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Abstract
Internet-based technology enables firms to disseminate real-time delay information to
delay-sensitive customers. We study how such delay announcements impact service
providers in a competitive environment with two service providers who compete for
market share. We model the service providers’ strategies based on an endogenous tim-
ing game, investigating strategies that emerge in equilibrium. We determine the service
providers’ market shares under the various game outcomes by analyzing continuous-
time Markov chains, which capture customers’ joining decisions, and by developing a
novel computational technique to analyze the intractable asymmetric Join-the-Shortest
Queue system, providing bounds on the market shares. We find that only the lower
capacity service provider announces its real-time delay under intermediate system loads
and highly imbalanced capacities. However, for most parameter settings, the mere pres-
ence of a competitor induces both providers to announce delays in equilibrium, leaving
customers better off on average. We relate our findings to the single-provider delay
announcement literature by discussing the impact of competition on service providers,
delay announcement technology firms, and customers.
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1 INTRODUCTION

Many service providers use delay information to manage con-
gestion by influencing their customers’ patronage decisions.
Internet-based technology advancements have enabled cus-
tomers to be informed about their delay at multiple service
providers simultaneously—even before physically interact-
ing with any of them—to decide which provider to patronize.
For example, the HCA East Florida hospital system pub-
lishes real-time estimated delays at its emergency rooms
(ERs) on its website (HCA East Florida, 2019). Similarly, the
paid ERtexting service allows hospitals to text their expected
delays to a central server that broadcasts the information to
the community (Sadick, 2012). Many restaurants also employ
Internet-based applications, such as Yelp Waitlist, to dissemi-
nate the expected time-to-seat to their potential diners (Yelp,
2022).

When a service provider functions in isolation, the extant
literature has documented the advantages of delay announce-
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ments for both the service provider and customers (e.g.,
Whitt, 1999). Multi-service provider (or network) settings
where all providers announce equally rich delay information
have also received attention recently. Specifically, the impli-
cation of delay information on network synchronization (or
coordination) has been studied in the context of ambulance
diversion and ERs (Deo & Gurvich, 2011; Dong et al., 2019).
However, competitive service providers may not broadcast
the same types of information. For example, the Allegheny
Health Network in Pittsburgh announces real-time delays
for its urgent care centers (Rittmeyer, 2019), whereas the
competing University of Pittsburgh Medical Center network
does not currently provide such information. Similarly, not
all restaurants are subscribed to Yelp Waitlist (Yelp, 2022).
Therefore, it is not atypical for customers to make patronage
decisions based on heterogeneously rich delay information
from multiple service providers. In such cases, customers
could turn to historical information in the absence of
real-time information from a service provider (Brian, 2021;
Perez, 2015).
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2 SINGH ET AL.Production and Operations Management

Given such information heterogeneity in practice, it is
important to study the motivation behind them—specifically,
when service providers should or should not announce real-
time delay in the presence of competition. Accordingly, we
answer the following research questions:

1. What operational factors drive a service provider’s deci-
sion on whether to announce real-time delay or not in the
presence of competition? How?

2. In the presence of competition, how does delay announce-
ment technology impact customers, service providers, and
the technology providers? How do these insights (in a het-
erogeneous competitive setting) compare with those for a
single provider?

We consider a network setting where delay-sensitive cus-
tomers make patronage decisions based on (potentially)
heterogeneously rich delay information from two service
providers with comparable services, cost, and quality, but
possibly different service capacities. These service providers,
namely, A and B, compete for market share and are con-
sidering disseminating truthful1 real-time delay information.
Either of the service providers can initiate announcing real-
time delay information, and once a service provider does so,
the other service provider decides whether to respond by ini-
tiating their own delay announcements. We model the service
providers’ strategies using an endogenous timing game. We
determine the game outcome in various information settings,
leveraging the analysis of continuous-time Markov chain
(CTMC) models representing the dynamics of customers’
patronage decisions based on the available information. Our
analysis contributes methodologically by presenting a novel
procedure to compute the first nontrivial bounds on the arrival
rates for asymmetric Join-the-Shortest Queue (JSQ) systems.

Our analysis reveals that both A and B typically find it
favorable, in equilibrium, to announce real-time information.
However, there are cases in which the system load and rel-
ative service capacities affect their decisions. In particular,
when service capacities are highly imbalanced and the sys-
tem load is intermediate, only the lower capacity service
provider announces real-time delay, in equilibrium. Our find-
ings under the competitive setting differ significantly from
the extant literature about monopolistic settings. Specifically,
in competitive settings, firms are more likely to announce
their real-time delay, typically to the benefit of the lower
capacity firm. (In a monopolistic setting, a firm would only
announce delay when service capacity is low, or when ser-
vice capacity is high but load is sufficiently low.) Further,
from the technology providers’ perspective, competitive firms
are keener adopters compared to monopolists. This leads
to customers being better off than in the absence of delay
announcement technology. This differs from findings from
the single-provider literature, where external intervention
may be necessary to induce service providers to announce
delay and therefore make customers better off (Hassin, 1986).

We complement our main results with three extensions to
our base model. First, we extend to applications where cus-

tomers patronize based on expected sojourn time rather than
expected delay. Then, we extend to the case where announce-
ments cost the service providers (for example, the service
providers may pay a subscription fee to a third-party firm,
like Yelp, for real-time delay announcement infrastructure).
In this case, we find that the equilibrium delay announcement
strategy is much more nuanced when the cost is moderate:
the equilibrium outcome could involve none, one, or both of
the providers announcing, and is highly sensitive to system
load and the service providers’ relative service rates. When
the cost is high, neither of the providers announces delay in
equilibrium. Finally, we extend our model to customers balk-
ing if their wait is too long. All our findings carry over to
this setting.

2 LITERATURE REVIEW

We first briefly review the literature about delay estimators,
as one of our modeling choices pertains to delay estima-
tions. Then, we review and highlight our contributions to two
literature streams related to delay information provision in
single-service provider and multi-service provider settings.

Delay estimators
We consider that service providers announce (if they decide
to do so) queue length (QL) delay (expected delay ≈ queue
length × average service time), which is commonly used in
Markovian first-come-first-served (FCFS) systems because
of its computational simplicity and accuracy (Ibrahim &
Whitt, 2009a). Extensions are available for systems with
customer abandonment, priority service, and time-varying
arrivals (Ibrahim & Whitt, 2009b, 2011; Jouini et al., 2009,
2015). Ibrahim (2018) provides a comprehensive review of
the delay announcement literature, including various types of
delay estimators.

Delay information provision in single-service provider
settings
The impact of delay information provision has been studied
extensively in single-service provider settings. Whitt (1999)
and Armony and Maglaras (2004), among others, document
the benefits of QL announcements to improve wait times and
system utilization when customers use them to make join-
ing decisions. Armony et al. (2009) model the equilibrium
joining behavior of utility-maximizing customers in a multi-
server queueing environment. Akşin et al. (2016) show how
customers react to long announced delays by abandoning ser-
vice. Jouini et al. (2011) study the impact of announcing
different percentiles of the waiting time distribution to control
the system congestion.

In these single-service provider settings, it is not always
optimal for a firm to disclose delay information. For
example, Hassin (1986) shows that a revenue-maximizing
service provider prefers to suppress her QL delay when
her service rate is high and the system load is low. Dobson
and Pinker (2006) show that a self-interested firm may hide
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lead time information when customers have a sufficiently
low level of heterogeneity in their patience levels. Guo and
Zipkin (2007) show that broadcasting more precise infor-
mation could degrade system performance and customer
experience under some waiting cost distributions; therefore,
a self-interested firm may intentionally provide incomplete
information (Allon et al., 2011; Guo et al., 2022). Dimi-
trakopoulos et al. (2021) study a firm that reveals and hides
its QL in alternating periods. They show that the firm’s profit
generally improves if the durations of the revealing and
hiding periods are appropriate.

In the papers mentioned above, customers’ alternative to
joining is to balk if their expected wait time is longer than
their patience level. In contrast, we primarily focus on mod-
eling competition as a service alternative by considering a
two-service provider setting. This distinction produces fun-
damentally different results concerning when a firm should
announce delay information. The main effect of competition
is generally to induce both service providers to announce
delay in equilibrium, leaving small regions of the param-
eter space where only the lower capacity service provider
announces delay in equilibrium.

Delay information provision in multi-service provider
(network) settings
We now discuss network settings (settings with multiple
service providers). Ambulance diversion in ERs is closely
related to the practice of delay announcement; ERs can
request diversion of ambulances to other hospitals during
overcrowding periods. Considering decentralized threshold
diversion policies, Enders (2010) establishes the optimal-
ity condition for the “never divert” policy, and Deo and
Gurvich (2011) establish the Pareto optimality of the equi-
librium in which ERs are always on diversion. Do and
Shunko (2015) propose a centralized threshold policy that
is Pareto improving over the decentralized policy. He and
Down (2009) and Ramirez-Nafarrate et al. (2014) show that
delay announcements improve network synchronization and
customer wait times even when only a small proportion of
customers use the information. Pender et al. (2018) and Dong
et al. (2019) study the impact of announcing moving average
delays in a network setting and find that such announce-
ments can cause the realized delays at the service providers
to oscillate.

