- d (specified by green cells) becomes more preferable as the system load ρ and the rate of speed

changes become moderate (while the speed disparity continues to be great).

18

Table 3: % increase in the expected response time due to implementing a non–optimal policy; the cell values
report the mean (10th − 90th percentile).

Implemented Best–performing policy
policy JFIQ- d JIFQ- d JIQBR- d JIQFP- d

JFIQ- d − 15.7 (0.3− 21.2) 1929.8 (4.6− 2795.3) 2947.6 (10.9− 2271.5)
JIFQ- d 5.0 (0.1− 13.9) − 348.0 (0− 78.0) 306.7 (0.3− 93.5)
JIQBR- d 22.2 (1.1− 33.9) 14.6 (0− 6.8) − 16.1 (0.2− 33.8)
JIQFP- d 1049.2 (6.0− 2272.5) 733.8 (0− 322.9) 759.7 (0− 785.7) −
RND 3459.4 (65.8− 7545.3) 1709.1 (12.3− 923.8) 1848.0 (50.5− 2357.2) 84.0 (50.3− 99.7)

• JIQBR- d (specified by yellow cells) is preferred when the system load ρ is high with a moderate impact

of interference on service speeds.

• JIQFP- d (specified by blue cells) is preferred under high loads when the impact of interference on service

rates is small.

The consequence of implementing a non-optimal policy : Table 3 provides the regret associated

with implementing a non-optimal policy. In each cell, we report the mean percentage increase (along with

the 10th and 90th percentiles of the percentage increase) in the expected response time due to implementing

a non-optimal policy instead of the best-performing policy. For example, if we employ the JFIQ- d policy

rather than JIFQ- d in experiments in which JIFQ- d is optimal, the mean percentage increase in the

expected response time will be 15.7%. As expected, implementing the naive RND policy increases the

expected response time severely when any of the other policies are optimal. The table results show that

no one policy is a near-optimal heuristic across all parameter settings. Table 3 shows the least regret

of implementing the JIQBR- d policy in all parameter settings. Also, using the JIFQ- d policy instead

of JFIQ- d (and vice versa) causes a relatively mild increase in the mean response time. Motivated by

these observations, in §5, we develop a method for optimally choosing a policy across a feasible space of

policies that includes JIQBR- d, JIFQ- d, and JFIQ- d.

The impact of the query size: We also run our numerical experiments for query sizes d = 3 and

d = 4. Appendix C presents the results. The general structure and takeaways are similar to those

we discussed for d = 2. As the query size increases, we observe that the optimality proportion

of JFIQ- d decreases while the optimality proportion of JIFQ- d increases; the optimality proportions

of JIQFP- d and JIQBR- d remain almost unchanged. We can explain the change in the optimality

proportions of JFIQ- d and JIFQ- d with d by noting that JFIQ- d prioritizes faster servers over idle

servers. As the query size increases, there is a higher chance that there is a fast server among the queried

servers. Therefore, arrivals are rarely dispatched to servers that are under interference. Thus, JFIQ- d

overloads interference-free servers even when they are already busy and even when the query includes

idle (but under-interference) servers. Whereas, under JIFQ- d and higher query sizes, the issue of over-

loading busy interference-free servers is better addressed by prioritizing dispatching jobs to queried idle

19

0.00

0.05

0.10

0.15

0.20

0.25

2 3 4 5 6 7 8 9 10 11 12
d

E[
T
]

JFIQ- d JIFQ- d JIQFP- d JIQBR- d Random

Figure 6: Expected response time as the query size changes; λ = 15.75, µf = 30, µs = 15, αf = αs = 1.

under-interference servers if the other queried interference-free servers are all busy.

We see this illustration in Fig. 6 for one problem set. When d = 1, all policies correspond to the RND

policy whose response time is plotted in Fig. 6 as a dotted line for reference. We observe that the

performance of JFIQ- d is not monotonic in d—contradicting conventional wisdom that querying more

servers can only help. The performance under d = 2 is better because we are overloading the currently

interference-free servers and ignoring—and hence, underutilizing—servers when they are under interfer-

ence. Moreover, for JFIQ- d, we observe that after an initial increase in response time with d, further

increases in d (starting from d = 6) yield improvements in the expected response time. Even though the

servers are loaded more quickly when in the interference-free state, the probability of querying a fast idle

server also increases with d. The performance of all of these policies (except seemingly JFIQ- d) tends

to converge as d increases because the fraction of time the arriving job does not join a fast idle server

under JIFQ- d, JIQFP- d, and JIQBR- d vanishes as d → ∞. The same is true even for JFIQ- d, but it

requires a larger d to converge as servers become overloaded when interference-free, making it difficult to

query fast idle servers.

To conclude this section, we summarize some of our main analytical and numerical findings here: (1) For

any given parameter setting, one of the JIQFP- d, JIQBR- d, JIFQ- d, or JFIQ- d policies is the best-

performing among the seven policies, including RND, that we study. (2) Policies prioritizing idle servers

over fast servers perform better as µs/µf , ρ, and αs increase. (3) Though no single policy outperforms the

others across all parameters, the regret of implementing JIQBR- d, JIFQ- d, and JFIQ- d (when they are

not the best-performing policy) are the lowest; this motivates us to study an optimization-driven policy

in §5 that can outperform all three of these policies.

20

5 An Optimization-based Dispatching Policy

In this section, we take inspiration from [1] and [10] to develop an optimization-based policy, which we

call JIFQOPT. First, consider the following family of policies, which we denote by P, each member of

which is parameterized by p, p′ ∈ [0, 1], where the dispatcher again queries d servers and dispatches the

job randomly in the following priority order:

1. If the query includes fast idle servers, a fast idle server.

2. Otherwise, if the query includes fast busy and slow idle servers, a fast busy (resp., a slow idle) server

with probability p (resp., 1− p).

3. Otherwise, if the query consists of fast busy and fast slow servers, a fast busy (resp., slow busy) server

with probability p′ (resp., 1− p′).

4. Otherwise, if the query includes only slow servers, including at least one idle server, then (one of)

the idle server(s).

5. Otherwise, if all queried servers are busy slow servers, then one of those servers.

Note that all policies in the family P are symmetric in that all servers that are “tied” (with respect to

both their current interference state and their idle/busy status) are equally likely to be assigned the new

arrival. The JIFQ- d, JFIQ- d, and JIQBR- d policies are all members of P:

– When p = 0 and p′ = 1, it is identical to JIFQ- d.

– When p = 1 and p′ = 1, it is identical to JFIQ- d.

– When p = 0 and p′ =
µfαs

µfαs + µsαf
, it is identical to JIQBR- d.

Now define JIFQOPT as the policy chosen from P where given a problem instance (set of parame-

ters), p and p′ are chosen to minimize the mean response time E[T].1 Clearly, JIFQOPT (weakly) outper-

forms JIFQ- d, JFIQ- d, and JIQBR- d as it is the optimal policy across a feasible space of policies that

includes all three of the aforementioned policies. Proposition 1 and Lemmas 1-3 still hold for JIFQOPT.

However, to explicitly find this policy (i.e., carry out the desired optimization), we still need to derive the

state-dependent arrival rates for each policy in P in terms of the parameters p, p′ ∈ [0, 1].

Lemma 4.7. The state-dependent arrival rates under the policies in the P family can be expressed in

terms of the limiting probabilities (which are themselves dependent on p and p′), λ, d, and assignment

1We will treat this policy as well-defined, even though we leave open the question of whether such an optimal policy is always
unique for parameter settings where λ > 0.

21

probability parameters p and p′ as follows:

λ0f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0f)
i
(1− π0f)

d−1−i
,

λ0s = dλ

[
d−2∑
i=0

(
d−1
i

)
i+ 1

(π0s)
i
(1− π0)

d−1−i

((
πs − π0s

1− π0

)d−1−i

+

(
1−

(
πs − π0s

1− π0

)d−1−i
)
(1− p)

)
+

(π0s)
d−1

d

]
,

λ1f = dλ

[
d−2∑
i=0

(
d−1
i

)
i+ 1

(πf − π0f)
i

(
(πs − π0s)

d−1−ip′ + (πs)
d−1−i

(
1−

(
1− π0s

πs

)d−1−i
)
p

)

+
(πf − π0f)

d−1

d

]
,

λ1s = dλ
d−2∑
i=0

(
d−1
i

)
i+ 1

(πs − π0s)
i
(πf − π0f)

d−1−i
(1− p′) + λ(πs − π0s)

d−1.

Under JIFQOPT, we set p and p′ to the values corresponding to the solution of a non-linear optimization

problem where (i) the objective is to minimize the expected response time, (ii) the system parameters

λ, µf , µs, αf , αs, and d are taken as given constants and λij , π0j , Tj , Pjf , Rj , and R (i ∈ {0, 1}, j ∈ {f, s})

are treated as decision variables alongside p and p′, and (iii) the queueing-theoretic relationships between

these variables are captured through a set of constraints. Specifically, we have the following problem:

22

min E[T] = R(αf + λ0f)β0s

β0f + β0s + λ0fβ0sTf + λ0sβ0fTs

s.t. Rf =
1 + λ1f (Tf +Rf + PffRf + PfsRs) + αfRs

λ1f + µf + αf

Rs =
1 + λ1s (Ts +Rs + PsfRf + PssRs) + αsRf

λ1s + µs + αs

R0s =
λ0s(Rs + PssR0s)

λ0s + αs

R =
λ0f (Rf + PfsR0s) + αfR0s

λ0f + αf
,

Tx =
γy − β1f − β1s

γfβ1s + γs (αf + µf − λ1fPff)
x ∈ {f, s}, y ∈ {f, s} \ {x}

Pff =
λ1f

(
P 2
ff + PfsPsf

)
+ αfPsf + µf

λ1f + µf + αf

Psf =
λ1s (PsfPff + PssPsf) + αsPff

λ1s + µs + αs

λ0f = dλ

d−1∑
i=0

(
d−1
i

)
i+ 1

(π0f)
i (1− π0f)

d−1−i

λ1f = dλ

[
d−2∑
i=0

(
d−1
i

)
i+ 1

(πf − π0f)
i

(
(πs − π0s)

d−1−ip′ + (πs)
d−1−i

(
1−

(
1− π0s

πs

)d−1−i
)
p

)

+
(πf − π0f)

d−1

d

]

λ0s = dλ

[
d−2∑
i=0

(
d−1
i

)
i+ 1

(π0s)
i (1− π0)

d−1−i

((
πs − π0s

1− π0

)d−1−i

+

(
1−

(
πs − π0s

1− π0

)d−1−i
)
(1− p)

)
+

(π0s)
d−1

d

]
,

λ1s = dλ

d−2∑
i=0

(
d−1
i

)
i+ 1

(πs − π0s)
i (πf − π0f)

d−1−i (1− p′
)
+ λ(πs − π0s)

d−1

π0x =
β0y

β0f + β0s + λ0fβ0sTf + λ0sβ0fTs
x ∈ {f, s}, y ∈ {f, s} \ {x}

Rf ,Rs,R0s,R, Tf , Ts, Pff , Psf , λ0f , λ0f , λ0s, λ1s ≥ 0

0 < π0f , π0s ≤ 1

βjx = αx + λjxPxy and γx = λ1x − µx j ∈ {0, 1}, x ∈ {f, s}, y ∈ {f, s} \ {x}

We formulated the optimization problem in Julia using the JuMP package [7]. We used the Interior Point

Optimizer optimization package (IPOPT) [25, 35] to solve the optimization problem heuristically and

determine the best values of p and p′.2 IPOPT did not return a solution for 7% of the parameter settings.

For these parameter settings, we heuristically solved the optimization model by feeding the solution of

the best of the seven (non-optimized) policies studied earlier in this paper (specified in Table 2 for each

experiment) as an initial solution.3

2We note the p and p′ values that we find using IPOPT may not correspond to the theoretically optimal global solution as it is
not guaranteed that IPOPT will find such a solution. Nevertheless, we call the resulting policy JIFQOPT.

3Using this approach (where we feed an initial solution) on the remaining parameter settings for which it was not necessary did
not yield substantially different results: the greatest discrepancy in expected response times across all such parameter settings was
0.07%.

23

Table 4: Improvement achieved by implementing JIFQOPT

Best-performing non-optimized policy
Overall JFIQ- d JIFQ- d JIQBR- d JIQFP- d

Mean improvement 0.83% 0.00% 0.34% 3.58% 1.25%
Median improvement 0.00% 0.00% 0.00% 0.40% 0.25%
Maximum improvement 52.94% 0.41% 52.94% 46.07% 23.61%

Table 4 presents the summary statistics for the (heuristically found) JIFQOPT policy’s improvement over

the (parameter setting-specific) best of the seven (non-optimized) policies studied earlier in this paper

across the full range of parameter settings. The overall mean improvement is at 0.83%, and JIFQOPT

does not achieve noteworthy overall improvement over the best of the non-optimized policies across the

majority of the parameter settings (median improvement of 0.00%). However, Table 4 shows that there

exist instances when JIFQ- d, JIQBR- d, or JIQFP- d is the best of the non-optimized policies, where

optimization allows for substantial improvements as high as 52.94%. While JFIQ- d can perform quite

poorly on some parameter settings, optimization only allows for small (if any) benefits when JFIQ- d is the

best of the seven non-optimized policies; the largest improvement offered by optimization over JFIQ- d—

across those parameter settings where JFIQ- d outperformed the other six policies—was 0.41%.

Table 5 tabulates the details of the JIFQOPT’s improvement relative to the best-performing non-optimized

policy (presented in Table 2) for all experiments. We observe that JIFQOPT always performs at least as

well as the best non-optimized policy. In Fig. 7, we plot the mean and maximum improvement obtained

with JIFQOPT over the best non-optimized policy, varying the values across each parameter. We observe,

according to Table 5 and the plots in Fig. 7, that the modest improvements achieved using the optimization-

based policy JIFQOPT occur under the following ranges of the parameter settings:

– When the system load is high.

– When the speed difference between interference states is moderate (µs/µf ≥ 0.5).

– When the rate of state change in the interference state is much lower than the job processing rates

(αf ≤ αs ≪ µs ≤ µf).