Unlike the above papers that do not consider the explicit
question of whether a service provider should announce
delay or not and whose primary focus is on coordination or
centralization, we investigate the impact of delay announce-
ments on competing service providers’ market shares. We
thus allow the service providers to choose whether or not
to announce delay, and to have different delay announce-
ment policies in equilibrium. The most relevant paper to
our work is Hassin (1996), which models two gas stations
with equal service rates on a highway where drivers only
observe the nearer station’s queue and infer the farther sta-
tion’s expected delay conditioned on the expected delay at
the nearer station. Hassin concludes that the station with

the observable queue always attracts more demand; thus, the
server with the observable queue has an advantage over the
server with the unobservable queue. Altman et al. (2004)
extend this model to heterogeneous service rates and hypoth-
esize that the emerging equilibrium is not always of threshold
type (unlike in Hassin, 1996); they support this assertion
using a mixture of numerical and analytical arguments. Has-
sin and Milo (2019) study a two-server setting with one
observable server and one unobservable server, but both with
no waiting room, and find that the welfare-maximizing equi-
librium does not necessarily match the equilibrium arising
from the customers’ individual optimal decisions.

In Hassin (1996), Altman et al. (2004), and Hassin and
Milo (2019), service providers do not have the choice of
revealing or hiding their delay information; the conges-
tion level of one service provider is always observable to
customers, while the congestion level of the other service
provider is always unobservable. In contrast, we allow the
service providers to choose their best delay announcement
strategy in an endogenous timing game. Furthermore, the
mentioned papers assume customers are sophisticated enough
to compute in real-time the conditional expected delay of the
unobservable queue, given the state of the observable queue;
this requires exact knowledge about the operating parameters
of the service providers and complex equilibrium calcula-
tions. Under this setting, Altman et al. (2004) demonstrate
that when the service providers have asymmetric service
rates, the equilibrium policy may not even be threshold-type
(where customers join the visible queue when its number of
customers is fewer than a threshold and join the invisible
queue otherwise). Rather than assuming that customers can
compute such an equilibrium (especially given that the space
of equilibria cannot be restricted to threshold-type), we model
customers as inherently less sophisticated (akin to boundedly
rational customers in the Economics literature): When only
one service provider announces real-time delay, customers
do not analytically infer the expected congestion level of the
unobservable (nonannouncing) service provider; instead, they
use periodically updated historical delay through published
reports or online resources. Such historical information influ-
ences customers’ decisions (Dong et al., 2019; Pender et al.,
2018). Our work is the first to explicitly consider such a
dynamic setting in which providers can choose to announce,
which naturally leads to situations with one announcing and
one nonannouncing firm.

3 MODEL SETUP

Consider a system with two single-server service providers, A
and B, with exponentially distributed service times with
means 1∕𝜇A and 1∕𝜇B. The service providers offer com-
parable services and compete for market share. Cus-
tomers arrive according to a Poisson process with
rate Λ. We normalize time so that 𝜇A = 1, and we con-
sider the system load 𝜌 = Λ∕(1 + 𝜇B) < 1 (for system
stability).
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4 SINGH ET AL.Production and Operations Management

In systems such as dine-in restaurants and ERs, cus-
tomers are often concerned with and informed about the
expected delay before their service starts (Dong et al.,
2019; Richard, 2016). Accordingly, we consider that delay-
sensitive customers patronize the service provider they
expect to experience a shorter queue delay. (Indeed, a longer
service time may or may not be preferable in such systems.
In applications such as take-out restaurants, a model in which
customers decide based on sojourn time could be more
appropriate; we report our results for this case in Subsection
7.1). In our main model, customers have two service alterna-
tives (service providers A and B) and always receive service
from one of them, that is, they never balk.2 In Subsection
7.3, we extend our main model by considering customers’
balking behavior and show that our insights are robust to
this case.

Under the status quo neither provider announces delay
information. Therefore, A and B act as independent M/M/1
queues with status quo expected delays

DA
0 =

𝜆A
0

1 − 𝜆A
0

and DB
0 =

𝜆B
0

𝜇B
(
𝜇B − 𝜆B

0

) , (1)

where the status quo effective demand rates 𝜆A
0 and 𝜆B

0
to A and B (Λ = 𝜆A

0 + 𝜆B
0 ) are determined endogenously

such that DA
0 = DB

0 ; that is, customers’ delay-minimizing
patronage decisions leads to equal expected delays. This cor-
responds to the Wardrop equilibrium (Hassin, 2016, p. 207)
and the routing mechanism in the Hassin (1996, p. 623)
model in which service providers’ queues are unobservable.
By setting DA

0 = DB
0 , A’s status quo effective demand rate

follows:

𝜆A
0 =

⎧⎪⎪⎨⎪⎪⎩
1+ (𝜇B)

2
− Λ(1+ 𝜇B) −

√(
(Λ+ 1) −Λ𝜇B+ (𝜇B)

2
)2

− 4Λ(1− 𝜇B)

2(1 − 𝜇B)
𝜇B ≠ 1

Λ

2
𝜇B= 1

,

(2)

and B’s status quo effective demand rate follows 𝜆B
0 = Λ −

𝜆A
0 . By replacing 𝜆A

0 and 𝜆B
0 in Equation (1), the status quo

expected delays follows:

DA
0 = DB

0

=

⎧⎪⎪⎨⎪⎪⎩

1+(𝜇B)2+Λ
(
1−𝜇B

)
−

√(
(Λ+1)−Λ𝜇B+(𝜇B)

2
)2

−4Λ(1−𝜇B)

2𝜇B
(
Λ −

(
1 + 𝜇B

)) 𝜇B ≠ 1

2
2 − Λ

𝜇B = 1

.

(3)

3.1 The delay announcement game

Service providers A and B are considering initiating cost-
less real-time QL delay announcements (we discuss the

TA B L E 1 Stage 1 game

B announces B does not announce

A announces Regime  Regime  or 

A does not announce Regime  or  Regime  , , , or 

case of costly delay announcements in Subsection 7.2).
Either provider may initiate announcing (thereby trigger-
ing a sequential game), or both may do so simultane-
ously (for example, when the technology simultaneously
becomes available to them). To endogenize the timing of
the decisions, we model them as an endogenous timing
game (Hamilton & Slutsky, 1990). In this setup, A and B
can decide whether to initiate delay announcements at
the first opportunity or observe their competitor’s action
before doing so. We consider that the decision to initiate
delay announcements (henceforth, announce) is irrevoca-
ble. In the endogenous timing game, time proceeds in two
stages:

– Stage 1: The service providers decide whether to
announce. If both announce, they continue to do so
indefinitely.

– Stage 2: The nonannouncing service provider(s) can revisit
their decision after observing their competitor’s decision
in Stage 1. If one announces in Stage 1, the other decides
whether to respond by announcing in Stage 2. If neither
announces in Stage 1, they can revisit their decisions in
Stage 2 (Table 1).

We elaborate more about the game setup in Appendix B
in the Supporting Information. To analyze the game, we
demarcate four information regimes based on the service
providers’ eventual announcement choices (after Stage 2):
(i) Regime  in which neither provider announces; (ii)
Regime  in which only A announces; (iii) Regime  in
which only B announces; and (iv) Regime  in which both
announce.

If A and B announce in Stage 1, the outcome is
Regime . If A (respectively, B) announces in Stage 1
and B (respectively, A) does not, the outcome is either
Regime  or  (respectively, Regime  or ),
depending on B’s (respectively, A’s) response in Stage 2.
If neither provider announces in Stage 1, the outcome
could be any of the regimes, depending on A’s (respec-
tively, B’s) preference between Regimes  and 
and  and  (respectively, Regimes  and  and 
and ).

LetΛA
i andΛB

i denote the service providers’ long-run time-
average demand rates (henceforth, long-run demand rates)
under Regime i. As the total arrival rateΛ = ΛA

i + ΛB
i is fixed

exogenously, an increase in a provider’s market share (ΛA∕Λ

for A and ΛB∕Λ for B) is equivalent to an increase in its
long-run demand rate. So, breaking ties in favor of
not announcing, a service provider S prefers announc-
ing in Regime i to not announcing in Regime j if and
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only if ΛS
i > ΛS

j .3 Given these preferences, in Proposi-
tion 1, we characterize conditions under which each regime
emerges in equilibrium by considering the optimal Stage 2
responses to all possible Stage 1 decision pairs and fac-
toring in these responses when evaluating Stage 1 deci-
sions. All proofs appear in Appendix A in the Supporting
Information.

Proposition 1. The endogenous timing game either has no
equilibrium or has exactly one equilibrium. Specifically, no
regime emerges in equilibrium if and only if condition (4)
or (5) holds. Otherwise, exactly one regime emerges in equi-
librium; the conditions for each regime are specified in the
proof in Appendix A.1 in the Supporting Information; see
Equations (SI.1)–(SI.4).

ΛA

≥ ΛA


⏟⎴⎴⏟⎴⎴⏟

Condition 1

∧ ΛB


≥ ΛB


⏟⎴⏟⎴⏟
Condition 2

∧ ΛB

< ΛB


⏟⎴⎴⏟⎴⎴⏟

Condition 3

∧ ΛA

< ΛA


⏟⎴⏟⎴⏟
Condition 4

, or (4)

ΛB

≥ ΛB


⏟⎴⎴⏟⎴⎴⏟

Condition 1

∧ ΛA


≥ ΛA


⏟⎴⏟⎴⏟
Condition 2

∧ ΛA

< ΛA


⏟⎴⎴⏟⎴⎴⏟

Condition 3

∧ ΛB

< ΛB


⏟⎴⏟⎴⏟
Condition 4

. (5)

When (4) holds, there is no equilibrium because:

– Regime  is not an equilibrium as A would rather B be
the sole announcer (Condition 1);

– Regime  is not an equilibrium as B would rather respond
than let A be the sole announcer (Condition 3);

– Regime  is not an equilibrium because if B initiates
announcements, A will not respond (Condition 1), and B
prefers Regime  to  (Condition 2);

– Regime  is not an equilibrium as A prefers Regime 
to  (Condition 4), and so would rather initiate.

Analogous explanations hold for (5). We note that we
obtain (4)–(5) without imposing any structure on the val-
ues of ΛA

i and ΛB
i , i ∈ { ,,,}. Otherwise, (4)–(5)

never hold. This is because Condition 1 rarely holds (that
is, each provider generally prefers both providers announc-
ing to only their competitor announcing); even when it
holds, we find numerically that Condition 2 does not (that
is, each provider prefers to be the sole announcer than
for neither provider to announce). Accordingly, a unique
regime always emerges in equilibrium. Our primary goal is
to understand which delay information regime emerges in
equilibrium.

3.2 Patronage decisions and Markov chain
models

This section details the customers’ patronage decisions
and the resulting CTMCs used to analyze the long-run
demand rates.

Regime 
Under Regime  , the long-run demand rates are equal to the
status quo rates, that is, Λi


= 𝜆i

0, i ∈ {A,B}, as derived in
Equation (2).

Regimes  and 
For brevity, we explain the model under Regime  (the model
under Regime  is analogous). Provider A announces its
expected delay as dn = nA∕𝜇A = nA (as 𝜇A = 1) when nA

is its current number of customers. As B does not announce
under Regime , customers make patronage decisions based
on B’s historical average delay which is updated over time.
That is, unlike the model employed by Hassin (1996) and
Altman et al. (2004), we do not model customers as being
able to infer B’s expected delay conditioned on A’s delay
announcement. Instead, we let customers rely on the avail-
able historical average delay at B; this type of information
has become more readily available in the recent past (e.g.,
Perez, 2015; Groeger, 2019).

To model B’s available delay information, we consider the
notion of updating periods: Customers’ knowledge about the
expected delay at B is updated at the end of each period,
assuming that periods are long enough for the system sta-
tionarity. For example, published delays for some ERs are
based on annual averages (Groeger, 2019). We index the
updating periods by t, referring to the status quo as Period 0
(t = 0). We denote the single-period effective demand rate
and expected delay at service provider i in Period t by 𝜆i

t
and Di

t, respectively.
Under Regime  and in any Period t ≥ 1, customers

decide based on the most recent historical delay at the (unob-
servable) service provider B and the announced real-time
delay at A. Accordingly, they join A if dn ≤ DB

t−1, and B, oth-
erwise; that is, they break ties in favor of A. This induces a
threshold structure for the arrivals: When nA < Ct = ⌊DB

t−1 +

1⌋, where ⌊ ⌋ is the floor function, the respective arrival rates
to A and B are Λ and 0; otherwise, the respective arrival rates
are 0 and Λ. Accordingly, the arrival threshold Ct in Period t
is the current system size at A up to which A attracts arrivals.
Figure 1a,b presents the CTMCs for the queueing dynamics
of A and B under Regime  (respectively, Models A and B).

Model A is a birth-death process with states representing
the current number of customers nA at A. Model B’s state
space {(nA, nB) : nA = 0, … ,Ct; nB = 0, 1, … } tracks both nA

and nB (the current number of customers at B) to deter-
mine B’s effective demand rate. The transitions from a
general state (nA, nB) in Model B follow:

– A service completion at A (respectively, B) when nA >

0 (respectively,nB > 0), with rate 𝜇A = 1 (respectively,
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6 SINGH ET AL.Production and Operations Management

F I G U R E 1 Regime  CTMCs in Period t ≥ 1
(𝜇A = 1). (a) Model A for service provider A; (b)
Model B for service provider B

𝜇B), resulting in a transition to (nA − 1, nB) (respec-
tively, (nA, nB − 1)).

– An arrival to A (respectively, B) when nA < Ct (respec-
tively, nA = Ct), with rate Λ, resulting in a transition
to (nA + 1, nB) (respectively, (Ct, n

B + 1)).

In Period t, given the arrival threshold Ct, we analyze
Model A to compute A’s Period t effective demand rate 𝜆A

t ,
which yields 𝜆B

t = Λ − 𝜆A
t . Then, we analyze Model B

to compute B’s expected delay DB
t , which determines

the arrival threshold Ct+1 = ⌊DB
t + 1⌋, that is, the arrival

threshold customers use to decide in Period t + 1. Under-
standing the evolution of Ct over time is central to analyze
Regime . Recall that we are interested in the long-run
demand rate ΛA


(respectively, ΛB


) under Regime ; we

compute this demand rate as the average effective demand
rate to A (respectively, B) over T periods, where we let
T →∞.

Regime 
The CTMC under Regime  (Model AB shown in Figure 2)
is a variant of the JSQ system, wherein a customer chooses
the service provider with the shorter expected delay (break-
ing ties randomly) after comparing their QL delay estimates
(i.e., nA∕𝜇A = nA vs. nB∕𝜇B). The transitions from a general
state (nA, nB) follow:

– A service completion at A (respectively, B) when nA >

0 (respectively, nB > 0), with rate 𝜇A = 1 (respec-
tively, 𝜇B), resulting in a transition to (nA − 1, nB)
(respectively, (nA, nB − 1)).

– An arrival to A (respectively, B) when nA < nB∕𝜇B (respec-
tively, nA > nB∕𝜇B), with rate Λ, resulting in a transition
to (nA + 1, nB) (respectively, (nA, nB + 1)). When nA𝜇B =

nB, an arriving customer chooses a service provider ran-
domly, resulting in transitions to (nA, nB + 1) and (nA +

1, nB), each at rate Λ∕2.4

4 ANALYZING LONG-RUN DEMAND
RATES UNDER EACH INFORMATION
REGIME

We analyze the long-run demand rates under  and 
in Subsections 4.1 and 4.2, respectively. Regime  is identi-
cal to the status quo and does not require additional analysis.
Regime ’s analysis is identical to Regime ’s, with the
indices transposed and time appropriately scaled.

4.1 Analyzing Regime 

To understand the long-run demand rates ΛA


and ΛB


, we
first evaluate the service providers’ Period 1 demand rates
under Regime  (i.e., their effective demand rate in the
period immediately after A initiates real-time announce-
ments solely), as they often help characterize long-run
demand rates.

Period 1 analysis
Solving the balance equations of Model A (Figure 1a), we
can derive its limiting probabilities 𝜋i, 0 ≤ i ≤ Ct, in terms of
the arrival threshold Ct and use them to derive A’s effective
demand rate in Period 1 as

𝜆A
1 = Λ

C1−1∑
i=0

𝜋i =
ΛC1+1 − Λ

ΛC1+1 − 1
, (6)

where DB
0 follows Equation (3) and C1 = ⌊DB

0 + 1⌋. Using
Equation (6), we can confirm that B, and hence the sys-
tem, may become unstable in Period 1, as we characterize
in Proposition 2.

Proposition 2. Under Regime , the system could become
unstable in Period 1, even if it is stable in Period 0 (i.e., 𝜌 <
1). Specifically, this occurs if and only if B’s effective demand
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REAL-TIME DELAY ANNOUNCEMENT UNDER COMPETITION 7
Production and Operations Management

F I G U R E 2 Regime  CTMC (Model AB) in Period t ≥ 1 (𝜇A = 1); the dashed line passes through states where tie-breaking is needed when 𝜇B = 2
[Color figure can be viewed at wileyonlinelibrary.com]

rate in Period 1 exceeds its service capacity (i.e., 𝜆B
1 ≥ 𝜇B,

where 𝜆B
1 = Λ − 𝜆A

1 ).

We observe numerically (as explained in Section 6) that the
system becomes unstable in Period 1 rarely; this may occur
when B has significantly less service capacity than A. More-
over, if the system is stable in Period 1, it remains stable in
all subsequent periods. All our remaining analysis in this sec-
tion applies to the cases where the system remains stable in
all periods.