In Appendix C, we recreate Table 5 with query sizes d = 3 (Table 12) and d = 4 (Table 13). The

parameter settings with significant JIFQOPT improvement remain as discussed for d = 2. However, since

the probability of reaching a fast idle server for the best-performing non-optimized heuristic increases as d

increases, the benefit of adopting JIFQOPT becomes less apparent. However, there exist instances where

we see significantly more improvements with JIFQOPT at d = 3 than d = 2. However, we can expect

that as d increases, the best-performing non-optimized heuristic would perform the same or very close

to JIFQOPT.

Finally, we briefly examine what these optimized policies look like and compare our policies to the con-

ventional (and heterogeneity/interference-unaware) JIQ and JSQ- d policies. Recall that under JIQ—a

policy that is outside of the “power-of-d” paradigm—the dispatcher is aware of all servers that are idle at

24

α
s

0.
02

0.
2

1
10

5
0

α
f
/α

s
0.
05

0.
1

0.
2

0
.5

1
0.
05

0.
1

0.
2

0.
5

1
0.
05

0
.1

0.
2

0.
5

1
0.
05

0
.1

0.
2

0
.5

1
0.
0
5

0.
1

0
.2

0
.5

1

ρ

0.
1

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
95

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
25

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
95

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.1

0
.1

0
.0

0
.0

0
.0

0
.1

0
.1

0
.0

0
.0

0
.0

0
.1

0
.1

0
.0

0
.0

0
.0

0
.1

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0.
95

0
.0

0
.0

0
.1

0
.1

0
.1

0
.0

0
.0

0
.1

0
.1

0
.1

0
.0

0
.0

0
.1

0
.1

0
.1

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0.
75

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.3

0
.0

0
.0

0
.0

0
.0

0
.3

0
.0

0
.0

0
.0

0
.0

0
.4

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.9

1
.5

1
.7

0
.1

3
.1

0
.9

1
.5

1
.6

0
.1

3
.1

0
.9

1
.4

1
.6

0
.1

2
.7

0
.6

1
.1

1
.0

0
.0

1
.2

0
.2

0
.4

0
.5

0
.0

0
.3

0.
95

0
.1

0
.1

0
.2

0
.3

0
.2

0
.1

0
.1

0
.2

0
.3

0
.2

0
.1

0
.1

0
.2

0
.3

0
.1

0
.0

0
.1

0
.1

0
.2

0
.1

0
.0

0
.0

0
.0

0
.1

0
.0

0.
9

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

1
.7

2
.4

1
.9

8
.0

8
.6

1
.6

2
.3

1
.7

7
.3

6
.9

1
.4

1
.9

1
.2

5
.3

3
.6

0
.7

0
.8

0
.3

1
.5

0
.7

0
.4

0
.4

0
.2

0
.2

0
.5

0.
8

6
.4

1
1
.1

1
6
.0

7
.2

1
2
.1

6
.3

1
0
.9

1
5
.5

6
.4

1
0
.1

5
.9

1
0
.0

1
3
.5

4
.5

6
.4

1
.2

2
.1

3
.2

1
.1

1
.5

0
.3

0
.5

0
.8

0
.3

0
.3

0.
95

0
.4

0
.7

1
.1

1
.7

0
.6

0
.4

0
.6

1
.0

1
.5

0
.5

0
.2

0
.4

0
.7

1
.0

0
.4

0
.1

0
.1

0
.2

0
.3

0
.1

0
.0

0
.0

0
.1

0
.1

0
.0

0.
95

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0.
5

5
.7

9
.3

1
0
.7

7
.8

5
2
.9

5
.3

8
.5

9
.2

6
.0

3
2
.8

4
.3

6
.4

5
.8

3
.6

1
4
.1

1
.6

2
.1

1
.3

0
.9

2
.1

0
.7

0
.8

0
.6

0
.0

1
.0

0.
8

1
6
.6

2
9
.7

4
6
.1

3
2
.0

3
7
.3

1
6
.0

2
8
.2

4
1
.7

2
4
.1

2
1
.4

1
0
.2

1
6
.6

2
3
.6

1
2
.7

9
.5

1
.5

2
.5

4
.0

2
.2

1
.7

0
.3

0
.5

0
.8

0
.6

0
.3

0.
95

2
.0

3
.4

5
.1

6
.7

1
.9

1
.2

2
.0

3
.2

4
.2

1
.2

0
.5

0
.9

1
.4

1
.9

0
.6

0
.1

0
.2

0
.2

0
.3

0
.1

0
.0

0
.0

0
.1

0
.1

0
.0

J
F
IQ

-
d

J
IF

Q
-d

J
IQ

B
R
-
d

J
IQ

F
P
-
d

T
ab

le
5:

T
h
e
p
er
ce
n
ta
ge

im
p
ro
v
em

en
t
w
it
h
J
IF

Q
O
P
T

ov
er

th
e
b
es
t
n
o
n
-o
p
ti
m
iz
ed

p
o
li
cy

w
it
h
d
=

2

25

0

1%

2%

3%

4%

0

10%

20%

30%

40%

50%

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

M
ea
n
%

im
p
ro
ve
m
en
t

M
a
x
im

u
m

%
im

p
rovem

en
t

(a)

0

1%

2%

3%

4%

0

10%

20%

30%

40%

50%

0.1 0.25 0.5 0.75 0.9 0.95

ρ

M
ea
n
%

im
p
ro
ve
m
en
t

M
ax

im
u
m

%
im

p
rovem

en
t

(b)

0

1%

2%

3%

4%

0

10%

20%

30%

40%

50%

0.02 0.2 1 10 50

αs

M
ea
n
%

im
p
ro
ve
m
en
t

M
ax

im
u
m

%
im

p
rovem

en
t

(c)

0

1%

2%

3%

4%

0

10%

20%

30%

40%

50%

0.05 0.1 0.2 0.5 1

αf/αs

M
ea
n
%

im
p
ro
ve
m
en
t

M
ax

im
u
m

%
im

p
rovem

en
t

(d)

Figure 7: Improvement of JIFQOPT over the best non-optimized policy

26

any given time (if any) without needing to query them and always sends a job to a randomly chosen idle

server (should any servers currently be idle); meanwhile, under JSQ- d, the dispatcher queries d servers at

random and sends the job to whichever queried server has the shortest queue (breaking ties at random).

Both policies make dispatching decisions without regard to the interference state information.

In Fig. 8, we plot the expected response times for the policies of interest introduced in this paper (the

four non-dominated non-optimized policies and JIFQOPT) and JIQ and JSQ- d across two families of

parameter settings where we allow λ to vary in each family. As discussed, we observe that JIFQOPT

always performs at least as well as the best non-optimized policy (introduced in this paper), if not better.

The flexibility in setting the p and p′ values allows for achieving the best non-optimized policy performance

or better after optimizing the policy parameters.

Figs. 8a2 and 8b2 plot p and p′ for JIFQOPT. In Fig. 8a2, we observe that under low to medium loads

(particularly in the region where the heuristically optimized parameter values are p = p′ = 1, which

is precisely when JIFQOPT simplifies to JFIQ- d), it is beneficial to route jobs to queried fast servers

whenever available because of the significant speed differences between the two interference states. As load

increases, it becomes advantageous to favor idleness over server speed (e.g., an idle server that is under-

interference may become preferable to a busy server that is interference-free) even when under-interference

servers are queried and there exist busy interference-free servers in the query; for example, at moderately

high loads, we see that heuristic optimization yields the parameter values p = 0 and p′ = 1, in which

case JIFQOPT simplifies to JIFQ- d. However, In Fig. 8b2, since there is little difference between server

speeds, we find p=1 even at very low loads. Under this setting, when the queried servers are all busy, we

would assign jobs to only interference-free servers, if possible, at very low loads. As load increases, we

would increase the probability of routing to busy under-interference servers (p′ decreases).

In the setting for Fig. 8a1 (where the speed difference between the slow and fast servers is signifi-

cant), JIFQOPT outperforms JSQ- d except at very high loads because JSQ- d does not take into account

interference-state information. Even JIQ, where the dispatcher is completely aware of all idle servers in

the system, is overshadowed by JIFQOPT at low loads for the same reason. The JIQ policy will fail to

make consistent use of fast idle servers before slow idle servers. Meanwhile, JIQ is dominant at high load

because it is crucial to dispatch jobs to idle servers whenever possible under high load; JIQ maximizes

the rate at which jobs are sent to idle servers. Moreover, faster servers will tend to become idle more

often under JIQ. These observations are consistent with those observed in [10] in the context of systems

with heterogeneous servers, each operating at a fixed speed. In Fig. 8b1, we see that JIQ and JSQ- d

outperform JIFQOPT except for a small region at very low loads, as interference has little effect on server

speed; hence, there is no value in using interference-state information. Ultimately, JIFQOPT is ideal for

low loads in settings where interference causes significant performance degradation. Otherwise, rather

than using the power-of-d paradigm, one can use JIQ to obtain excellent performance.

27

JFIQ- d JIFQ- d JIQBR- d JIQFP- d JIFQOPT JSQ- d JIQ

0%

25%

50%

75%

100%

0 5 10 15
λ

%
re
d
u
ct
io
n
in

E[
T
]
ov
er

R
N
D

(a1) E[T] comparisons

0.00

0.25

0.50

0.75

1.00

0 5 10 15
λ

J
IF

Q
O
P
T

p
ar
am

et
er
s

p
p′

(a2) JIFQOPT optimized parameters

(a) Parameter setting: λ = .25, .5, ...19;
µf = 25; µs = 10; αf = .05; αs = .1; d = 2

0%

25%

50%

75%

100%

0 5 10 15
λ

%
re
d
u
ct
io
n
in

E[
T
]
ov
er

R
N
D

(b1) E[T] comparisons

0.00

0.25

0.50

0.75

1.00

0 5 10 15
λ

J
IF

Q
O
P
T

p
ar
am

et
er
s

p
p′

(b2) JIFQOPT optimized parameters

(b) Parameter setting: λ = .25, .5, ...16;
µf = 17; µs = 16; αf = .05; αs = .1; d = 2

Figure 8: a1, b1: Percentage improvement compared to the random policy for different λ values for two
parameter settings; a2, b2: The optimal JIFQOPT parameters

28

6 Conclusion

In this paper, we studied the problem of scalable dispatching in the presence of servers that can undergo

interference (i.e., undergo speed state changes). We analyzed a set of easy-to-implement heuristic policies

based on the power-of-d-choices paradigm, dispatching incoming jobs based on the speed and idleness

status of a randomly sampled subset of servers. We presented a technique of exact measuring the per-

formance of these policies analytically using mean field analysis and recursive renewal reward, observing

and proving several intriguing results. We proved that power-of-d policies that use both interference

and idleness information outperform those that use only one type of information; specifically, JIQFP- d

and JFIQ- d outperform JIQ- d and JFQ- d, respectively. Though the best policy varies depending on the

system parameter settings, for each of the four non-dominated policies (JIQFP- d, JIQBR- d, JIFQ- d,

and JFIQ- d), we identified (through a comprehensive numerical investigation) parameter settings where

that policy outperforms the other three. Moreover, we found that naive use of speed information (as in

JFQ- d) can result in poor performance and often underperforms pure random dispatching.

We introduced the new sophisticated—yet still simple—JIFQOPT policy that can overcome the above-

mentioned deficiency. We found that this optimization-based policy is ideal for low loads in settings

where interference causes significant performance degradation. Meanwhile, in other settings, the con-

ventional JIQ policy outperforms the JIFQOPT policy. We note that one could develop a superior

speed-aware version of the JIQ policy that keeps communications down for systems with heterogeneous

servers operating at constant speeds. However, such a speed-aware version of JIQ may not allow for keep-

ing communication costs down in the context of interference, as this would require servers to communicate

all their speed changes (once detected) to the dispatcher. Future work could focus on the development of

such a policy. Furthermore, Figs. 8a1 and 8b1 motivate further work that could formulate load balancing

policies that take into account not only idleness information but also queue length information along with

interference state information for the job assignment. We are optimistic that such heterogeneity-aware

descendants of the JSQ- d policy would perform better than conventional policies such as JIQ and JSQ- d.

The analysis of these new policies would greatly differ from that presented here; it would likely necessitate

solving differential equations that govern the flow rates into different server states, similar to the concept

presented in [10]. Nevertheless, we anticipate that performance analysis will once again allow for finding

strong dispatching policies by heuristically optimizing across a broad family of parameterized dispatching

policies.

References

[1] Abdul Jaleel, J., Doroudi, S., Gardner, K., Wickeham, A.: A general “power-of-d” dispatching

framework for heterogeneous systems. Queueing Systems pp. 1–50 (2022)

29

[2] Abdul Jaleel, J., Wickeham, A., Doroudi, S., Gardner, K.: A general “power-of-d” dispatching

framework for heterogeneous systems. ACM SIGMETRICS Performance Evaluation Review 48(2),

30–32 (2020)

[3] Bramson, M., Lu, Y., Prabhakar, B.: Randomized load balancing with general service time distribu-

tions. ACM SIGMETRICS Performance Evaluation Review 38(1), 275–286 (2010)

[4] Bramson, M., Lu, Y., Prabhakar, B.: Asymptotic independence of queues under randomized load

balancing. Queueing Systems 71(3), 247–292 (2012)

[5] Bu, Q., Liu, L., Zhao, Y.Q.: Mean field approximations to a queueing system with threshold-based

workload control scheme. Communications in Statistics-Theory and Methods pp. 1–22 (2021)

[6] Bu, X., Rao, J., Xu, C.z.: Interference and locality-aware task scheduling for MapReduce applications

in virtual clusters. In: Proceedings of the 22nd international symposium on High-performance parallel

and distributed computing, pp. 227–238 (2013)

[7] Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for mathematical optimization.