Proposition 3 characterizes when announcing increases A’s
effective demand rate in Period 1. Under some conditions
(presented in Proposition 4), these findings persist in the long
term.

Proposition 3.

(a) When A is the lower capacity service provider (i.e., 𝜇A <

𝜇B), A’s effective demand rate improves in the short term
(i.e., 𝜆A

0 < 𝜆A
1 ).

(b) When A and B have equal service capacities (i.e., 𝜇A =

𝜇B), A’s effective demand rate either stays the same or
improves (i.e., 𝜆A

0 ≤ 𝜆A
1 ), depending on the system load 𝜌.

(c) When A is the higher capacity service provider (i.e., 𝜇A >

𝜇B), A’s effective demand rate may improve or worsen in
the short term, depending on the system load 𝜌.

Proposition 3 asserts that when A is the (weakly) lower
capacity service provider, its Period 1 demand rate 𝜆A

1
is (weakly) higher than her status quo demand rate 𝜆A

0 .
However, when A is the higher capacity service provider

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F I G U R E 3 A’s effective demand rates in Periods 0 and 1; 𝜇A=1, 𝜇B=

0.5, Λ ∈ (0, 1.5). The jumps in Period 1 rates correspond to the unit jumps
in C1 (and hence DB

0 ) as 𝜌 increases.

(i.e., 𝜇A > 𝜇B), as the example in Figure 3 shows, her Period
1 demand rate could be higher or lower than status quo,
depending on the system load 𝜌. In this case, there are dis-
contiguous regions of 𝜌 for which 𝜆A

1 is higher (these regions
can be characterized by comparing Equations (2) and (6)).

Long-term analysis
Regime ’s Period 1 analysis allows us to analytically char-
acterize the long-term dynamics when the arrival threshold
remains the same in Periods 1 and 2 (i.e., C2 = C1). In
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8 SINGH ET AL.Production and Operations Management

F I G U R E 4 Solid shaded regions specify
sufficient conditions for convergence in Period 2.
Recall that 𝜇A = 1. [Color figure can be viewed at
wileyonlinelibrary.com]

this case, Periods 1 and 2 systems are identical, and there-
fore, the arrival threshold (and hence, the system) converges
in Period 2 (i.e., Ct = C2 = C1, ∀t > 2). Consequently, the
long-run demand rates still follow Equation (6), and therefore
Proposition 3 holds in the long term. Proposition 4 provides
analytical sufficient conditions for convergence in Period 2.

Proposition 4. When the arrival threshold converges in
Period 2, A’s long-run demand rate under Regime  is iden-
tical to its Period 1 effective demand rate (as presented in
Equation (6)).

(a) The arrival threshold converges to one in Period 2
(i.e., C1 = C2 = 1) if:

0 < 𝜌 <
1

2(1 + 𝜇B)2
min

{
(𝜇B)3 + 𝜇B

√(
𝜇B + 5

)(
𝜇B + 1

)
−𝜇B, 2(𝜇B)

2
+ 𝜇B + 1

}
. (7)

(b) The arrival threshold converges to two in Period 2
(i.e., C1 = C2 = 2) if analogously derived conditions to
those in Part (a) of the proposition hold; (these condi-
tions are unwieldy to present and can be downloaded
from tinyurl.com/2p8a3e6w).

To obtain these conditions, we derive closed-form expres-
sions for C2 when C1 = 1 or 2 by solving a simultaneous
nonlinear system of equations. When C1 > 2, this proce-
dure results in higher order systems of equations, which
in general cannot be solved in closed form, leading to the
analytical intractability of Model B under a general arrival
threshold Ct. Figure 4 specifies the parameter space (based
on 𝜌 and 𝜇B) where the conditions of Proposition 4 for C1 =

C2 = 1 and C1 = C2 = 2 hold. Based on Proposition 4 and
Figure 4, when the system load 𝜌 is low to moderate, the
long-term consequences of A’s announcements are often

identical to those in Period 1 (the period following initiating
announcements).

For more general parameter settings, that is, when Propo-
sition 4 does not hold, we need to understand the long-term
behavior of the arrival threshold Ct. We define two possible
long-term behaviors and prove in Proposition 5 that they are
the only possible behaviors in the evolution of Ct:

– Convergence: The arrival threshold converges to a value,
as in Figure 5a. This arises when ∃t > 1 : Ct = Ct−1,
and therefore, Ct′ = Ct, ∀t′ > t. The conditions laid out
in Proposition 4 are for a special case of convergence,
wherein the arrival threshold converges in Period 2.

– Stable oscillation: The arrival threshold alternates
between the same two values, as in Figure 5b. This
arises when ∃t > 2 : Ct = Ct−2 and Ct ≠ Ct−1, resulting
in Ct′ = Ct′−2, ∀t′ ≥ t

Proposition 5. Under Regime  and when A and B are stable
in all periods, the arrival threshold Ct either converges or
establishes stable oscillation.

If convergence occurs, the long-run demand rates are the
rates associated with the arrival threshold to which the system
converges. If stable oscillation occurs, the long-run demand
rates are the average of the demand rates associated with the
two arrival thresholds between which the system oscillates.
Pender et al. (2018) and Dong et al. (2019) report similar
oscillatory behavior, where the oscillation is due to the time
lag between the reported delay and its effect on patronage
decisions. The oscillations we observe are due to a similar
lagged effect, where A’s (and hence B’s) expected delay in
Period t is affected by B’s expected delay in Period t − 1. As
an implication of Proposition 5, in the long term, the delay
information used by customers in Period t is either (i) the
realized expected delay in Period t (under convergence) or
(ii) the expected delay that was realized in Period t − 1 and
that will be realized in Period t + 1 (under stable oscillation).
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REAL-TIME DELAY ANNOUNCEMENT UNDER COMPETITION 9
Production and Operations Management

F I G U R E 5 Examples of stable long-term patterns of the arrival threshold Ct; in (a), Ct converges to 4 in Period 5, and in (b), it establishes a stable
oscillation between 3 and 4 in Period 4. (a) Convergence; Λ = 0.89, 𝜇B = 0.5; (b) Stable oscillation; Λ = 0.87, 𝜇B = 0.5

So, this delay information will match the realized expected
delay either in the immediate or the near future.

To fully characterize the evolution of the arrival thresh-
old Ct under Regime  beyond Proposition 5, we need
to explore: (i) when do convergence and stable oscillation
occur? and (ii) at what value(s) of Ct does the system stabi-
lize? Based on extensive numerical evidence, we conjecture
the answers in Appendix C in the Supporting Informa-
tion. Our conjecture implies that the customers’ endogenous
delay-minimizing behavior pushes the system into a steady
state where the expected delay at B is near its lowest possible
value, implying that Ct (= ⌊DB

t + 1⌋) stabilizes near its low-
est possible value, and hence, the maximum QL (and hence,
delay) at A is likewise near its lowest possible value. Uti-
lizing this conjecture, we can obtain closed-form upper and
lower bounds for A’s long-run demand rates under Regime .
We do not use these conjectured bounds further in this
paper.

4.2 Analyzing Regime 

Model AB (Figure 2) is similar to a JSQ system with asym-
metric service rates, which is known to be analytically
intractable (Adan et al., 1990). Some prior work presents
provable bounds for stationary probabilities of the symmet-
ric case (e.g., Halfin, 1985), but they do not extend to the
asymmetric case. The extant literature on the asymmetric JSQ
focuses on numerical approximations for the stationary prob-
abilities and performance measures (e.g., Adan et al., 1990;
Selen et al., 2016).

We contribute to this literature by proposing a computa-
tional algorithm that provides provable tight lower and upper
bounds on the long-run demand rates under Regime 
when the system load 𝜌 is low to moderate (up to 60-75%,
depending on 𝜇B). (When 𝜌 is high, our algorithm results in
instability, and therefore, we do not obtain provable bounds.)
The algorithm truncates Model AB’s CTMC along its nB

dimension at some level TB, and routes arrivals to A (regard-
less of nA) when nB = TB. The truncation level TB must be set
to trade off appropriately between the tightness of the bounds
and computational expense: A higher value of TB provides
tighter bounds, but they are more expensive to compute.

The resulting truncated CTMC is shown in Figure 6. The
nonrepeating portion consists of states (i, j) such that i ≤

⌈j
𝜇A

𝜇B
⌉ ≜ TA. TA is the largest level at which customers arriv-

ing at (TA − 1,TB) are routed to A. The repeating portion
consists of states (i, j) such that i > TA, in which the rout-
ing of arrivals does not depend on i: arrivals are routed to B
(respectively, A) when j < TB (respectively, j = TB). Given a
starting state (i, j), we define the expected values RA

j and Rj

for the repeating portion and NA
i,j and Ni,j for the nonrepeating

portion as follows:

– RA
j : The expected number of arrivals to A before nA drops

to i − 1. (RA
j is independent of i because of the chain’s

repeating structure, and so we do not need the index i in
RA

j .)
– Rj: The expected number of arrivals to the system before

nA drops to i − 1.
– NA

i,j: The expected number of arrivals to A before the next
visit to state (0, 0).