SIAM review 59(2), 295–320 (2017)

[8] Ephremides, A., Varaiya, P., Walrand, J.: A simple dynamic routing problem. IEEE Transactions on

Automatic Control 25(4), 690–693 (1980)

[9] Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact analysis of the M/M/k/setup

class of Markov chains via recursive renewal reward. In: Proceedings of the ACM SIGMET-

RICS/international conference on Measurement and modeling of computer systems, pp. 153–166

(2013)

[10] Gardner, K., Abdul Jaleel, J., Wickeham, A., Doroudi, S.: Scalable load balancing in the presence of

heterogeneous servers. Performance Evaluation 145, 102151 (2021)

[11] Gardner, K., Harchol-Balter, M., Scheller-Wolf, A., Velednitsky, M., Zbarsky, S.: Redundancy-d: The

power of d choices for redundancy. Operations Research 65(4), 1078–1094 (2017)

[12] Gardner, K., Stephens, C.: Smart dispatching in heterogeneous systems. ACM SIGMETRICS Per-

formance Evaluation Review 47(2), 12–14 (2019)

[13] Harchol-Balter, M., Crovella, M.E., Murta, C.D.: On choosing a task assignment policy for a dis-

tributed server system. Journal of Parallel and Distributed Computing 59(2), 204–228 (1999)

[14] Hellemans, T., Van Houdt, B.: On the power-of-d-choices with least loaded server selection. Proceed-

ings of the ACM on Measurement and Analysis of Computing Systems 2(2), 1–22 (2018)

[15] Hyytiä, E.: Optimal routing of fixed size jobs to two parallel servers. INFOR: Information Systems

and Operational Research 51(4), 215–224 (2013)

[16] Javadi, S.A., Gandhi, A.: Dial: Reducing tail latencies for cloud applications via dynamic interference-

aware load balancing. In: 2017 IEEE International Conference on Autonomic Computing (ICAC),

pp. 135–144. IEEE (2017)

30

[17] Karthik, A., Mukhopadhyay, A., Mazumdar, R.: Choosing among heterogeneous server clouds.

Queueing Systems 85(1), 1–29 (2017)

[18] Kim, S.g., Eom, H., Yeom, H.Y.: Virtual machine consolidation based on interference modeling. The

Journal of Supercomputing 66(3), 1489–1506 (2013)

[19] Koole, G.: A simple proof of the optimality of a threshold policy in a two-server queueing system.

Systems & Control Letters 26(5), 301–303 (1995)

[20] Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling.

SIAM (1999)

[21] Li, Q.L., Chen, C., Fan, R.N., Xu, L., Ma, J.Y.: Queueing analysis of a large-scale bike sharing

system through mean-field theory. arXiv preprint arXiv:1603.09560 (2016)

[22] Li, Q.L., Dai, G., Lui, J.C.S., Wang, Y.: The mean-field computation in a supermarket model with

server multiple vacations. Discrete Event Dynamic Systems 24(4), 473–522 (2014)

[23] Li, Q.L., Yang, F.: Mean-field analysis for heterogeneous work stealing models. In: International

Conference on Information Technologies and Mathematical Modelling, pp. 28–40. Springer (2015)

[24] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J.R., Greenberg, A.: Join-Idle-Queue: A novel load

balancing algorithm for dynamically scalable web services. Performance Evaluation 68(11), 1056–

1071 (2011)

[25] Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS Journal on Com-

puting 27(2), 238–248 (2015)

[26] Luh, H.P., Viniotis, I.: Threshold control policies for heterogeneous server systems. Mathematical

Methods of Operations Research 55(1), 121–142 (2002)

[27] Maji, A.K., Mitra, S., Bagchi, S.: ICE: An integrated configuration engine for interference mitigation

in cloud services. In: 2015 IEEE International Conference on Autonomic Computing, pp. 91–100

(2015)

[28] Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE Transactions on

Parallel and Distributed Systems 12(10), 1094–1104 (2001)

[29] Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., Pu, C.: Understanding performance interference

of I/O workload in virtualized cloud environments. In: 2010 IEEE 3rd International Conference on

Cloud Computing, pp. 51–58 (2010)

[30] Ross, S.M., Kelly, J.J., Sullivan, R.J., Perry, W.J., Mercer, D., Davis, R.M., Washburn, T.D., Sager,

E.V., Boyce, J.B., Bristow, V.L.: Stochastic processes, vol. 2. Wiley New York (1996)

[31] Shimkin, N., Shwartz, A.: Control of admission and routing in parallel queues operating in a random

environment. In: Proceedings of the 28th IEEE Conference on Decision and Control,, pp. 1064–1065

(1989)

31

[32] Stolyar, A.L.: Pull-based load distribution in large-scale heterogeneous service systems. Queueing

Systems 80(4), 341–361 (2015)

[33] Votke, S., Jaleel, J.A., Suresh, A., Delasay, M., Doroudi, S., Gandhi, A.: Optimal Markovian dynamic

control of interference-prone server farms. In: 2019 IEEE 27th International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 295–308

(2019)

[34] Votke, S., Jaleel, J.A., Suresh, A., Delasay, M., Doroudi, S., Gandhi, A.: Optimal Markovian Dy-

namic Control of Interference-Prone Server Farms. In: 2019 IEEE 27th International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp.

295–308 (2019). DOI 10.1109/MASCOTS.2019.00041

[35] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm

for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006)

[36] Wang, C., Feng, C., Cheng, J.: Distributed join-the-idle-queue for low latency cloud services.

IEEE/ACM Transactions on Networking 26(5), 2309–2319 (2018)

[37] Weber, R.R.: On the optimal assignment of customers to parallel servers. Journal of Applied Prob-

ability 15(2), 406–413 (1978)

[38] Xu, F., Liu, F., Jin, H., Vasilakos, A.V.: Managing performance overhead of virtual machines in

cloud computing: A survey, state of the art, and future directions. Proceedings of the IEEE 102(1),

11–31 (2013)

32

A Appendix: Proofs of Results

A.1 Proof of Proposition 1

Deriving R and R0s:

We justify the expression for R below:

R =E[Reward accumulated in state (0, f) before exiting it]

+ P
[
Move to (1, f) from (0, f)

]
× E

[
Reward accumulated starting from (1, f)until end of cycle

]
+ P

[
Move to (0, s) from (0, f)

]
× E

[
Reward accumulated starting from (0, s)until end of cycle

]
,

(8)

in which:

E[Reward accumulated in state (0, f) before exiting it] = 0, by definition of R(t), (9)

P
[
Move to (1, f) from (0, f)

]
=

λ0f

λ0f + αf
, (10)

P
[
Move to (0, s) from (0, f)

]
=

αf

λ0f + αf
, (11)

E
[
Reward accumulated starting from (1, f)until end of cycle

]
= Rf + PfsR0s, (12)

E
[
Reward accumulated starting from (0, s)until end of cycle

]
= R0s. (13)

Substituting Eqs. (9)-(13) in Eq. (8) results in the expression for R in the proposition. The expression

for R0s can be derived in a similar fashion.

Deriving Rf and Rs:

We justify the expression for Rf below:

Rf = E[Reward accumulated during time in state (1, f) before leaving it]

+ P
[
Move to (2, f) from (1, f)

]
× E[Reward accumulated starting from (2, f)until it reaches state (0, f) or (0, s)]

+ P
[
Move to (1, s) from (1, f)

]
× E[Reward accumulated starting from (1, s)until it reaches state (0, f) or (0, s)],

(14)

33

in which:

E[Reward accumulated during time in state (1, f) before leaving it] =
1

λ1f + µf + αf
, (15)

P
[
Move to (2, f) from (1, f)

]
=

λ1f

λ1f + αf + µf
, (16)

P
[
Move to (1, s) from (1, f)

]
=

αf

λ1f + αf + µf
, (17)

E[Reward accumulated starting from (2, f)until it reaches state (0, f) or (0, s)] =

E[Reward accumulated starting from state (2, f)until we reach (1, f) or (1,s)]

+ P
[
Enter state (1, f) before (1, s) from (2, f)

]
×

E[Reward accumulated starting from (1, f)until it reaches state (0, f) or (0, s)]

+ P
[
Enter state (1, s) before (1, f) from (2, f)

]
×

E[Reward accumulated starting from (1, s)until it reaches state (0, f) or (0, s)]

= (Tf +Rf) + PffRN
f + PfsRs. (18)

In Eq. (18), note that we use the earlier defined property that the expected reward accumulated with the

instantaneous reward rate RN (t) when the tagged server begins in state (n, x) until it reaches state (n−1, f)

or (n− 1, s) for all n ≥ 1 will be Rx + (n− 1)Tx.

Substituting Eqs. (15)-(18) in Eq. (14) results in the equation for Rf in the proposition. The expression

for Rs can be derived in a similar fashion.

Deriving T :

We have:

T =E[Residing time in (0, f) when renewal cycle begins]

+ P[Transition to (1, f) from (0, f)] · E[Time to reach (0, f) from (1, f)]

+ P[Transition to (0, s) from (0, f)] · E[Time to reach (0, f) from (0, s)]. (19)

34

In Eq. (19):

E[Residing time in (0, f) when renewal cycle begins] =
1

λ0f + αf
(20)

P[Transition to (1, f) from (0, f)] =
λ0f

λ0f + αf
, (21)

E[Time to reach (0, f) from (0, s)] = E[Residing time in (0, s)]

+ P[Transition to (1, s) from (0, s)] · E[Time to reach (0, f) from (1, s)]

=
1

λ0s + αs
+

λ0s

λ0s + αs
(Ts + Pss E[Time to reach (0, f) from (0, s)])

Rearranging the terms we get:

E[Time to reach (0, f) from (0, s)] =
1 + λ0sTs

αs + λ0sPsf
. (22)

E[Time to reach (0, f) from (1, f)] = E[Time to reach (0, f) or (0, s) from (1, f)]

+ P[Enter (0, s) before (0, f) from (1, f)] · E[Time to reach (0, f) from (0, s)]

= Tf + Pfs
1 + λ0sTs

αs + λ0sPsf
(23)

P[Transition to (0, s) from (0, f)] =
αf

λ0f + αf
, (24)

Substituting Eqs. (20)–(24) in Eq. (19), we obtain:

T =
β0f + β0s + λ0fβ0sTf + λ0sβ0fTs

(αf + λ0f)β0s
.

where βjx = αx + λjxPxy and γx = λ1x − µx, j ∈ {0, 1}, x ∈ {f, s}, and y = {f, s} \ x.

A.2 Proof of Lemma 1

We explain the derivation of Pff below. The equations for Psf can be justified similarly. It follows by

definition that Pfs = 1− Pff and Pss = 1− Psf .

The tagged server can transition to three states when the server is in any state (n, f), n ≥ 1:

1. State (n + 1, f), with probability λ1f/(λ1f + µf + αf), from which the server can experience two

sets of paths such that it visits (n − 1, f) before (n − 1, s): (i) Visit (n, f) before (n, s) and then

visit (n − 1, f) before (n − 1, s); the probability of such a path is P 2
ff ; (ii) visit (n, s) before (n, f)

and then visit (n− 1, f) before (n− 1, s); the probability of such a path is PfsPsf . The contribution

of this state to measure Pff :
λ1f

λ1f + µf + αf

(
P 2
ff + PfsPsf

)
2. State (n, s), with probability αf/(λ1f + µf + αf), from which the server reaches (n−1, f) before (n−

35

1, s) with probability Psf . The contribution of this state to measure Pff :

αf

λ1f + µf + αf
Psf

3. State (n − 1, f), with probability µf/(λ1f + µf + αf), from which the server reaches (n − 1, f) be-

fore (n− 1, s). The contribution of this state to measure Pff :

µf

λ1f + µf + αf

Adding up the above three probabilities results in the equation for Pff .

A.3 Proof of Lemma 2

Looking at the state transition diagram in Fig. 2, we obtain the following equations for Tf and Ts:

Tf =
1 + λ1f (Tf + PffTf + PfsTs) + αfTs

(λ1f + µf + αf)
,

Ts =
1 + λ1s(Ts + PsfTf + PssTs) + αsTf

(λ1s + µs + αs)
.

(25)

We justify the expression for Tf , the expression for Ts then follows suit. Given that the tagged server is in

state (n, f) where n ≥ 1, the expected time it stays in state (n, f) is 1/(λ1f + µf + αf). With probabil-

ity λ1f/(λ1f + µf + αf), the next state of the server is (n+1, f) and with probability αf/(λ1f + µf + αf),

the next state of the server is (n, s). Once it enters state (n+ 1, f), it takes on average Tf time to reach

state (n, f) or (n, s). The probability of reaching (n, f) before (n, s) from (n+1, f) is Pff , and the server

then takes on average Tf time to reach (n − 1, f) or (n − 1, s) from (n, f). Similarly, the probability of

reaching (n, s) before (n, f) from (n+1, f) is Pfs and the server takes on average Ts time to reach (n−1, f)

or (n− 1, s) from (n, s). Solving the simultaneous equations given in (25) in terms of Tf and Ts we obtain

Eq. (5).

A.4 Proof of Lemma 3

As we did for calculating expected response time, we use the RRR method that takes advantage of the

repeating structure of the state transitions to calculate π0f and π0s. The Markov chain shown in Fig. 2

is ergodic, and hence, we can find expressions for the limiting probabilities π0f and π0s using renewal

theory. First let us consider π0f . To calculate π0f , let us denote the instantaneous rate of reward collected

at time t by R̄ (t). We set R̄ (t) = 1 if the server is in state (0, f) at time t and R̄ (t) = 0 if it is in any

other state at time t. To facilitate the calculation of π0f , we consider that the tagged server’s dynamics

renews itself each time it enters state (0, f) - just like we defined the renewal cycle for calculating the

36

expected response time. Hence T denotes the expected length of a cycle (renewal), which is the average

time taken by the tagged server to exit and return to state (0, f). Using the renewal theorem, it follows:

π0f = lim
s→∞

∫ s

0
R̄ (t) dt

s
=

E
[∫

cycle
R̄ (t) dt

]
Average cycle length

=
R̄
T
, (26)

where R̄ is the expected reward accumulated in one renewal, which is the average amount of time spent

in state (0, f) before leaving, i.e.,

R̄ =
1

(λ0f + αf)
(27)

We have the relation for T presented in Proposition 1. Substituting Eqs. (4), (27) in Eq. (26) we get:

π0f =
R̄
T

=
β0s

β0f + β0s + λ0fβ0sTf + λ0sβ0fTs
. (28)

For computing π0s, we similarly use the instantaneous rate of reward R̂ (t), R̂ (t) = 1 if the server is in

state (0, s) at time t and R̂ (t) = 0 otherwise. To facilitate the calculation of π0s, we can use a different

definition of the renewal cycle than that used to calculate π0f . To determine π0s, let us consider that the

tagged server sub-system’s dynamics renews itself each time it enters state (0, s) and the corresponding

expected length of a cycle (renewal) which is the average time taken by the tagged server to exit and

return to state (0, s) be T̃ . Again, using the renewal theorem, it follows:

π0s = lim
s→∞

∫ s

0
R̂ (t) dt

s
=

E
[∫

cycle
R̂ (t) dt

]
Average cycle length

=
R̂
T̃

(29)

where R̂ is the expected reward accumulated in one renewal which is the average amount of time spent

in state (0, s) before leaving, i.e.,

R̂ =
1

(λ0s + αs)
(30)

T̃ can be determined following the steps similar to determining T in Proposition 1. We get:

T̃ =
(β0f + β0s + λ0fβ0sTf + λ0sβ0fTs)

((αs + λ0s)β0f)
(31)

Substituting Eq. (30), (31) in Eq. (29) we get:

π0s =
R̂
T̃

=
β0f

β0s + β0f + λ0fβ0sTf + λ0sβ0fTs
. (32)

37

A.5 Proof of Proposition 2

Given that asymptotic independence holds, we can examine the Markov chain governing any tagged

server. A direct application of Theorem 7.2.3 from [20] shows that all such Markov chains are positive

recurrent. Moreover, by examining the case of PLCFS (preemptive last come first served) scheduling—

which performs the same as FCFS (first come first served) scheduling with respect to E[T]— we find that

the Tf , Ts, and E[T] values associated with a tagged server are finite so long as the average arrival rate

(once the chain begins to repeat), (λ1f (πf −π0f)+λ1s(πs−π0s))/(1−π0), is less than the average service

rate, (αsµf +αfµs)/(αf +αs). It is easy to show that this average arrival rate is at most λ for all policies

under consideration, which completes the proof.

A.6 Proof of Proposition 3

JFIQ- d (weakly) outperforms JFQ- d (i.e., E[T]JFIQ- d ≤ E[T]JFQ- d). We will use a first policy it-

eration argument to prove this result. First, observe that by Little’s Law, the problem of minimizing the

average response time is equivalent to minimizing the average number of jobs in the system,

E [N] =E
[
lim
s→∞

1

s

∫ s

0

N (t) dt

]
= lim

s→∞

1

s
E
[∫ s

0

N (t) dt

]
, (33)

where N(t) is the number of jobs in the system at time t. Next, observe that since (i) the dispatcher

does not use job size information when dispatching and (ii) jobs sizes are exponentially distributed, then

all work-conserving scheduling policies that—like the dispatcher—do not make use of job size information

will result in the same mean response. Furthermore, the stochastic evolution of N(t) is the same under

all such policies. Hence, let us assume (without loss of generality) that we are employing the PLCFS

(preemptive last come first served) scheduling policy, where all servers serve the job that most recently

arrived to their subsystem at all times, interrupting the service of the job currently being served whenever

a new job arrives to the subsystem. Interrupted jobs will later be resume service with no loss of work, but

since job sizes are exponentially distributed, the remaining service time when a previously interrupted job

resumes service must also be exponentially distributed (with the same rate as that of the overall job size

distribution).

Our first policy iteration argument works as follows: first, we take a system employing JFQ- d policy and

consider one particular arrival at any time t where the dispatcher is allowed to choose between JFQ- d

and JFIQ- d policies (the query size d being the same for both), we will show that irrespective of the

state of the system the dispatcher can only benefit with the JIFQ- d policy in expectation, this will be

sufficient to prove the result that JFIQ- d weakly outperforms JFQ- d.

Let a job arrival occur at time t. The dispatcher queries d servers. The JFIQ- d policy can differ from

the JFQ- d policy only under two scenarios that can arise from the result of this query: (i) if the query

result includes both an idle fast server and a busy fast server, and (ii) if none of the servers queried

38

were fast (i.e., all queried servers are undergoing interference), and among those (slow) servers that were

queried, at least one is idle and at least one is busy.

Let us consider the first scenario: JFIQ- d will dispatch to an idle fast server while JFQ- d can dispatch to

either an idle fast server or to a busy fast server. When the JFQ- d policy would ultimately send the job

to an idle fast server, then again there will be no difference in performance. However, when the JFQ- d

policy would ultimately send the job to a busy fast server, there may be a difference in performance.

From Eq. (33), the measure of interest to calculate to compare the two decisions will be

E
[∫ s

0

N (x) dx

∣∣∣∣send job arriving at time t to a busy fast server with n jobs

]
− E

[∫ s

0

N (x) dx

∣∣∣∣send job arriving at time t to an idle fast server

]
(34)

for a value of s that is sufficiently large compared to the job’s arrival time t.

Now observe that since we are assuming PLCFS scheduling and since the new arrival will be sent to a

fast server, the distribution of the response time of the new arrival will not depend on the server (and

specifically the idle/busy status of the server) to which it is dispatched: the job’s response time will be

distributed like a busy period duration beginning in the fast (i.e., interference-free state). In particular,

the expected response time of that job will be Tx. Moreover, the server to which the job is sent will

not affect the response time of future arrivals to these servers (assuming the JFQ- d policy will be used

for all further dispatching decisions), as all future arrivals will preempt any existing jobs. Therefore, the

choice of the server to which we dispatch this arrival impacts
∫ s

0
N(x) dx only insofar as it affects the jobs

already present at the server (to which the job is sent) at the time of the job’s arrival. Hence, the quantity

in expression (34) will be equal to the cumulative increase in response times experienced by the n jobs

already present at the busy fast server should the new arrival be sent to that server (rather than the idle

fast server).

As a consequence of the new arrival being sent to the busy server, each of the n preexisting jobs will

experience an increase in their response time equal to the duration of one busy period (due to the time to

process the new arrival and the jobs that preempt its processing, if any). Since these busy periods are of

strictly positive duration (and since n ≥ 1), the value in expression (34) is strictly positive, which allows

us to conclude that JFIQ- d will result in a lower response time than JFQ- d under this scenario.4

It remains to show that the same result holds in the second scenario where all queried servers are slow

and JFIQ- d will dispatch to an idle slow server while JFQ- d can dispatch to either an idle fast server or

4We note that the increase in response time need not be the same for all n such jobs, as some such busy periods may begin in
the fast state and some will begin in the slow state. One can show that the job that is k-th in service order (but the (n− k)-th of
the n jobs in arrival order) will experience an expected response time increase of

Bk ≡
(

1 0
)(Pff Pfs

Psf Pss

)k (
Tf

Ts

)
,

and so the quantity in expression (34) is precisely
∑n

k=1 Bk.

39

a busy fast server. An argument analogous to the one presented for the first scenario also holds for the

second scenario. This completes the proof. □

JIQ- d (weakly) outperforms RND (i.e., E[T]JIQ- d ≤ E[T]RND). We facilitate this proof by pre-

senting a method for finding E[T] under the JIQ- d and RND policies that is an alternative to that

presented in Section 3. Specifically, we compute E[T] under the assumption that jobs are served in PLCFS

order; this assumption is without loss of generality because—as we have discussed in the preceding proof

(which shows that E[T]JFIQ- d ≤ E[T]JFQ- d)—E[T] is the same under both FCFS and PLCFS scheduling.

This enables us to give the response time expressions for RND and JIQ- d in terms of their respective Tf

and Ts (defined before Proposition 1 and expression presented in Lemma 2).

For the RND Policy under PLCFS, all job arrivals to the fast state experience an average response time

of TRND
f , and all job arrivals to the slow state experience an average response time of TRND

s . So, we have

for the RND policy:

E[T]RND = πfT
RND
f + πsT

RND
s . (35)

For the JIQ- d policy, note that the average arrival rate to any server is still the same as that for RND

(i.e., λ). However, if we tag any server, its job arrival rate when idle (λ0) is greater than λ, and its

job arrival rate when busy (λ1) will be less than λ, which is a consequence of the definition of JIQ- d

(see Lemma 4.3). Next observe that under PLCFS, the jobs that arrive in the fast and slow states will

experience average response times of TJIQ- d
f and TJIQ- d

s , respectively; i.e., a

λ0π
JIQ- d
0f + λ1(πf − πJIQ- d

0f)

λ
and

λ0π
JIQ- d
0s + λ1(πs − πJIQ- d

0s)

λ

fraction of jobs will experience an average response time of TJIQ- d
f and TJIQ- d

s , respectively, yielding:

E[T]JIQ- d =

(
(λ0 − λ1)π

JIQ- d
0f + λ1πf

λ

)
TJIQ- d
f +

(
(λ0 − λ1)π

JIQ- d
0s + λ1πs

λ

)
TJIQ- d
s . (36)

Note that πf and πs only depend on the parameters αf and αs, and hence it is needless to distinguish

them across policies, unlike Tf and Ts. Now the following four relations can be observed from the state

transition Markov chains for the RND and JIQ- d policies:

(1) TJIQ- d
f ≤ TJIQ- d

s , (2) TRND
f ≤ TRND

s , (3) TJIQ- d
f ≤ TRND

f , (4) TJIQ- d
s ≤ TRND

s

Taking account of the above relations along with Eqs. (35) and (36) (both of which are written as weighted

averages of Tf and Ts values), if we can show that the coefficient of TJIQ- d
f in Eq. (36) is greater than or

40

equal to that of TRND
f in Eq. (35), i.e.

(λ0 − λ1)π
JIQ- d
0f + λ1πf

λ
≥ πf , (37)

then we must have E[T]JIQ- d ≤ E[T]RND, which proves the claim.

Rearranging terms, we find that Ineq. (37) is equivalent to

πJIQ- d
0f ≥ λ− λ1

λ0 − λ1
πf . (38)

Next, we show that

λ− λ1

λ0 − λ1
= πJIQ- d

0 , (39)

which allows us to rewrite Ineq. (38) (which if true, would complete the proof) as πJIQ- d
0f ≥ πJIQ- d

0 πf .

Recalling that the average arrival rate to a tagged server under any policy is λ, it must be the case that

πJIQ- d
0 λ0 + (1− πJIQ- d

0)λ1 = λ; rearranging yields the desired result, Eq. (39), from which it follows that

in order to complete the proof it is sufficient to show that πJIQ- d
0f ≥ πJIQ- d

0 πf . Furthermore, since we have

πJIQ- d
0 = πJIQ- d

0f + πJIQ- d
0s , it is sufficient to show that πJIQ- d

0f ≥
(
πJIQ- d
0f + πJIQ- d

0s

)
πf , which (noting

that 1− πf = πs) is equivalent to showing that

πJIQ- d
0f

πf
≥ πJIQ- d

0s

πs
(40)

So, it remains only to show that Ineq. (40), and we can interpret the left-hand side (respectively, the

right-hand side) of this inequality as the probability of the tagged-server’s subsystem being empty given

that the tagged server is in the fast (respectively, slow) interference state. So, if we can show that under

the JIQ- d policy, the likelihood of being idle is greater when we know that we are in the fast state as

compared to when we know we are in the slow state, then JIQ- d must outperform RND as claimed. To

this end, we leverage our expressions for π0f and π0s as presented in Lemma 3 (and let λ0f = λ0s = λ0

λ1f = λ1s = λ1 as is the case under JIQ- d), in order to obtain

πJIQ- d
0f

/
πf

πJIQ- d
0s

/
πs

=
αf (αs + λ0Psf)

αs(αf + λ0Pfs)
. (41)

Clearly Ineq.(41) holds if and only if Expression (40) is greater than or equal to 1, or equivalently if:

Psf

Pfs
≥ αs

αf
. (42)

Next, we show that Ineq. (42) holds true for the JIQ- d policy, which is sufficient to complete the proof. We

41

Number of jobs in the tagged server j

F (fast speed state)

S (slow speed state)

(0, f) (1, f) (2, f) (3, f) · · ·

(0, s) (1, s) (2, s) (3, s) · · ·

µf

µs

λ

λ

µf

µs

α
s

α
f

λ

λ

µf

µs

α
s

α
f

λ

λ

µf

µs

α
s

α
f

Figure 9: Markov chain to help prove that Psf and Pff increase with decrease in µs

do this in the following sequence: first, we show that for any parameter setting with µs = µf , Ineq. (42)

is satisfied with equality. Second, we will show with the help of an MDP model that given any system

parameters λ1, αf , αs, µf and µs, the ratio Psf/Pfs is increasing with decrease in µs(as long as the system

is stable).

We begin by restricting attention to the speed state transitions in the model, which reduces to the study

of the simple two-state Markov chain, where one transitions from the fast state to the slow state with rate

αf and vice-versa with rate αs.

Let Pxy(t) denote the probability of being in speed state y ∈ {s, f} at time t, given that the system is in

speed state x ∈ {s, f} at time 0. Then by Kolmogrov’s Backward and Forward equations we obtain the

following two expressions governing the first derivative of Pfs(t) with respect to t, P ′
fs(t):

P ′
fs(t) = αfPss(t)− αfPfs(t) = αf (1− Psf (t))− αfPfs(t) (43)

P ′
fs(t) = αfPff (t)− αsPfs(t) = αf (1− Pfs(t))− αsPfs(t). (44)

Equating the right-hand side of Eqs. (43) and (44), we obtain Psf (t)/Pfs(t) = αs/αf , which is a valid

equation for all policies and all times t ≥ 0.

Now consider the case where µs = µf , in which the time taken to reduce the total number in the system by

one unit does not depend on the current speed state, and hence we have Psf/Pfs = αs/αf (i.e., Ineq. (42)

holds in the special case where µs = µf). Next let us consider any set of problem parameters λ1, αf ,

αs, µf and µs. If we can show that the ratio Psf/Pfs increases as µs decreases, then our claim of JIQ- d

having an average response time at least as good as the RND policy for all problem parameter settings

is proved. Moreover, in order to show that Psf/Pfs is increasing, it is sufficient to show that both Psf

and Pff are increasing with decrease in µs, as Pfs = 1 − Pff . This is our goal in the coming steps. To

facilitate showing that both Psf and Pff are increasing with a decrease in µs, we analyze the Markov chain

in Fig. 9, and we build an MDP model.

Entering (or ending in) the terminal state (0, f) results in a reward of 1 unit. The other terminal state (0, s)

and all other states give 0 reward on visits. We use this Markov chain so that the expected reward at

each state corresponds to the probability of reaching state (0, f). Let us define the variable P0F(n,x)

as the probability of reaching state (0, f) given that the system is currently in state (n, x). Then by

42

definition, P0F(n,x) will correspond to the expected reward at state (n, x). Let us set P0F(1,f) = P̃ff

and P0F(1,s) = P̃sf . Note that if in the Markov chain represented by Fig.9, λ is set to λ1 of the JIQ- d

policy, then P̃ff and P̃sf will correspond to Pff and Psf of the respective JIQ- d policy.