– Ni,j: The expected number of arrivals to the system before
the next visit to state (0, 0).

We use ideas similar to recursive-renewal-reward the-
ory (Gandhi et al., 2014) to write recursive relationships
between the above expected values, extending these ideas to
yield provable bounds instead of exact values. We present
our procedure in Algorithm 1, which uses systems of linear
equations to compute upper bounds on RA

j and NA
i,j (denoted

by R
A

j and N
A

i,j, respectively) and lower bounds on Rj and
Ni,j (denoted by R

j
and N

i,j
, respectively). Using these com-

puted bounds, we can compute an upper bound on ΛA


(as
we prove in Proposition 6).

Proposition 6. When 𝜌 is small to moderate (see the proof for

a more precise characterization), ΛA


≤
1 + N

A

0,1 + N
A

1,0

2 + N
0,1

+ N
1,0

Λ

where N
A

0,1,N
A

1,0,N0,1
, and N

1,0
are computed using Algo-

rithm 1.

Following the same procedure, it is trivial to compute a
lower bound onΛA


by switching the roles of A and B and re-

scaling time appropriately. We use these bounds to determine
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10 SINGH ET AL.Production and Operations Management

F I G U R E 6 Truncated Markov chain for
regime AB; TB = 3, 𝜇B∕𝜇A = 1.9; grayed out
portion is truncated [Color figure can be viewed at
wileyonlinelibrary.com]

A L G O R I T H M 1 Procedure to compute an upper bound on ΛA


1: Normalize time so that Λ + 𝜇A + 𝜇B = 1.

2: Set the truncation bound TB. Define TA ≜

⌈
j
𝜇A

𝜇B

⌉
.

3: Solve the following system of TB + 1 linear equations to obtain values of R
A

j :

R
A

j = 𝜇BR
A

max{0,j−1} + 𝕀{j< TB}ΛR
A

j+1 + 𝕀{j=TB}Λ

(
1 + 2R

A

TB

)
, for j ∈ {0, 1, … TB}.

4: Solve the following system of TB + 1 linear equations to obtain values of R
j
:

R
j
= 𝜇BR

max{0,j−1}
+ 𝕀{j< TB}Λ(1 + R

j+1
) + 𝕀{j=TB}Λ(1 + R

TB
+ R

0
), for j ∈ {0, 1, … TB}.

5: Solve the following system of (TA + 1)(TB + 1) linear equations to obtain values of N
A

i,j:

N
A

i,j = 𝜇BN
A

i,max{0,j−1} + 𝜇AN
A

max{i−1,0},j

+Λ𝕀{j∕𝜇B < i∕𝜇A and j< TB}N
A

i,j+1 + Λ𝕀{j∕𝜇B > i∕𝜇A or (j=TB and i< TA)}

(
1 + N

A

i+1,j

)

+Λ𝕀{i=TA and j=TB}

(
1 + R

A

TB
+ N

A

TA ,TB

)
, for (i, j) ∈ {0, 1, … TA} × {0, 1, … ,TB}.

6: Solve the following system of (TA + 1)(TB + 1) linear equations to obtain values of N
i,j

:

N
i,j
= 𝜇BN

i,max{0,j−1}
+ 𝜇AN

max{i−1,0},j

+Λ𝕀{j∕𝜇B < i∕𝜇A and j< TB}(1 + N
i,j+1

) + Λ𝕀{j∕𝜇B>i∕𝜇A or (j=TB and i< TA)}(1 + N
i+1,j

)

+Λ𝕀{i=TA and j=TB}

(
1 + R

A

TB
+ N

TA ,0

)
, for (i, j) ∈ {0, 1, … TA} × {0, 1, … ,TB}.

7: Compute M =
1 + N

A

0,1 + N
A

1,0

2 + N
0,1

+ N
1,0

, which is an upper bound on the market share at A under Regime .

8: Recompute Λ under the original time-scale (which was such that 𝜇A = 1), and return MΛ.
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REAL-TIME DELAY ANNOUNCEMENT UNDER COMPETITION 11
Production and Operations Management

the game outcome analytically in Section 5 and supplement
our analysis with numerical experiments for a broader set of
parameters in Section 6.

5 ANALYTICAL DETERMINATION OF
THE GAME OUTCOME

This section uses the long-run demand rates characterized
in Section 4 to determine the equilibrium regime when A
and B decide according to the endogenous timing game. We
refer to these results as analytical since they either rely on
long-run demand rates derived in closed form or on provable
bounds (depending on the regime). Proposition 7 first charac-
terizes the equilibrium outcome for the more tractable case of
extreme system loads.

Proposition 7.

(a) When the system load is sufficiently small (𝜌 → 0),
both providers announce delay in equilibrium (i.e.,
Regime  emerges in equilibrium).

(b) When the system load is sufficiently large (𝜌 → 1),
neither provider announces delay in equilibrium (i.e.,
Regime  emerges in equilibrium).

When the system load is very low, Regime  emerges
in equilibrium (Proposition 7(a)) because the lower capac-
ity service provider has less than half the market share under
Regime  but can reach a 50% market share by initiating
delay announcements, which are then responded to by the
other service provider (see Lemma 8(a) in Appendix A.7 for
details in the Supporting Information). Proposition 7(b) con-
firms the intuitive result that since announcing delay has no
impact on the long-run demand rates when the system load
approaches 100% (see Lemma 8(b) in Appendix A.7 in the
Supporting Information), neither A nor B has any incentive to
initiate delay announcements.

For nonextreme system loads, we use results derived in
previous sections, including Equation (2) for Regime  ,
Equation (6) and Proposition 4 for Regime  (and their ana-
logues for Regime ), and the provable lower and upper
bounds based on Algorithm 1 for Regime , to establish
which regime emerges in equilibrium (by substituting them
into the conditions for each regime to emerge in equilibrium,
given by Equations (SI.1)– (SI.4) in Appendix A.8 in the
Supporting Information).

To cover a wide and reasonable parameter space, our
numerical experiments consist of 43 values (as presented in
Table 2) for the relative service capacities 𝜇B (recall that 𝜇A =

1) between 1∕6 and 6 with more emphasis around 𝜇B = 1.
We also consider 200 equally spaced values of system load
𝜌 in the range [1%, 97%] (we know from Proposition 7 that
Regime  emerges in equilibrium when 𝜌 → 1).

Figure 7 presents the resulting equilibrium regimes when
we can determine the game outcome analytically (about 33%

TA B L E 2 Subsets of different values of 𝜇B

𝕄<< {1∕6, 1∕5, 1∕4, 2∕7, 1∕3, 3∕8, 2∕5, 3∕7, 1∕2, 4∕7, 3∕5, 5∕8, 2∕3,
5∕7, 3∕4, 4∕5, 5∕6, 6∕7}

𝕄< {7/8,14/15,28/29}

𝕄= {1}

𝕄> {29/28,15/14,8/7}

𝕄>> {7/6,6/5,5/4,4/3,7/5,3/2,8/5,5/3,7/4,2,7/3,5/2,8/3, 3,7/2, 4, 5, 6}

of the whole parameter space).5 According to the results,
Regime  generally emerges in equilibrium. Regimes 
and  emerge in small regions when service rates differ
significantly and the system load is intermediate.

The analytical limitations of Proposition 4 (which only
yields closed-form solutions when we can analytically estab-
lish Period 1 convergence) and Algorithm 1 (which only
converges for sufficiently small 𝜌 and may yield loose
bounds) do not allow us to determine the game outcome ana-
lytically for the remainder of the parameter space. Therefore,
we determine the game outcome numerically in Section 6 and
find that the above analytical indications continue to hold.

6 NUMERICAL DETERMINATION OF
THE GAME OUTCOME

For ease of exposition of determining the game outcome
numerically for the remaining 67% of the parameter space,
we denote the set of relative service capacities as 𝕄 and par-
tition it into five subsets as specified in Table 2. From the total
of 8600 experiments, we remove eight experiments that lead
to system instability (four occur under Regime  when 𝜇B =

1∕6, and four occur under Regime  when 𝜇B = 6).
We employ matrix-analytic methods to compute the long-

run demand rates under Regimes  and . For Regime ,
we truncate nA in Model AB at 𝜅 = ⌈10, 000∕𝜇B⌉ and nB

at ⌈𝜇B × 𝜅⌉ to keep the truncation error negligible (the sum
of stationary probabilities of the boundary states across all
8600 experiments is less than 0.000236). To reduce the effect
of a tie-breaking rule for customers’ patronage decisions, we
increase each 𝜇B value in the sets𝕄<<,𝕄<,𝕄>, and𝕄>> by
a sufficiently small irrational 𝜖. This favors B and removes the
cases where the providers announce equal nonzero expected
delays (recall that this occurs in states where 𝜇BnA = nB).
In state (0,0) for which ties are unavoidable, we break ties
randomly with equal probability. Observe that we have exper-
iments where the favored firm B has higher capacity (those
in 𝕄>> and 𝕄>) and where it has a lower capacity (those
in 𝕄<< and 𝕄<). We shall see that the equilibrium charac-
terizations are qualitatively consistent in both situations, and
therefore, that the tie-breaking rule does not have a significant
impact on the outcome of the game.

Given our analytically determined outcome in Figure 7,
we expect Regime  to emerge in equilibrium for most
parameter settings. Accordingly, we first examine when
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12 SINGH ET AL.Production and Operations Management

F I G U R E 7 Analytically determined equilibrium regime; (green, yellow, blue, red, white) = (,  , , , no analytical determination) [Color figure
can be viewed at wileyonlinelibrary.com]

Regime  will emerge in equilibrium in Subsection 6.1.
We treat all other cases in Subsection 6.2.

6.1 When Regime  emerges in
equilibrium

Regime  emerges in equilibrium when ΛB

< ΛB


and

ΛA

< ΛA


(see condition (SI.4) in Appendix A in the

Supporting Information), that is, when it is optimal for B
to respond to A initiating announcements and vice-versa.
Remark 1 summarizes our findings about when this occurs.
We explain how our experiments lead to this finding after the
remark.

Remark 1. A service provider almost always finds it favorable
to respond to the competitor’s announcement initiation unless
it has a much higher service capacity and the system load
is in an intermediate range. Therefore, Regime  emerges
in equilibrium unless one of the two service providers has a
much higher service capacity and the system load is in an
intermediate range.

We first explain the results when A initiates and B con-
siders whether to respond. Across all 4996 experiments
in 𝕄<<, 𝕄<, 𝕄=, and 𝕄>, B obtains a higher long-run
demand rate by responding (i.e., ΛB


> ΛB


); however,

this holds for most, but not all, experiments (3533/3596)
in 𝕄>> with exceptions occurring when B’s capacity is much
higher (𝜇B ≥ 7∕4) and the system load 𝜌 is intermediate.
For example, in the shaded region in Figure 8, B does not
respond when 0.75 ≲ 𝜌 ≲ 0.79. Figure 9 shows that this non-
response region occurs for higher load values when service
capacities are significantly imbalanced (i.e., when B’s capac-
ity is much larger than one). Similarly, when B initiates
announcements, A finds it optimal to respond (i.e., ΛA


<

ΛA


) across all experiments in 𝕄>>, 𝕄>, 𝕄=, and 𝕄<.
This is true for most, but not all, experiments (3495/3596)
in 𝕄<<.

F I G U R E 8 Changes in B’s long-run demand rate when it responds;
𝜇B = 7∕2. B does not respond in the shaded load region. [Color figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 9 Ranges of intermediate system loads (for different values
of 𝜇B) in which B does not respond to A. [Color figure can be viewed at
wileyonlinelibrary.com]
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REAL-TIME DELAY ANNOUNCEMENT UNDER COMPETITION 13
Production and Operations Management

The exceptions mentioned in Remark 1 arise
because ΛB


− ΛB


depends on the system load 𝜌 in a

discontinuous and nonmonotonic fashion (as illustrated
in Figure 8, for example). To keep our exposition in this
section focused on the game outcome, we defer a more
detailed explanation of the dependence of ΛB


− ΛB


on 𝜌

to Appendix D in the Supporting Information. Remark 1
asserts that ΛB


> ΛB


except when (i) 𝜇B is much larger

than 𝜇A and the system load is intermediate. Symmetrically
Remark 1 also asserts that ΛA


> ΛA


except when (ii) 𝜇B is

much smaller than 𝜇A and the system load is intermediate.
From condition (SI.4) (in Appendix A in the Support-
ing Information), we have that Regime  emerges in
equilibrium unless (i) or (ii) holds. In Subsection 6.2, we
focus on understanding what equilibrium emerges when (i)
or (ii) holds.

6.2 When Regime  does not emerge in
equilibrium

When Regime  does not emerge in equilibrium, we
have that either ΛA


< ΛA


or ΛB


< ΛB


(but not both; see

Remark 1). Remark 2 summarizes our findings about when
Regime  does not emerge in equilibrium. We explain how
our experiments lead to this finding after the remark.

Remark 2. A service provider prefers being the sole
announcer to the situation with no announcers whenever their
competitor does not find it favorable. In this case, the unique
regime that emerges in equilibrium is the one where the
initiator is the only announcer (i.e., Regime  or ).

Based on whether ΛA


< ΛA


or ΛB


< ΛB


, we deal with
two cases:

Case 1: If ΛA


≥ ΛA


and ΛB


< ΛB


, the possible
equilibria and their associated conditions (obtained by simpli-
fying conditions (SI.1)–(SI.4) in the Supporting Information)
are:

– Regime  : ΛA

≤ ΛA


≤ ΛA


∧ (ΛA


= ΛA


∨ ΛA


≥

max{ΛA

, ΛA


}).

– Regime : ΛA

> ΛA


.

– Regime : ΛB


= ΛB

∧ ΛB

B > ΛB


.

For all 63 experiments for which ΛB


< ΛB


, we have that

ΛA

> ΛA


and therefore, Regime  emerges in equilibrium.

Furthermore, ΛB


= ΛB


never holds (indeed, ΛB


< ΛB


in all these experiments) and therefore, Regime  is the
unique equilibrium.

Case 2: If ΛA


< ΛA


and ΛB


≥ ΛB


, the possible
equilibria and their associated conditions (obtained by simpli-
fying conditions (SI.1)–(SI.4) in the Supporting Information)
are:

– Regime  : ΛB

≤ ΛB


≤ ΛB


∧ (ΛB


= ΛB


∨ ΛB


≥

max{ΛB

, ΛB


}).

– Regime : ΛA


= ΛA

∧ ΛA


> ΛA


.

– Regime : ΛB

> ΛB


.

For all 101 experiments for whichΛA


< ΛA


, we have that

ΛB

> ΛB


and therefore, Regime  emerges in equilibrium.

Furthermore, ΛA


= ΛA


never holds (indeed, ΛA


< ΛA


in all these experiments) and therefore, Regime  is the
unique equilibrium.

6.3 Game outcome

Putting together our observations from Remarks 1 and 2,
we can assert the following outcome of the game: when
the service providers have comparable or equal capacities,
Regime  emerges in equilibrium (Remark 1). When
the service providers have significantly different capacities,
Regime  generally emerges in equilibrium, except for
intermediate values of load, at which the equilibrium regime
involves only the lower capacity service provider announcing
delay (Remarks 1 and 2).

These findings are summarized in Figure 10. As expected,
the equilibrium outcomes are near-symmetric about 𝜇B∕𝜇A =

1; the exceptions to symmetry are caused by our tie-breaking
rule favoring B. The hatched cells in the figure represent
parameters for which we had an analytically determined out-
come in Figure 7; all the analytical determinations match the
numerical outcome.

6.4 Managerial insights

Using the equilibrium delay information regime characteri-
zation in Figure 10, we now state insights about how the
availability of delay announcement technology affects vari-
ous stakeholders in a setting with two competing firms. The
stakeholders of interest are the service provider(s), the delay
announcement technology firm, and the customers.

Effect on the service providers
The literature on announcing delay in monopolistic settings
(see Dobson & Pinker, 2006; Hassin, 1986; Ibrahim, 2018)
has established that a profit-maximizing service provider will
announce delay (i.e., make its queue visible) when (1) its
capacity is low or (2) its capacity is high and the system
load is sufficiently low. In contrast, we find that two service
providers under competition almost always announce delay,
except that sometimes only the firm with significantly lower
capacity announces at some intermediate load values. Nev-
ertheless, the presence of competition makes the adoption of
delay announcement technology almost inevitable because a
single competitor announcing delay can generally capture a
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14 SINGH ET AL.Production and Operations Management

F I G U R E 1 0 The equilibrium regime; (green, yellow, blue, red) = (,  , , ). White cells represent instability. Hatched cells represent
analytically determined outcomes. [Color figure can be viewed at wileyonlinelibrary.com]

large part of the market, prompting a competitive response.
The resulting equilibrium market shares typically favor the
lower capacity service provider.

Effect on the delay announcement technology firm
As both competing service providers almost always choose to
announce delay in equilibrium, technology firms are likely to
find keener adopters in a competitive setting. In equilibrium,
the lower capacity service provider generally enjoys a larger
market share than the status quo. Accordingly, the technology
firm can benefit by marketing to the lower capacity service
provider in a competitive setting by showing the projections
of market share improvement. Therefore, we conclude that
the competitor (the higher capacity service provider) will
generally also be induced to adopt the technology. Our results
imply that the technology firm should target market segments
and geographies that feature competition rather than those
that are monopolistic. To wit, the technology firm would be
well-advised to target hospitals (or restaurants) in the vicinity
of other similar hospitals (and restaurants).