Analyzing the Markov chain of Fig. 9 gives the following relations ∀n ≥ 0:

P0F(n+1,f) = P̃ffP0F(n,f) + (1− P̃ff)P0F(n,s), (45)

P0F(n+1,s) = P̃sfP0F(n,f) + (1− P̃sf)P0F(n,s). (46)

Studying Eqs. (45) and (46) gives the following order:

P0F(0,f) ≥ P0F(1,f) ≥ ... ≥ P0F(n,f) ≥ P0F(n,s) ≥ ... ≥ P0F(1,s) ≥ P0F(0,s). (47)

In the MDP problem, the decision epochs are the instances when an event takes place: this event can be an

arrival, a speed state change, or a service completion. The actions available when the server is functioning

at a slow speed is to choose service rates µs or µ′
s (µ′

s ≤ µs but µ′
s high enough to ensure stability). If

the server is functioning in the fast state, jobs are processed at rate µf . Let the base policy select µs if

the server is in the slow speed state. From relations (45)-(47), we observe that the decision of selecting

speed µ′
s increases the expected reward for every slow state, and using the notion of policy improvement for

MDPs, we have that adopting the µ′
s option at every epoch for all slow speed states improves the expected

reward at every state. This proves that decreasing µs will improve the ratio P̃sf/P̃fs and consequently we

have the inequality (42) proved for JIQ- d. □

JIQFP- d (weakly) outperforms JIQ- d (i.e., E[T]JIQFP- d ≤ E[T]JIQ- d). We use a first policy itera-

tion argument for this proof resembling that used in proving our first dominance result which was that

JFIQ- d (weakly) outperforms JFQ- d. Let us consider a situation where a job arrives and have the option

of choosing between JIQFP- d and JIQ- d in dispatching this job while assuming that all future job arrivals

will be dispatched according to the JIQ- d policy. If we can show that in all querying scenarios, JIQFP- d

will perform at least as well as JIQ- d, then by the first policy iteration argument, we have completed the

proof.

If the query result does not contain both fast and slow idle servers, then JIQFP- d and JIQ- d will perform

identically. In the case of the query result containing both fast and slow idle servers, the JIQFP- d policy

will dispatch the server to the idle fast server while the JIQ- d policy can dispatch to either the fast or

slow idle server. If the JIQ- d policy sends the job to an idle fast server, then it imitates the JIQFP- d

policy. However in the event that the JIQ- d policy dispatches the job to a slow idle server, JIQ- d will

result in an increased average number in system because the expected length of a busy period associated

with a server starting in the fast interference state under JIQ- d policy (Tf) is less than the expected

length of a busy period associated with a server starting in the in the slow interference state(Ts). The

43

proof can be completed by following steps very similar to those in our proof establishing that JFIQ- d

(weakly) outperforms JFQ- d.

B Appendix: Uniqueness of Pff , Pfs, Psf and Pss

In this appendix, we address the uniqueness of the solution to the system of equations given in Lemma 1

when solving for values Pff , Pfs, Psf , Pss ∈ [0, 1]. See that we could also write equations for Pfs and Pss

conditioning on the next transition rather than exploiting complementarity; in fact these equations would

be identical to the equations for Psf and Pff , respectively, except we would need to switch all f and s

symbols in the subscripts. For example, we would have

Pfs = (λ1f (PfsPss + PffPfs) + αsPss) /(λ1f + µf + αf).

Any solutions to our original system would also be solutions to an alternative system of four equations

with the same equations with Pff and Psf on the left-hand side, but with the equations with Pfs and Pss

on the left-hand side replaced by those described above. This alternative system is equivalent to a matrix

quadratic equation given in Eq. (8.15) of [20], where the authors prove in Theorem 8.1.4 that the “correct”

probabilities (corresponding to our Pff , Pfs, Psf and Pss) are those in the minimal nonnegative solution,

meaning that any extraneous solution to this matrix quadratic equation (and hence the alternative system

we have constructed) would either have a negative value corresponding to one or more of these variables,

or would give a greater value for each variable than that of the correct solution. However, if all such values

of an extraneous solution are greater, then this violates the Pfs = 1− Pff and/or Pss = 1− Psf .

C Appendix: Impact Of Higher Query Sizes

Table 6: Optimality proportion and improvement over RND when d = 3

Best-performing

policy

Optimality

proportion

Mean (10th–90th percentile)

improvement over RND

JFIQ- d 390 (37.1%) 81.4% (44.6%–99.8%)

JIFQ- d 418 (39.8%) 53.8% (13.3%–98.3%)

JIQBR- d 158 (15.0%) 72.0% (52.8%–97.9%)

JIQFP- d 84 (8.0%) 60.7% (47.3%–66.5%)

44

Table 7: Optimality proportion and improvement over RND when d = 4

Best-performing

policy

Optimality

proportion

Mean (10th–90th percentile)

improvement over RND

JFIQ- d 374 (35.6%) 82.2% (44.0%–99.8%)

JIFQ- d 451 (43.0%) 58.9% (14.6%–99.3%)

JIQBR- d 153 (14.6%) 76.5% (63.5%–98.3%)

JIQFP- d 72 (6.9%) 69.1 % (63.5%–74.5%)

Table 8: % increase in the expected response time due to implementing a non-optimal policy; the cell values
report the mean (10th–90th percentile) of the % increase (d = 3)

Implemented Best-performing policy

policy JFIQ- d JIFQ- d JIQBR- d JIQFP- d

JFIQ- d − 90.9 (0.3–35.9) 9680.2 (8.3–16270.1) 9638.5 (16.2–11325.7)

JIFQ- d 8.9 (0.3–25.8) − 802.7 (0–145.3) 432.7 (0.4–133.5)

JIQBR- d 23 (0.7–34.5) 34.1 (0–3.9) − 8.6 (0–23.2)

JIQFP- d 2350.6 (1.7–4898.2) 2017.4 (0–1264.7) 1042.8 (0–1125) −

RND 11652.3 (80.5–41384.9) 6340.2 (15.3–5750.8) 3892.8 (115.1–4734.9) 161.7 (92.9–198.4)

Table 9: % increase in the expected response time due to implementing a non-optimal policy; the cell values
report the mean (10th–90th percentile) of the % increase (d = 4)

Implemented Best-performing policy

policy JFIQ- d JIFQ- d JIQBR- d JIQFP- d

JFIQ- d − 102.0 (0.1–45.8) 21177.9 (10.2–43261.2) 16612.1 (19.6–17870.5)

JIFQ- d 10.6 (0.3–30.3) − 837.4 (0–195.4) 406.1 (0.4–96.6)

JIQBR- d 16.7 (0.4–38.7) 19.2 (0–4.4) − 4.7 (0.1–12.7)

JIQFP- d 2478.6 (0.5–4627.2) 2893.8 (0–2452.9) 590.6 (0–634.9) −

RND 18005.5 (78.7–61465.6) 11707.7 (17.1–15137.1) 4123 (174.2–5880.3) 237.4 (173.8–292)

45

JFIQ- d JIFQ- d JIQBR- d JIQFP- d

0%

20%

40%

60%

80%

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

B
es
t
P
ol
ic
y
%

(a) µs/µf ratio

0%

20%

40%

60%

80%

0.1 0.25 0.5 0.75 0.9 0.95

ρ

B
es
t
P
ol
ic
y
%

(b) ρ

0%

20%

40%

60%

80%

0.02 0.2 1 10 50

αs

B
es
t
P
o
li
cy

%

(c) αs

0%

20%

40%

60%

80%

0.05 0.1 0.2 0.5 1

αf/αs

B
es
t
P
ol
ic
y
%

(d) αf/αs

Figure 10: Marginal effect of system parameters on the best policy d = 3

46

JFIQ- d JIFQ- d JIQBR- d JIQFP- d

0%

20%

40%

60%

80%

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

B
es
t
P
ol
ic
y
%

(a) µs/µf ratio

0%

20%

40%

60%

80%

0.1 0.25 0.5 0.75 0.9 0.95

ρ

B
es
t
P
ol
ic
y
%

(b) ρ

0%

20%

40%

60%

80%

0.02 0.2 1 10 50

αs

B
es
t
P
o
li
cy

%

(c) αs

0%

20%

40%

60%

80%

0.05 0.1 0.2 0.5 1

AlpaF/ AlphaS

B
es
t
P
ol
ic
y
%

(d) αf/αs

Figure 11: Marginal effect of system parameters on the best policy d = 4

47

Mean

0%

25%

50%

75%

100%

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

%
im

p
ro
ve
m
en
t
of

B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
o
m

(a) µs/µf ratio

0%

25%

50%

75%

100%

0.1 0.25 0.5 0.75 0.9 0.95

ρ

%
im

p
ro
ve
m
en
t
o
f
B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
om

(b) ρ

0%

25%

50%

75%

100%

0.02 0.2 1 10 50

αs

%
im

p
ro
ve
m
en
t
o
f
B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
om

(c) αs

0%

25%

50%

75%

100%

0.05 0.1 0.2 0.5 1

αf/αs

%
im

p
ro
ve
m
en
t
o
f
B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
om

(d) αf/αs

Figure 12: Box Plot for the percentage improvement of the best performing heuristic over RND (d = 3)

48

Mean

0%

25%

50%

75%

100%

0.01 0.02 0.1 0.2 0.5 0.8 0.95

µs/µf

%
im

p
ro
ve
m
en
t
of

B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
o
m

(a) µs/µf ratio

0%

25%

50%

75%

100%

0.1 0.25 0.5 0.75 0.9 0.95

ρ

%
im

p
ro
ve
m
en
t
o
f
B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
om

(b) ρ

0%

25%

50%

75%

100%

0.02 0.2 1 10 50

αs

%
im

p
ro
ve
m
en
t
o
f
B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
om

(c) αs

0%)

25%

50%

75%

100%

0.05 0.1 0.2 0.5 1

αf/αs

%
im

p
ro
ve
m
en
t
o
f
B
es
t

h
eu

ri
st
ic

ov
er

R
an

d
om

(d) αf/αs

Figure 13: Box Plot for the percentage improvement of the best performing heuristic over Random when varying
each of the four parameter descriptions that define the problem setting. d = 4