Effect on customers
In a monopolistic setting, Hassin (1986) finds that, at inter-
mediate system load values, external intervention is required
to induce the service provider to announce delay to improve
social welfare. Measuring customer welfare by the aver-
age delay they experience, we find numerically that the
presence of delay announcement technology improves cus-
tomer welfare for all our parameter settings (i.e., whether the
equilibrium outcome is Regime , , or ). Thus, in a
competitive environment, the presence of delay announce-
ment technology improves customer welfare without the need
for external intervention.

7 MODEL EXTENSIONS

We investigate three extensions. In Subsection 7.1, we eval-
uate the outcome when customers use expected sojourn
time instead of delay for patronage decisions. In Subsec-

tion 7.2, we evaluate the game outcome when the delay
announcement technology firm charges a recurring cost (for
example, a subscription fee). In Subsection 7.3, we evalu-
ate the outcome when customers balk if they expect long
delays.

7.1 Patronage based on sojourn time

Our base model considers the more prevalent case where cus-
tomers care more about their delay before their service starts
(e.g., dine-in restaurants and ERs). There are also settings
where customers likely care about sojourn time (delay before
the service plus service time), such as take-out restaurants
where customers value a short service time.

In the sojourn time setting, the equilibrium regime contin-
ues to be governed by Proposition 1. However, the long-run
demand rates differ from those in Section 4. For instance,
Regime  ’s analysis becomes more nuanced, as it may
not be possible to split the total demand rate Λ to equal-
ize expected sojourn times. To illustrate, let 𝜇A = 1, 𝜇B = 6,
and Λ = 1; even if the entire market visits B, the result-
ing expected sojourn time (1∕(6 − 1) = 0.2) at B is less
than the shortest possible expected sojourn time at A, which
is 1. Therefore, in such situations, we assume that Λ would
split so that B receives the entire market under Regime  ,
although this does not equalize expected sojourn times. Simi-
larly, Regimes  and  can have an arrival threshold Ct =

0. Therefore, many more parameter settings will result in
instability at the nonannouncing provider.

Based on Figure 11, Regime  continues to emerge in
equilibrium for most of the parameter space, especially when
the system load is relatively high. The sojourn time findings
diverge most significantly from those of our original setting
(Figure 10) in the following broad cases (in total, about 43%
of our parameter space):

(i) When the system load is intermediate and service capac-
ities are starkly different (the sojourn time model leads
to instability).
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REAL-TIME DELAY ANNOUNCEMENT UNDER COMPETITION 15
Production and Operations Management

F I G U R E 1 1 Numerically determined equilibrium regime when customers patronize based on sojourn times; (green, yellow, blue, red, black) = (,
 , , , no equilibrium). White cells represent instability. [Color figure can be viewed at wileyonlinelibrary.com]

(ii) When the system load is low and service capacities are
comparable (the sojourn time model may have no equi-
libria or may induce only the higher capacity service
provider to announce delay).

(iii) When the system load is relatively low and service
capacities are slightly different (the sojourn time model
induces an equilibrium of Regime  ).

In the above cases, the patronage model based on delay
induces an equilibrium regime of Regime .

7.2 Costly delay announcements

In our base model, delay announcements do not incur a recur-
ring cost, for example, because the service providers have
an in-house capability to announce delays. This section con-
siders a recurring subscription cost incurred to employ the
announcement technology. In this case, the announcement
decision involves comparing the technology cost to the addi-
tional profit obtained through an increased demand rate.
Considering a fixed profit 𝜈 > 0 per customer served and
a subscription cost k ≥ 0 for the technology per unit of
time (the same unit used to define 𝜇A, 𝜇B, and Λ), a ser-
vice provider S would prefer announcing in Regime i to not
announcing in Regime j if and only if 𝜈ΛS

i − k > 𝜈ΛS
j ⇔

ΛS
i − k∕𝜈 > ΛS

j .
All our analytical results derived in Section 4, which char-

acterize the long-run demand rates under each regime, remain
valid under costly delay announcements as these results are
independent of the subscription cost. Similar to Proposition 1
for the case of costless delay announcements, Proposition 8
characterizes the regime(s) that emerge in equilibrium under
costly delay announcements.

Proposition 8.

(a) No regime emerges in equilibrium if and only if the cost
is such that:

max{ΛA


− ΛA

, ΛB


− ΛB


} ≤

k
𝜈
< min{ΛB


− ΛB


,

max{ΛA

− ΛA


, ΛA


− ΛA


}}, or (8)

max{ΛB


− ΛB

, ΛA


− ΛA


} ≤

k
𝜈
< min{ΛA


− ΛA


,

max{ΛB

− ΛB


, ΛB


− ΛB


}}. (9)

(b) Regimes  and  emerge in equilibrium when the cost is
such that:

max{ΛA


− ΛA

, ΛB


− ΛB


} ≤

k
𝜈

< min{max{ΛA

− ΛA


, ΛA


− ΛA


},

max{ΛB

− ΛB


, ΛB


− ΛB


},

×max{ΛA

− ΛA


, ΛB


− ΛB


}}. (10)

(c) Otherwise, one regime emerges in equilibrium, accord-
ing to the conditions in Appendix A.8 in the Supporting
Information.

Proposition 8 implies that when delay announcements
incur a cost, the game may result in no equilibria, one equi-
librium, or multiple equilibria. Furthermore, we expect the
equilibrium outcome to exhibit a much more complex rela-
tionship with 𝜌 and 𝜇B compared to the costless case. As an
illustration, observe in Figure 8 (by drawing a horizontal line
atΛB


− ΛB


= 0.025 and separating points below and above

the line) that when the cost-to-profit ratio k∕𝜈 = 0.025 per
time unit, B will find it worth the investment to respond to A’s
delay announcements when 0.18 ≲ 𝜌 ≲ 0.40 and 0.75 ≲ 𝜌 ≲

0.80.
We evaluate the game outcome for different costs. To make

a fair comparison across different relative service capacities
(as profit is now proportional to load), we normalize the
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16 SINGH ET AL.Production and Operations Management

system capacity 𝜇A + 𝜇B = 1, maintaining the long-run
demand rates Λ , Λ, Λ, and Λ on a consistent scale.
(As an illustration, in order to fairly compare a setting
with 𝜇A = 1 and 𝜇B = 2 to one with 𝜇A = 1 and 𝜇B = 3,
we re-scale time in the first setting so that 𝜇A = 1∕3
and 𝜇B = 2∕3 and re-scale in the second so that 𝜇A = 1∕4
and 𝜇B = 3∕4; we use the re-scaled time to define the
subscription cost k.)

For our experiments, we estimate a reasonable range
for k∕𝜈 for the case of restaurants as an example. The
average profit margin for a full-service restaurant is 3%–
5% (Walters, 2019). Expanding this range to 1%-10% and
assuming an average revenue per customer of $6–$50 (Pro-
jectionHub, 2017), the profit range is 𝜈 of $0.06–$5 per
customer. At capacity, a casual dining restaurant can serve
on average 230 customers per day (ProjectionHub, 2017).
Therefore, two restaurants together can serve 500 customers
per day. As we have re-scaled time so that 𝜇A + 𝜇B = 1 and
assuming the restaurants are open for 12 h a day, the nor-
malized unit of time to use for k is 12 × 60∕500 = 1.44 min.
Monthly subscription costs for delay announcement applica-
tions are $179–$249 (Perez, 2017), leading to an estimated k
of $0.006–$0.008 per time unit, assuming a 30-day month.
Accordingly, a reasonable range of k∕𝜈 is 0.001–0.13. So, we
run experiments with k∕𝜈 chosen from the set {0, 0.01, 0.05,
0.09, 0.13}. We have already discussed the results for k∕𝜈 =
0 in the preceding sections, so we now turn our focus to
discussing the remaining settings.

In Subsections 6.1–6.2, we observed and explained why
when delay announcements are costless (k∕𝜈 = 0), the
equilibrium outcome is almost always Regime . This
remains the case when delay announcements are relatively
inexpensive (k∕𝜈 = 0.01). However, because of the non-
monotonicities and discontinuities as illustrated, for example,
in Figure 8, a moderately large cost (k∕𝜈 = 0.05) may com-
plicate the equilibrium outcome. Indeed, in this case, there
are also parameter settings with no equilibria, and with
multiple equilibria.

On a high level, as expected, a higher cost dissuades the
providers from announcing delay. In particular, as the cost
increases, parameter settings that result in an equilibrium
outcome of Regime  shift to having an equilibrium out-
come of Regime , , or  . Similarly, as the cost increases,
parameter settings that result in an equilibrium outcome of
Regime  or Regime  shift to having an equilibrium out-
come of Regime  . If the equilibrium outcome is Regime 
for a particular cost, it remains Regime  for higher costs. At
the aggregate level, as the cost-to-profit ratio k∕𝜈 increases,
the outcome shifts from Regime  toward Regime  being
dominant. Table 3 summarizes this trend.