49

α
s

0.
02

0
.2

1
10

5
0

α
f
/α

s
0.
05

0.
1

0.
2

0.
5

1
0.
0
5

0.
1

0
.2

0.
5

1
0
.0
5

0.
1

0.
2

0.
5

1
0
.0
5

0.
1

0.
2

0.
5

1
0
.0
5

0.
1

0.
2

0.
5

1

ρ

0.
1

µ
s
/µ

f

0.
01

9
9
.6

9
9
.8

9
9
.8

9
9
.6

9
3
.4

9
5
.9

9
7
.6

9
8
.3

9
6
.9

8
9
.9

8
2
.5

8
9
.3

9
2
.4

9
0
.5

8
2
.1

3
6
.8

4
9
.0

5
9
.5

6
4
.0

5
7
.2

1
7
.1

2
2
.0

2
7
.9

3
2
.5

2
9
.8

0.
02

9
9
.5

9
9
.7

9
9
.8

9
9
.8

9
9
.4

9
5
.3

9
7
.4

9
8
.3

9
7
.9

9
5
.4

8
1
.0

8
8
.4

9
2
.1

9
1
.5

8
5
.3

3
5
.8

4
7
.9

5
8
.5

6
3
.5

5
7
.1

1
6
.9

2
1
.7

2
7
.6

3
2
.2

2
9
.6

0.
1

8
7
.0

8
9
.8

9
0
.6

8
8
.3

8
1
.2

7
3
.9

8
2
.3

8
6
.7

8
6
.5

7
9
.9

5
6
.9

6
9
.5

7
8
.0

8
1
.0

7
5
.2

2
8
.4

3
8
.7

4
9
.3

5
6
.6

5
2
.5

1
5
.7

1
9
.9

2
5
.0

2
9
.5

2
7
.9

0.
2

3
3
.6

4
5
.4

5
6
.7

6
4
.8

6
2
.3

3
3
.0

4
4
.7

5
6
.1

6
4
.2

6
1
.8

3
1
.0

4
2
.3

5
3
.5

6
2
.0

5
9
.6

2
1
.8

2
9
.6

3
8
.7

4
6
.7

4
4
.7

1
4
.5

1
7
.8

2
2
.1

2
6
.5

2
5
.5

0.
5

1
4
.5

1
8
.2

2
3
.3

3
0
.0

3
1
.4

1
4
.5

1
8
.1

2
3
.2

2
9
.9

3
1
.3

1
4
.4

1
7
.9

2
2
.9

2
9
.5

3
0
.8

1
3
.6

1
6
.5

2
0
.6

2
5
.8

2
6
.5

1
2
.0

1
3
.6

1
5
.9

1
8
.7

1
8
.6

0.
8

1
1
.0

1
1
.9

1
3
.3

1
5
.6

1
6
.4

1
1
.0

1
1
.9

1
3
.3

1
5
.5

1
6
.4

1
1
.0

1
1
.9

1
3
.3

1
5
.5

1
6
.3

1
0
.8

1
1
.6

1
2
.9

1
4
.7

1
5
.2

1
0
.5

1
1
.1

1
1
.8

1
2
.9

1
3
.0

0.
95

1
0
.1

1
0
.3

1
0
.6

1
1
.1

1
1
.3

1
0
.1

1
0
.3

1
0
.6

1
1
.1

1
1
.3

1
0
.1

1
0
.3

1
0
.6

1
1
.1

1
1
.3

1
0
.1

1
0
.3

1
0
.5

1
1
.0

1
1
.1

1
0
.0

1
0
.2

1
0
.3

1
0
.6

1
0
.6

0.
25

µ
s
/µ

f

0.
01

9
9
.7

9
9
.8

9
9
.8

9
5
.7

8
5
.0

9
6
.7

9
8
.1

9
8
.6

9
4
.8

8
4
.4

8
5
.8

9
1
.3

9
3
.8

9
1
.2

8
1
.6

4
6
.6

5
6
.8

6
5
.5

6
8
.8

6
2
.4

2
9
.5

3
3
.3

3
7
.6

4
0
.2

3
7
.5

0.
02

9
9
.6

9
9
.8

9
9
.9

9
9
.6

9
1
.0

9
6
.5

9
8
.1

9
8
.7

9
7
.8

8
9
.8

8
5
.3

9
1
.1

9
4
.0

9
3
.1

8
5
.5

4
6
.1

5
6
.3

6
5
.1

6
8
.8

6
2
.9

2
9
.4

3
3
.1

3
7
.4

4
0
.0

3
7
.4

0.
1

9
9
.4

9
9
.7

9
9
.8

9
9
.8

9
9
.7

9
4
.3

9
6
.8

9
8
.0

9
8
.3

9
7
.3

7
8
.7

8
6
.6

9
1
.2

9
2
.8

9
0
.0

4
1
.6

5
0
.9

5
9
.8

6
5
.2

6
1
.2

2
8
.5

3
1
.7

3
5
.5

3
8
.2

3
6
.7

0.
2

9
7
.7

9
8
.5

9
8
.6

9
3
.2

8
4
.2

8
4
.0

8
9
.4

9
1
.7

8
9
.5

8
2
.4

6
2
.4

7
2
.7

7
9
.6

8
1
.8

7
7
.0

3
6
.2

4
3
.6

5
1
.5

5
7
.2

5
4
.2

2
7
.4

3
0
.0

3
3
.3

3
6
.2

3
5
.2

0.
5

2
9
.1

3
2
.9

3
7
.6

4
2
.7

4
2
.9

2
9
.1

3
2
.8

3
7
.5

4
2
.5

4
2
.7

2
8
.8

3
2
.4

3
6
.9

4
1
.8

4
2
.0

2
7
.2

2
9
.8

3
3
.2

3
6
.9

3
6
.8

2
5
.5

2
6
.7

2
8
.5

3
0
.4

3
0
.1

0.
8

2
4
.7

2
5
.4

2
6
.5

2
8
.0

2
8
.5

2
4
.7

2
5
.4

2
6
.5

2
8
.0

2
8
.4

2
4
.7

2
5
.4

2
6
.5

2
7
.9

2
8
.3

2
4
.6

2
5
.2

2
6
.1

2
7
.3

2
7
.5

2
4
.3

2
4
.7

2
5
.2

2
5
.9

2
5
.9

0.
95

2
4
.0

2
4
.1

2
4
.3

2
4
.6

2
4
.7

2
4
.0

2
4
.1

2
4
.3

2
4
.6

2
4
.7

2
4
.0

2
4
.1

2
4
.3

2
4
.6

2
4
.7

2
4
.0

2
4
.1

2
4
.3

2
4
.5

2
4
.6

2
3
.9

2
4
.0

2
4
.1

2
4
.3

2
4
.3

0.
25

µ
s
/µ

f

0.
01

9
9
.7

9
9
.9

9
9
.7

9
5
.4

8
6
.9

9
7
.5

9
8
.6

9
8
.7

9
4
.9

8
6
.5

8
9
.4

9
3
.5

9
5
.2

9
2
.6

8
4
.5

5
9
.6

6
7
.0

7
3
.1

7
5
.0

6
9
.0

4
6
.4

4
8
.6

5
1
.0

5
1
.8

4
9
.3

0.
02

9
9
.7

9
9
.9

9
9
.9

9
7
.0

8
9
.0

9
7
.5

9
8
.6

9
9
.0

9
6
.4

8
8
.4

8
9
.2

9
3
.4

9
5
.5

9
3
.7

8
6
.2

5
9
.3

6
6
.7

7
3
.0

7
5
.1

6
9
.5

4
6
.3

4
8
.5

5
0
.8

5
1
.8

4
9
.4

0.
1

9
9
.7

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
6
.7

9
8
.2

9
8
.9

9
9
.2

9
8
.8

8
6
.7

9
1
.8

9
4
.7

9
6
.0

9
4
.7

5
7
.0

6
3
.9

7
0
.4

7
3
.9

7
0
.3

4
5
.7

4
7
.7

4
9
.9

5
1
.5

4
9
.9

0.
2

9
9
.5

9
9
.7

9
9
.8

9
9
.9

9
9
.8

9
5
.1

9
7
.2

9
8
.2

9
8
.6

9
8
.3

8
2
.1

8
8
.4

9
2
.1

9
3
.9

9
2
.6

5
3
.6

5
9
.5

6
5
.3

6
8
.8

6
6
.0

4
5
.2

4
6
.9

4
9
.0

5
0
.6

4
9
.6

0.
5

7
4
.7

7
7
.2

7
7
.1

7
3
.9

6
9
.1

6
3
.2

6
9
.1

7
2
.6

7
2
.1

6
8
.1

5
4
.3

5
9
.9

6
4
.8

6
7
.2

6
4
.8

4
6
.3

4
8
.7

5
1
.6

5
4
.4

5
3
.8

4
4
.0

4
4
.8

4
5
.9

4
7
.1

4
6
.8

0.
8

4
3
.8

4
4
.5

4
5
.6

4
6
.8

4
7
.1

4
3
.8

4
4
.5

4
5
.5

4
6
.8

4
7
.0

4
3
.7

4
4
.4

4
5
.4

4
6
.5

4
6
.7

4
3
.4

4
3
.9

4
4
.5

4
5
.3

4
5
.3

4
3
.2

4
3
.4

4
3
.7

4
4
.1

4
4
.0

0.
95

4
3
.0

4
3
.0

4
3
.1

4
3
.3

4
3
.3

4
3
.0

4
3
.0

4
3
.1

4
3
.3

4
3
.3

4
3
.0

4
3
.0

4
3
.1

4
3
.3

4
3
.3

4
2
.9

4
3
.0

4
3
.1

4
3
.2

4
3
.2

4
2
.9

4
3
.0

4
3
.0

4
3
.1

4
3
.1

0.
25

µ
s
/µ

f

0.
01

9
9
.8

9
9
.9

9
9
.6

9
7
.2

9
1
.4

9
8
.1

9
8
.9

9
9
.0

9
6
.8

9
0
.9

9
1
.9

9
4
.9

9
6
.3

9
4
.8

8
9
.1

6
9
.0

7
4
.4

7
8
.8

8
0
.0

7
4
.8

5
9
.0

6
0
.5

6
2
.0

6
1
.9

5
8
.7

0.
02

9
9
.8

9
9
.9

9
9
.9

9
7
.8

9
2
.3

9
8
.1

9
8
.9

9
9
.2

9
7
.3

9
1
.8

9
1
.8

9
4
.9

9
6
.5

9
5
.3

8
9
.9

6
8
.8

7
4
.2

7
8
.7

8
0
.1

7
5
.0

5
9
.0

6
0
.5

6
1
.9

6
1
.9

5
8
.9

0.
1

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
9
.5

9
7
.7

9
8
.7

9
9
.2

9
9
.4

9
8
.5

9
0
.3

9
4
.0

9
6
.1

9
7
.1

9
5
.3

6
7
.3

7
2
.4

7
7
.0

7
9
.3

7
5
.9

5
8
.8

6
0
.1

6
1
.6

6
2
.0

5
9
.9

0.
2

9
9
.7

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
6
.9

9
8
.2

9
8
.9

9
9
.2

9
9
.1

8
8
.0

9
2
.4

9
4
.9

9
6
.2

9
5
.6

6
5
.5

7
0
.1

7
4
.7

7
7
.7

7
5
.7

5
8
.5

5
9
.6

6
1
.0

6
1
.7

6
0
.4

0.
5

9
8
.8

9
9
.3

9
9
.6

9
9
.6

9
9
.4

9
0
.7

9
4
.1

9
6
.0

9
6
.7

9
5
.4

7
5
.4

8
1
.4

8
5
.9

8
8
.1

8
6
.2

6
0
.3

6
2
.7

6
5
.5

6
7
.9

6
7
.0

5
7
.6

5
8
.1

5
8
.9

5
9
.5

5
9
.1

0.
8

6
1
.3

6
3
.6

6
5
.8

6
6
.8

6
5
.1

6
0
.1

6
2
.1

6
4
.2

6
5
.6

6
4
.2

5
8
.6

5
9
.9

6
1
.5

6
2
.9

6
2
.0

5
7
.2

5
7
.6

5
8
.1

5
8
.7

5
8
.3

5
6
.9

5
7
.0

5
7
.2

5
7
.4

5
7
.2

0.
95

5
6
.9

5
6
.9

5
7
.1

5
7
.2

5
7
.3

5
6
.9

5
6
.9

5
7
.1

5
7
.2

5
7
.2

5
6
.8

5
6
.9

5
7
.0

5
7
.1

5
7
.1

5
6
.8

5
6
.8

5
6
.9

5
6
.9

5
6
.9

5
6
.8

5
6
.8

5
6
.8

5
6
.8

5
6
.8

0.
25

µ
s
/µ

f

0.
01

9
9
.8

9
9
.9

9
9
.8

9
8
.5

9
4
.4

9
8
.4

9
9
.0

9
9
.2

9
8
.1

9
4
.0

9
3
.0

9
5
.6

9
6
.9

9
6
.4

9
2
.2

7
3
.4

7
7
.9

8
1
.6

8
2
.8

7
8
.4

6
4
.9

6
6
.0

6
7
.0

6
6
.4

6
2
.9

0.
02

9
9
.8

9
9
.9

9
9
.9

9
8
.8

9
5
.0

9
8
.3

9
9
.1

9
9
.3

9
8
.4

9
4
.6

9
2
.9

9
5
.6

9
6
.9

9
6
.6

9
2
.7

7
3
.2

7
7
.7

8
1
.5

8
2
.8

7
8
.6

6
4
.9

6
6
.0

6
7
.0

6
6
.4

6
3
.1

0.
1

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
9
.0

9
8
.1

9
8
.9

9
9
.3

9
9
.5

9
8
.4

9
1
.9

9
5
.0

9
6
.7

9
7
.4

9
5
.9

7
2
.2

7
6
.5

8
0
.4

8
2
.4

7
9
.5

6
4
.7

6
5
.6

6
6
.6

6
6
.5

6
4
.1

0.
2

9
9
.7

9
9
.9

9
9
.9

9
9
.9

9
9
.9

9
7
.5

9
8
.6

9
9
.1

9
9
.4

9
9
.4

9
0
.3

9
3
.9

9
6
.0

9
7
.1

9
6
.7

7
0
.7

7
4
.7

7
8
.6

8
1
.1

7
9
.3

6
4
.4

6
5
.2

6
6
.1

6
6
.3

6
4
.7

0.
5

9
9
.3

9
9
.6

9
9
.7

9
9
.8

9
9
.7

9
3
.7

9
6
.2

9
7
.5

9
8
.1

9
7
.3

8
1
.3

8
6
.4

9
0
.1

9
2
.2

8
9
.6

6
6
.3

6
8
.4

7
0
.9

7
2
.8

7
0
.2

6
3
.6

6
4
.0

6
4
.5

6
4
.7

6
3
.9

0.
8

9
3
.3

9
5
.6

9
6
.8

9
6
.9

9
4
.0

7
4
.5

7
8
.9

8
2
.4

8
4
.5

8
1
.7

6
5
.8

6
7
.4

6
9
.5

7
2
.7

7
1
.7

6
3
.3

6
3
.4

6
3
.5

6
4
.6

6
4
.4

6
3
.1

6
3
.1

6
3
.1

6
3
.3

6
3
.3

0.
95

6
3
.7

6
4
.2

6
4
.7

6
5
.2

6
5
.3

6
3
.5

6
3
.7

6
4
.1

6
4
.4

6
4
.5

6
3
.2

6
3
.3

6
3
.5

6
3
.6

6
3
.7

6
3
.1

6
3
.1

6
3
.1

6
3
.2

6
3
.2

6
3
.1

6
3
.1

6
3
.1

6
3
.1

6
3
.1

0.
25

µ
s
/µ

f

0.
01

9
9
.8

9
9
.9

9
9
.9

9
9
.0

9
5
.5

9
8
.4

9
9
.1

9
9
.3

9
8
.6

9
5
.1

9
3
.3

9
5
.8

9
7
.1

9
6
.9

9
3
.3

7
4
.6

7
8
.9

8
2
.5

8
3
.8

7
9
.6

6
6
.6

6
7
.5

6
8
.4

6
7
.7

6
4
.1

0.
02

9
9
.8

9
9
.9

9
9
.9

9
9
.2

9
6
.0

9
8
.4

9
9
.1

9
9
.4

9
8
.8

9
5
.6

9
3
.2

9
5
.8

9
7
.1

9
7
.0

9
3
.7

7
4
.5

7
8
.8

8
2
.3

8
3
.7

7
9
.8

6
6
.5

6
7
.5

6
8
.4

6
7
.7

6
4
.3

0.
1

9
9
.8

9
9
.9

9
9
.9

1
0
0
.0

9
9
.2

9
8
.2

9
9
.0

9
9
.4

9
9
.5

9
8
.6

9
2
.3

9
5
.2

9
6
.9

9
7
.5

9
6
.2

7
3
.5

7
7
.5

8
1
.2

8
3
.1

8
0
.5

6
6
.3

6
7
.2

6
8
.0

6
7
.7

6
5
.2

0.
2

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
9
.9

9
7
.7

9
8
.7

9
9
.2

9
9
.4

9
9
.4

9
0
.8

9
4
.2

9
6
.1

9
7
.2

9
6
.9

7
2
.1

7
5
.8

7
9
.3

8
1
.6

8
0
.1

6
6
.1

6
6
.8

6
7
.6

6
7
.4

6
5
.8

0.
5

9
9
.3

9
9
.6

9
9
.7

9
9
.8

9
9
.4

9
4
.2

9
6
.4

9
7
.6

9
8
.4

9
6
.8

8
2
.4

8
7
.1

9
0
.6

9
3
.0

9
0
.1

6
7
.7

6
9
.6

7
2
.0

7
4
.2

7
1
.8

6
5
.3

6
5
.5

6
5
.9

6
6
.3

6
5
.5

0.
8

9
5
.0

9
6
.6

9
7
.4

9
8
.1

9
7
.9

7
6
.9

8
0
.5

8
3
.1

8
7
.2

8
7
.0

6
6
.7

6
7
.7

6
8
.8

7
3
.8

7
4
.7

6
5
.0

6
5
.0

6
5
.0

6
5
.9

6
6
.2

6
4
.9

6
4
.9

6
4
.9

6
5
.0

6
5
.1

0.
95

6
8
.3

7
0
.2

7
1
.8

7
2
.2

7
1
.6

6
5
.6

6
6
.1

6
6
.7

6
7
.0

6
7
.4

6
5
.1

6
5
.2

6
5
.3

6
5
.4

6
5
.7

6
4
.9

6
5
.0

6
5
.0

6
5
.0

6
5
.0

6
4
.9

6
4
.9

6
4
.9

6
4
.9

6
5
.0

J
F
IQ

-
d

J
IF

Q
-d

J
IQ

B
R
-
d

J
IQ

F
P
-
d

T
ab

le
10
:
T
h
e
b
es
t
p
o
li
cy

a
n
d
it
s
p
er
ce
n
ta
g
e
im

p
ro
ve
m
en
t
co
m
p
a
re
d
to

R
N
D

.
d
=

3

50

α
s

0.
0
2

0
.2

1
10

50
α
f
/
α
s

0.
0
5

0.
1

0.
2

0.
5

1
0
.0
5

0
.1

0.
2

0.
5

1
0.
0
5

0.
1

0.
2

0
.5

1
0.
05

0.
1

0
.2

0.
5

1
0.
0
5

0
.1

0.
2

0
.5

1

ρ

0.
1

µ
s
/µ

f

0
.0
1

9
9
.6

9
9
.8

9
9
.9

9
9
.9

9
9
.6

9
5
.9

9
7
.8

9
8
.7

9
8
.7

9
7
.0

8
2
.6

8
9
.7

9
3
.5

9
4
.4

9
0
.3

3
7
.0

4
9
.5

6
1
.0

6
8
.8

6
5
.3

1
7
.3

2
2
.4

2
8
.9

3
5
.5

3
4
.3

0
.0
2

9
9
.5

9
9
.7

9
9
.8

9
9
.9

9
9
.7

9
5
.4

9
7
.5

9
8
.5

9
8
.8

9
7
.7

8
1
.1

8
8
.7

9
3
.0

9
4
.5

9
1
.3

3
6
.0

4
8
.4

5
9
.9

6
8
.1

6
5
.0

1
7
.1

2
2
.2

2
8
.6

3
5
.1

3
4
.0

0.
1

8
7
.1

8
9
.9

9
1
.0

9
0
.3

8
6
.2

7
4
.0

8
2
.5

8
7
.2

8
8
.8

8
5
.1

5
7
.1

6
9
.8

7
8
.9

8
4
.0

8
1
.3

2
8
.6

3
9
.2

5
0
.5

6
0
.5

5
9
.2

1
5
.9

2
0
.3

2
6
.0

3
2
.1

3
1
.8

0.
2

3
3
.8

4
5
.8

5
7
.7

6
8
.2

6
8
.6

3
3
.2

4
5
.1

5
7
.1

6
7
.7

6
8
.1

3
1
.2

4
2
.7

5
4
.6

6
5
.5

6
6
.1

2
2
.1

3
0
.1

3
9
.8

5
0
.2

5
0
.6

1
4
.7

1
8
.2

2
3
.0

2
8
.8

2
8
.8

0.
5

1
4
.8

1
8
.6

2
4
.2

3
2
.6

3
5
.7

1
4
.7

1
8
.5

2
4
.2

3
2
.5

3
5
.6

1
4
.6

1
8
.4

2
3
.9

3
2
.0

3
5
.0

1
3
.8

1
6
.8

2
1
.3

2
7
.9

2
9
.9

1
2
.1

1
3
.8

1
6
.4

2
0
.0

2
0
.6

0.
8

1
1
.1

1
2
.1

1
3
.6

1
6
.5

1
8
.0

1
1
.1

1
2
.1

1
3
.6

1
6
.5

1
7
.9

1
1
.1

1
2
.0

1
3
.6

1
6
.4

1
7
.8

1
1
.0

1
1
.8

1
3
.2

1
5
.5

1
6
.5

1
0
.6

1
1
.2

1
2
.1

1
3
.4

1
3
.8

0
.9
5

1
0
.2

1
0
.4

1
0
.8

1
1
.4

1
1
.8

1
0
.2

1
0
.4

1
0
.8

1
1
.4

1
1
.8

1
0
.2

1
0
.4

1
0
.7

1
1
.4

1
1
.7

1
0
.2

1
0
.4

1
0
.7

1
1
.2

1
1
.5

1
0
.1

1
0
.3

1
0
.5

1
0
.8

1
0
.9

0.
25

µ
s
/µ

f

0
.0
1

9
9
.7

9
9
.8

9
9
.9

9
9
.9

9
6
.0

9
6
.8

9
8
.2

9
8
.9

9
8
.9

9
5
.0

8
6
.1

9
1
.8

9
4
.9

9
5
.5

9
1
.4

4
7
.6

5
8
.0

6
7
.4

7
3
.5

7
0
.0

3
0
.7

3
4
.8

3
9
.9

4
4
.2

4
2
.3

0
.0
2

9
9
.6

9
9
.8

9
9
.9

9
9
.9

9
9
.8

9
6
.6

9
8
.2

9
8
.9

9
9
.1

9
8
.2

8
5
.6

9
1
.5

9
4
.8

9
5
.9

9
3
.5

4
7
.1

5
7
.5

6
7
.0

7
3
.3

7
0
.2

3
0
.6

3
4
.6

3
9
.6

4
4
.0

4
2
.2

0.
1

9
9
.4

9
9
.7

9
9
.8

9
9
.9

9
9
.8

9
4
.4

9
6
.9

9
8
.1

9
8
.6

9
8
.0

7
9
.1

8
7
.0

9
1
.7

9
4
.1

9
2
.5

4
2
.6

5
2
.1

6
1
.6

6
9
.0

6
7
.1

2
9
.7

3
3
.2

3
7
.7

4
1
.8

4
1
.0

0.
2

9
7
.7

9
8
.5

9
8
.6

9
4
.0

8
6
.9

8
4
.3

8
9
.6

9
2
.1

9
0
.7

8
5
.4

6
3
.1

7
3
.4

8
0
.5

8
3
.8

8
0
.8

3
7
.3

4
4
.9

5
3
.4

6
0
.9

5
9
.5

2
8
.7

3
1
.6

3
5
.4

3
9
.4

3
8
.9

0.
5

3
0
.3

3
4
.4

3
9
.7

4
5
.7

4
6
.6

3
0
.3

3
4
.3

3
9
.5

4
5
.6

4
6
.4

3
0
.0

3
3
.9

3
8
.9

4
4
.8

4
5
.7

2
8
.4

3
1
.2

3
5
.1

3
9
.8

4
0
.2

2
6
.5

2
7
.9

3
0
.0

3
2
.5

3
2
.5

0.
8

2
5
.7

2
6
.5

2
7
.8

2
9
.7

3
0
.3

2
5
.7

2
6
.5

2
7
.8

2
9
.7

3
0
.3

2
5
.7

2
6
.5

2
7
.7

2
9
.6

3
0
.2

2
5
.5

2
6
.2

2
7
.3

2
8
.8

2
9
.2

2
5
.2

2
5
.7

2
6
.3

2
7
.3

2
7
.4

0
.9
5

2
4
.9

2
5
.0

2
5
.3

2
5
.7

2
5
.8

2
4
.9

2
5
.0

2
5
.3

2
5
.7

2
5
.8

2
4
.9

2
5
.0

2
5
.3

2
5
.7

2
5
.8

2
4
.9

2
5
.0

2
5
.2

2
5
.6

2
5
.7

2
4
.8

2
4
.9

2
5
.1

2
5
.3

2
5
.3

0.
50

µ
s
/µ

f

0
.0
1

9
9
.8

9
9
.9

9
9
.9

9
9
.5

9
5
.1

9
7
.7

9
8
.8

9
9
.2

9
8
.9

9
4
.6

9
0
.2

9
4
.2

9
6
.3

9
6
.5

9
2
.5

6
2
.6

6
9
.8

7
6
.1

7
9
.7

7
6
.3

5
0
.4

5
2
.8

5
5
.6

5
6
.9

5
5
.1

0
.0
2

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
7
.2

9
7
.7

9
8
.7

9
9
.2

9
9
.4

9
6
.6

9
0
.0

9
4
.1

9
6
.3

9
7
.0

9
4
.1

6
2
.4

6
9
.6

7
5
.9

7
9
.8

7
6
.6

5
0
.3

5
2
.7

5
5
.5

5
6
.9

5
5
.2

0.
1

9
9
.7

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
7
.0

9
8
.3

9
9
.0

9
9
.3

9
9
.3

8
7
.7

9
2
.5

9
5
.3

9
6
.8

9
6
.4

6
0
.2

6
7
.0

7
3
.5

7
7
.8

7
5
.6

4
9
.8

5
1
.9

5
4
.2

5
6
.4

5
5
.3

0.
2

9
9
.5

9
9
.7

9
9
.8

9
9
.9

9
9
.8

9
5
.5

9
7
.4

9
8
.4

9
8
.8

9
8
.5

8
3
.4

8
9
.3

9
2
.9

9
4
.7

9
3
.7

5
7
.1

6
2
.9

6
8
.8

7
2
.8

7
0
.6

4
9
.2

5
0
.9

5
3
.2

5
5
.3

5
4
.6

0.
5

7
6
.5

7
8
.9

7
8
.9

7
6
.0

7
1
.7

6
5
.7

7
1
.4

7
4
.7

7
4
.4

7
0
.8

5
7
.5

6
2
.8

6
7
.5

6
9
.9

6
7
.8

5
0
.0

5
2
.4

5
5
.3

5
8
.1

5
7
.8

4
7
.9

4
8
.7

5
0
.0

5
1
.3

5
1
.1

0.
8

4
7
.6

4
8
.3

4
9
.4

5
0
.6

5
0
.9

4
7
.6

4
8
.3

4
9
.3

5
0
.6

5
0
.8

4
7
.5

4
8
.2

4
9
.2

5
0
.4

5
0
.5

4
7
.3

4
7
.7

4
8
.4

4
9
.2

4
9
.3

4
7
.0

4
7
.3

4
7
.6

4
8
.1

4
8
.0

0
.9
5

4
6
.8

4
6
.9

4
7
.0

4
7
.2

4
7
.2

4
6
.8

4
6
.9

4
7
.0

4
7
.2

4
7
.2

4
6
.8

4
6
.9

4
7
.0

4
7
.1

4
7
.2

4
6
.8

4
6
.8

4
6
.9

4
7
.1

4
7
.1

4
6
.7

4
6
.8

4
6
.9

4
6
.9

4
6
.9

0.
75

µ
s
/µ

f

0
.0
1

9
9
.8

9
9
.9

9
9
.9

9
9
.5

9
6
.9

9
8
.4

9
9
.1

9
9
.5

9
9
.1

9
6
.5

9
3
.2

9
5
.9

9
7
.3

9
7
.4

9
4
.8

7
3
.9

7
8
.6

8
2
.6

8
4
.6

8
1
.4

6
5
.5

6
6
.8

6
8
.2

6
8
.4

6
5
.8

0
.0
2

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
7
.7

9
8
.4

9
9
.1

9
9
.5

9
9
.5

9
7
.3

9
3
.1

9
5
.8

9
7
.3

9
7
.7

9
5
.5

7
3
.8

7
8
.5

8
2
.5

8
4
.5

8
1
.6

6
5
.4

6
6
.7

6
8
.1

6
8
.5

6
6
.0

0.
1

9
9
.8

9
9
.9

9
9
.9

1
0
0
.0

1
0
0
.0

9
8
.0

9
8
.9

9
9
.3

9
9
.5

9
9
.5

9
1
.9

9
5
.0

9
6
.8

9
7
.7

9
7
.5

7
2
.5

7
6
.9

8
0
.9

8
3
.5

8
1
.7

6
5
.2

6
6
.4

6
7
.8

6
8
.5

6
6
.9

0.
2

9
9
.7

9
9
.8

9
9
.9

9
9
.9

9
9
.9

9
7
.4

9
8
.5

9
9
.1

9
9
.3

9
9
.3

8
9
.9

9
3
.5

9
5
.7

9
6
.9

9
6
.7

7
0
.9

7
4
.8

7
8
.8

8
1
.8

8
0
.8

6
4
.9

6
6
.0

6
7
.3

6
8
.2

6
7
.2

0.
5

9
9
.0

9
9
.4

9
9
.6

9
9
.7

9
9
.5

9
2
.2

9
5
.1

9
6
.6

9
7
.2

9
6
.1

7
9
.2

8
4
.3

8
8
.1

9
0
.1

8
8
.5

6
6
.5

6
8
.5

7
1
.0

7
3
.2

7
2
.7

6
4
.2

6
4
.7

6
5
.5

6
6
.2

6
5
.9

0.
8

6
7
.3

6
9
.4

7
1
.3

7
2
.0

7
0
.7

6
6
.4

6
8
.1

6
9
.9

7
1
.0

6
9
.9

6
5
.1

6
6
.3

6
7
.6

6
8
.7

6
8
.1

6
3
.9

6
4
.3

6
4
.8

6
5
.2

6
4
.9

6
3
.6

6
3
.7

6
3
.9

6
4
.1

6
3
.9

0
.9
5

6
3
.5

6
3
.6

6
3
.7

6
3
.9

6
3
.9

6
3
.5

6
3
.6

6
3
.7

6
3
.9

6
3
.9

6
3
.5

6
3
.6

6
3
.7

6
3
.8

6
3
.8

6
3
.5

6
3
.5

6
3
.5

6
3
.6

6
3
.6

6
3
.5

6
3
.5

6
3
.5

6
3
.5

6
3
.5

0.
90

µ
s
/µ

f

0
.0
1

9
9
.9

9
9
.9

1
0
0
.0

9
9
.7

9
8
.4

9
8
.7

9
9
.3

9
9
.5

9
9
.4

9
8
.0

9
4
.5

9
6
.6

9
7
.7

9
8
.0

9
6
.4

7
9
.0

8
2
.6

8
5
.7

8
7
.0

8
4
.4

7
2
.3

7
3
.2

7
4
.0

7
3
.5

7
0
.4

0
.0
2

9
9
.9

9
9
.9

1
0
0
.0

9
9
.9

9
8
.7

9
8
.7

9
9
.3

9
9
.5

9
9
.6

9
8
.4

9
4
.4

9
6
.6

9
7
.7

9
8
.1

9
6
.7

7
8
.9

8
2
.5

8
5
.6

8
7
.0

8
4
.5

7
2
.3

7
3
.2

7
4
.0

7
3
.5

7
0
.6

0.
1

9
9
.8

9
9
.9

9
9
.9

1
0
0
.0

1
0
0
.0

9
8
.5

9
9
.1

9
9
.5

9
9
.6

9
9
.6

9
3
.6

9
6
.1

9
7
.5

9
8
.2

9
7
.9

7
8
.1

8
1
.6

8
4
.7

8
6
.6

8
4
.9

7
2
.2

7
3
.0

7
3
.8

7
3
.6

7
1
.5

0.
2

9
9
.8

9
9
.9

9
9
.9

1
0
0
.0

1
0
0
.0

9
8
.1

9
8
.9

9
9
.3

9
9
.5

9
9
.5

9
2
.3

9
5
.2

9
6
.9

9
7
.8

9
7
.7

7
7
.0

8
0
.2

8
3
.3

8
5
.5

8
4
.4

7
2
.0

7
2
.7

7
3
.4

7
3
.5

7
2
.1

0.
5

9
9
.4

9
9
.7

9
9
.8

9
9
.8

9
9
.8

9
5
.1

9
7
.0

9
8
.0

9
8
.5

9
8
.1

8
5
.4

8
9
.4

9
2
.3

9
3
.9

9
2
.6

7
3
.5

7
5
.3

7
7
.3

7
8
.7

7
7
.2

7
1
.4

7
1
.7

7
2
.1

7
2
.3

7
1
.7

0.
8

9
4
.8

9
6
.6

9
7
.6

9
7
.6

9
5
.4

8
0
.3

8
3
.9

8
6
.8

8
8
.1

8
5
.8

7
3
.4

7
5
.1

7
7
.1

7
9
.0

7
7
.9

7
1
.1

7
1
.3

7
1
.6

7
2
.4

7
2
.1

7
0
.9

7
1
.0

7
1
.0

7
1
.2

7
1
.1

0
.9
5

7
1
.5

7
1
.8

7
2
.3

7
2
.7

7
2
.7

7
1
.2

7
1
.5

7
1
.8

7
2
.0

7
2
.1

7
1
.0

7
1
.1

7
1
.3

7
1
.4

7
1
.4

7
0
.9

7
1
.0

7
1
.0

7
1
.0

7
1
.0

7
0
.9

7
0
.9

7
0
.9

7
0
.9

7
1
.0

0.
95

µ
s
/µ

f

0
.0
1

9
9
.9

9
9
.9

1
0
0
.0

9
9
.8

9
8
.9

9
8
.8

9
9
.3

9
9
.6

9
9
.5

9
8
.5

9
4
.9

9
6
.8

9
7
.8

9
8
.2

9
7
.0

8
0
.5

8
3
.8

8
6
.6

8
7
.8

8
5
.4

7
4
.3

7
5
.0

7
5
.6

7
4
.8

7
1
.6

0
.0
2

9
9
.9

9
9
.9

1
0
0
.0

9
9
.9

9
9
.1

9
8
.8

9
9
.3

9
9
.6

9
9
.6

9
8
.8

9
4
.8

9
6
.8

9
7
.8

9
8
.2

9
7
.2

8
0
.4

8
3
.7

8
6
.5

8
7
.8

8
5
.4

7
4
.3

7
5
.0

7
5
.6

7
4
.8

7
1
.8

0.
1

9
9
.9

9
9
.9

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
8
.6

9
9
.2

9
9
.5

9
9
.7

9
9
.6

9
4
.1

9
6
.4

9
7
.6

9
8
.3

9
8
.0

7
9
.6

8
2
.8

8
5
.6

8
7
.2

8
5
.6

7
4
.1

7
4
.8

7
5
.4

7
4
.9

7
2
.7

0.
2

9
9
.8

9
9
.9

9
9
.9

1
0
0
.0

1
0
0
.0

9
8
.2

9
9
.0

9
9
.4

9
9
.6

9
9
.6

9
2
.9

9
5
.6

9
7
.1

9
7
.9

9
7
.8

7
8
.6

8
1
.5

8
4
.3

8
6
.0

8
4
.8

7
3
.9

7
4
.5

7
5
.0

7
4
.8

7
3
.2

0.
5

9
9
.5

9
9
.7

9
9
.8

9
9
.9

9
9
.8

9
5
.6

9
7
.3

9
8
.3

9
8
.7

9
8
.3

8
6
.6

9
0
.3

9
3
.0

9
4
.7

9
3
.4

7
5
.3

7
6
.9

7
8
.8

8
0
.3

7
8
.8

7
3
.3

7
3
.6

7
3
.9

7
4
.1

7
3
.5

0.
8

9
6
.3

9
7
.6

9
8
.3

9
8
.7

9
8
.4

8
2
.9

8
6
.2

8
8
.9

9
1
.3

9
0
.4

7
4
.9

7
6
.0

7
7
.9

8
1
.3

8
0
.9

7
3
.1

7
3
.2

7
3
.2

7
4
.2

7
4
.1

7
3
.0

7
3
.0

7
3
.0

7
3
.2

7
3
.2

0
.9
5

7
5
.7

7
7
.2

7
8
.5

7
8
.9

7
8
.2

7
3
.6

7
4
.0

7
4
.5

7
4
.9

7
5
.0

7
3
.2

7
3
.3

7
3
.4

7
3
.5

7
3
.7

7
3
.1

7
3
.1

7
3
.1

7
3
.1

7
3
.1

7
3
.0

7
3
.0

7
3
.0

7
3
.0

7
3
.1

J
F
IQ

-
d

J
IF

Q
-d

J
IQ

B
R
-
d

J
IQ

F
P
-
d

T
ab

le
11
:
T
h
e
b
es
t
p
o
li
cy

a
n
d
it
s
p
er
ce
n
ta
g
e
im

p
ro
ve
m
en
t
co
m
p
a
re
d
to

R
N
D

.
d
=

4

51

α
s

0
.0
2

0
.2

1
1
0

5
0

α
f
/α

s
0.
0
5

0.
1

0.
2

0.
5

1
0
.0
5

0
.1

0
.2

0.
5

1
0
.0
5

0.
1

0.
2

0
.5

1
0
.0
5

0
.1

0
.2

0
.5

1
0
.0
5

0
.1

0
.2

0
.5

1

ρ

0.
1

µ
s
/µ

f

0.
0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
9
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2
5

µ
s
/µ

f

0.
0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
9
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

µ
s
/µ

f

0.
0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
9
5

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0.
7
5

µ
s
/µ

f

0.
0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.3

3
.6

0
.0

0
.0

0
.0

0
.2

3
.5

0
.0

0
.0

0
.0

0
.0

3
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.8

0
.3

0
.4

0
.3

0
.0

1
.5

0
.3

0
.4

0
.3

0
.0

1
.4

0
.2

0
.4

0
.3

0
.0

1
.3

0
.2

0
.3

0
.2

0
.0

0
.8

0
.1

0
.2

0
.1

0
.0

0
.3

0.
9
5

0
.0

0
.1

0
.1

0
.2

0
.1

0
.0

0
.1

0
.1

0
.2

0
.1

0
.0

0
.1

0
.1

0
.1

0
.1

0
.0

0
.0

0
.1

0
.1

0
.1

0
.0

0
.0

0
.0

0
.1

0
.0

0.
9

µ
s
/µ

f

0.
0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

2
.0

0
.0

0
.0

0
.0

0
.0

0
.9

0
.0

0
.0

0
.0

0
.0

0
.4

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.5

0
.7

1
.0

0
.8

0
.8

2
4
.9

0
.6

0
.9

0
.8

0
.8

2
3
.0

0
.6

0
.8

0
.6

0
.9

1
7
.9

0
.3

0
.4

0
.2

0
.5

5
.8

0
.2

0
.2

0
.2

0
.1

1
.1

0
.8

3
.6

6
.0

8
.2

3
.4

3
.0

3
.5

6
.0

8
.0

3
.3

2
.8

3
.4

5
.6

7
.4

2
.7

2
.2

1
.0

1
.7

2
.8

0
.9

0
.8

0
.3

0
.5

0
.8

0
.3

0
.2

0.
9
5

0
.2

0
.3

0
.5

0
.8

0
.2

0
.2

0
.3

0
.5

0
.8

0
.2

0
.1

0
.3

0
.4

0
.6

0
.1

0
.1

0
.1

0
.2

0
.2

0
.1

0
.0

0
.0

0
.1

0
.1

0
.0

0.
9
5

µ
s
/µ

f

0.
0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.1

0
.0

0
.1

0
.5

0
.0

0
.0

0
.0

0
.3

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2

0
.1

0
.5

3
.3

5
.6

7
.3

0
.4

7
0
.4

3
.2

5
.3

6
.7

0
.2

4
4
.1

2
.7

4
.3

5
.0

0
.0

2
3
.4

1
.2

1
.7

1
.6

0
.0

5
.3

0
.5

0
.7

0
.6

0
.0

0
.9

0
.8

1
0
.7

1
8
.9

2
8
.5

1
9
.7

6
.6

1
0
.5

1
8
.3

2
7
.0

1
7
.0

5
.2

8
.0

1
3
.2

1
9
.1

1
1
.1

3
.1

1
.4

2
.4

3
.7

2
.5

0
.8

0
.3

0
.6

0
.9

0
.7

0
.2

0.
9
5

0
.8

1
.4

2
.2

3
.1

0
.4

0
.6

1
.1

1
.7

2
.4

0
.3

0
.4

0
.6

1
.0

1
.4

0
.2

0
.1

0
.1

0
.2

0
.3

0
.1

0
.0

0
.0

0
.1

0
.1

0
.0

J
F
IQ

-
d

J
IF

Q
-d

J
IQ

B
R
-
d

J
IQ

F
P
-
d

T
ab

le
12
:
T
h
e
p
er
ce
n
ta
ge

im
p
ro
v
em

en
t
w
it
h
J
IF

Q
O
P
T

ov
er

th
e
b
es
t
n
o
n
-o
p
ti
m
iz
a
ti
o
n
h
eu
ri
st
ic

p
o
li
cy

d
=

3

52

α
s

0.
0
2

0.
2

1
1
0

5
0

α
f
/α

s
0
.0
5

0.
1

0.
2

0.
5

1
0
.0
5

0.
1

0
.2

0.
5

1
0.
05

0.
1

0.
2

0.
5

1
0.
0
5

0
.1

0
.2

0.
5

1
0.
05

0
.1

0
.2

0
.5

1

ρ

0.
1

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
95

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
25

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
95

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.9

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
95

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
75

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.8

0
.0

0
.0

0
.0

0
.0

0
.7

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
8

0
.0

0
.0

0
.0

0
.2

1
.1

0
.0

0
.0

0
.0

0
.2

1
.1

0
.0

0
.0

0
.0

0
.2

1
.1

0
.0

0
.0

0
.0

0
.2

0
.7

0
.0

0
.0

0
.0

0
.1

0
.3

0.
95

0
.0

0
.0

0
.1

0
.0

0
.1

0
.0

0
.0

0
.1

0
.0

0
.1

0
.0

0
.0

0
.1

0
.0

0
.1

0
.0

0
.0

0
.1

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0.
9

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

4
.7

0
.0

0
.0

0
.0

0
.0

3
.4

0
.0

0
.0

0
.0

0
.0

0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
5

0
.2

0
.2

0
.0

1
.7

1
3
.5

0
.2

0
.2

0
.0

1
.7

1
2
.9

0
.2

0
.1

0
.0

1
.7

1
0
.7

0
.1

0
.0

0
.0

1
.0

4
.3

0
.1

0
.0

0
.0

0
.2

1
.0

0.
8

2
.0

3
.0

3
.3

0
.6

1
.6

2
.0

3
.0

3
.2

0
.5

1
.5

1
.9

2
.8

3
.0

0
.5

1
.3

0
.8

1
.5

1
.7

0
.2

0
.6

0
.3

0
.5

0
.7

0
.1

0
.2

0.
95

0
.1

0
.2

0
.3

0
.5

0
.1

0
.1

0
.2

0
.3

0
.5

0
.1

0
.1

0
.2

0
.3

0
.4

0
.1

0
.0

0
.1

0
.1

0
.2

0
.1

0
.0

0
.0

0
.1

0
.1

0
.0

0.
95

µ
s
/µ

f

0.
01

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
02

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.1

0.
2

0
.0

0
.0

0
.2

0
.7

1
.2

0
.0

0
.0

0
.1

0
.4

0
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.2

0
.0

0
.0

0
.0

0
.2

0
.6

0.
5

1
.8

0
.0

2
.8

0
.0

2
2
.3

1
.8

2
.6

2
.6

0
.0

1
8
.4

1
.5

2
.2

1
.9

0
.1

1
2
.0

0
.7

0
.9

0
.6

0
.1

3
.5

0
.3

0
.4

0
.2

0
.0

0
.6

0.
8

7
.1

1
1
.6

1
5
.1

6
.6

2
.4

7
.0

1
1
.3

1
4
.5

6
.0

2
.1

6
.1

1
0
.2

1
2
.4

4
.3

1
.5

1
.2

2
.2

3
.4

1
.1

0
.5

0
.3

0
.6

0
.9

0
.3

0
.1

0.
95

0
.4

0
.7

1
.2

1
.8

0
.1

0
.4

0
.7

1
.1

1
.5

0
.1

0
.3

0
.5

0
.7

1
.0

0
.1

0
.1

0
.1

0
.2

0
.3

0
.0

0
.0

0
.0

0
.1

0
.1

0
.0

J
F
IQ

-
d

J
IF

Q
-d

J
IQ

B
R
-
d

J
IQ

F
P
-
d

T
ab

le
13
:
T
h
e
p
er
ce
n
ta
ge

im
p
ro
v
em

en
t
w
it
h
J
IF

Q
O
P
T

ov
er

th
e
b
es
t
n
o
n
-o
p
ti
m
iz
a
ti
o
n
h
eu
ri
st
ic

p
o
li
cy

d
=

4

53