At a more granular level, for a given cost and relative
service capacity, the effect of increasing the system load
has a complicated impact on the regime outcome. In gen-
eral, increasing the load triggers multiple switches from
one regime outcome to another. This complicated structure
arises because of the nonmonotonic and discontinuous depen-

dence of ΛA


, ΛB


, ΛA


, and ΛB


on 𝜌. We also note that
our analytically determined outcomes continue to predict the
numerical outcome for a significant portion of the param-
eter space, ranging from 36% (when k∕𝜈 = 0.01) to 56%
(when k∕𝜈 = 0.05). We provide further details in Appendix E
in the Supporting Information.

7.3 Incorporating customers’ balking
behavior

This section considers that customers have a finite, homo-
geneous patience level of Wmax. A customer compares the
available delay information and routes to the service provider
with the shorter expected delay, joining if the expected delay
upon arrival is shorter than Wmax and balking otherwise.
Given the finiteness of Wmax, the system is guaranteed to
be stable in all regimes. We now describe the associated
modeling and analysis for each regime:

Regime 
Under this regime, customers arrive at A and B at state-
independent arrival rates and decide to join or balk upon
arrival at the service provider: they balk at A (respectively, B)
if nA ≥ ⌊Wmax + 1⌋ ≜ CA (respectively, nB ≥ ⌊(Wmax𝜇

B) +
1⌋ ≜ CB). Accordingly, A and B are M∕M∕1∕CA and
M∕M∕1∕CB queues, respectively. In equilibrium, customers
choose the respective arrival rates 𝜆A

0 and 𝜆B
0 ≡ Λ − 𝜆A

0 to A

and B that equalize expected delays. Consequently, ΛA

=

𝜆A
0 (1 − Pr(nA = CA)) and ΛB


= 𝜆B

0 (1 − Pr(nB = CB)).

Regimes  and 
Under Regime , customers join A if nA < min{⌊DB

t−1 +

1⌋, ⌊Wmax + 1⌋} and arrive at B otherwise; if they
find nB∕𝜇B > Wmax, they balk from B. (As arriving cus-
tomers balk from B if its expected delay is too long relative
to Wmax, the average delay DB

t′ at B in every period t′ is
smaller than Wmax. Therefore, the customer will always check
at B if A’s announced real-time delay is too long.) This sys-
tem is amenable to exact numerical analysis because Model B
(Figure 1b) is now finite along both dimensions. Regime ’s
structure follows similarly.

Regime 
Under this regime, customers join the service provider with
the shorter real-time expected delay if it is shorter than Wmax.
This results in a truncated version of the CTMC in Figure 2,
based on which we can compute the long-run demand rates
ΛA


and ΛB


.
We report our results on the same set of parameters

as in Section 6, normalizing system capacity 𝜇A + 𝜇B = 1.
Recall from Subsection 7.2 that under this normalization,
every unit of time corresponds to roughly 1.44 min. We
consider Wmax ∈ {30, 10, 5} (corresponding to patience lev-
els of about 43, 14, and 7 min, respectively). Figure 12
summarizes the results. When Wmax is high (Figure 12a),
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TA B L E 3 Percentage of experiments that result in each regime emerging in equilibrium

Regime  Regime  Regime 

Regime
 and  Regime 

No
equilibrium

Cost-to-profit
ratio k∕𝜈

0 0.00 0.73 1.18 0.00 98.09 0.00

0.01 0.78 4.26 4.91 0.72 89.33 0.00

0.05 23.89 19.12 19.43 15.14 18.34 4.07

0.09 88.38 2.46 2.43 6.54 0.02 0.16

0.13 100.00 0.00 0.00 0.00 0.00 0.00

F I G U R E 1 2 Equilibrium regime when customers can balk; (green, yellow, blue, red) = (,  , , ). (a) Wmax = 30, corresponding to a patience
level of ∼43 min; (b) Wmax = 10, corresponding to a patience level of ∼14 min [Color figure can be viewed at wileyonlinelibrary.com]

we recover the same set of equilibrium regimes as the
no-balking case (Figure 10) since customers rarely balk
under any of the regimes. As Wmax decreases (Figure 12b),
Regime  or  emerge in equilibrium less frequently,
with Regime  taking their place. This is because the
nonannouncer is more severely disadvantaged by the balk-
ing behavior; it receives overflow customers when the
announcer is at its arrival threshold, but only until a thresh-
old level (unlike in the no-balking case). So, when Wmax is
lower, ΛB


< ΛB


and ΛA


< ΛA


occur more frequently,

leading to an equilibrium outcome of Regime . As a
result, when Wmax is sufficiently low (among our experi-
ments, when Wmax = 5), Regime  always emerges in
equilibrium.

8 CONCLUDING REMARKS AND
FUTURE DIRECTIONS

Technology advancements enable firms to disseminate delay
information. In an endogenous timing game, we study
whether a firm should initiate delay announcements when
she competes for market share, uncovering the impact of
relative service capacity and system load on the deci-
sions in equilibrium. We find that only the lower capacity
service provider announces its real-time delay under inter-
mediate system loads and highly imbalanced capacities.
However, for most parameter settings, the mere presence of
a competitor induces both providers to announce delays in
equilibrium.
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Contribution to literature
Our results can be viewed as extending the results in Hassin
(1986), Dobson and Pinker (2006), and Guo and Zipkin
(2007) to a network setting. These papers establish when it
may be suboptimal for a firm to reveal QL delay when the
alternative to joining is to balk. In contrast, we explicitly
model competition, that is, if a customer does not patron-
ize A, she patronizes B. Furthermore, A and B’s decisions
are made endogenously in our model. This fundamental
difference results in decisions that diverge from those in
the above-mentioned papers. We can make the most direct
comparison with Hassin (1986), in which customers are
homogeneous (as in our model). Therefore, service capacity
is the main driving force behind announcement decisions.
Because Hassin (1986) models a single firm, the announce-
ment decision dependence on service capacity is based on
an absolute threshold: When the capacity is less than 2c∕R
(where R is the reward a customer obtains from completing
service and c is the customer’s waiting cost per unit time), it
is always optimal for the service provider to reveal her queue;
on the other hand, when the capacity is more than 2c∕R, the
provider reveals her queue only when load is sufficiently low.
In contrast, because we model two competing providers, the
strategic interaction of these firms causes the initiation deci-
sions for the two firms to violate such a threshold structure
(see red and blue regions in Figure 10); this is a direct effect
of the endogenous, rather than exogenous, outside option.
Thus, the transition from a single service provider to a com-
peting pair of providers who make announcement decisions
fundamentally changes the system’s dynamics. As discussed
in Subsection 6.4, this difference has implications for firms
(who are more likely to announce delay in the presence
of competition), technology providers (who find that com-
peting firms are keener adopters), and customers (who are
always better off than in the status quo, without any external
intervention).

Among the papers with two service providers, Hassin
(1996) is the only one that studies the impact of delay
announcements on market shares (When service rate are iden-
tical). Hassin finds that it is advantageous for one of the
providers to reveal their queue, given that the other one does
not. This corresponds to two of the regimes in our paper
(Regime  and ), for one particular parameter setting (𝜇A =

𝜇B). Our paper generalizes the problem space by factoring
in the possible response of the other service provider and
enabling the two service providers to have asymmetric service
rates. (Although Altman et al. (2004) consider asymmetric
service rates, they do not factor in the possible response of
the other provider, and their focus is on delays rather than
market shares.) Methodologically, we contribute to the study
of the asymmetric JSQ system by presenting Algorithm 1,
which produces provable market share bounds for each of the
service providers.

Future directions
There are numerous interesting avenues for future explo-
ration. For instance, extending the analysis to include

multi-server service providers, while analytically challeng-
ing, could lead to interesting results. Another potentially
interesting extension is to model a heterogeneous customer
population consisting of dedicated and flexible individu-
als: Dedicated customers would be loyal to one service
provider regardless of her delay, while flexible customers
would be delay-sensitive and patronize based on delay infor-
mation. Such heterogeneity in the customer population is
explored in He and Down (2009) and Dong et al. (2019)
when the two service providers announce delay informa-
tion of identical granularity. We expect that this extension
would simply attenuate the effects of announcing. Further-
more, it may be interesting to investigate settings with three
or more service providers. Finally, extending our bounding
procedure for Regime  to function for higher system
loads would be of methodological interest as a further step
toward characterizing the heretofore intractable asymmetric
JSQ system.
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E N D N O T E S
1 The backlash from systematic information misrepresentation could result

in goodwill loss and legal actions; for example, O’Donnell (2014)
describes the repercussions of delay information falsification at a Veterans’
Administration Hospital.

2 Given that customers choose the lower delay option, their patronage
decision does not depend on their delay cost. Accordingly, the out-
comes of our analysis are identical whether or not customers’ delay costs
are homogeneous.

3 We shall see that in equilibrium A never finds it necessary to estab-
lish a preference between Regimes  and  (respectively, Regimes 
and ), so we can always break ties in favor of not announcing.

4 We choose this tie-breaking rule because customers in our model are
sensitive to delay; accordingly, equal delay announcements (with equal
presumed accuracy) should result in equal demand rates at both providers.

5 Note that our ability to analytically determine the outcome of the game is
discontinuous in 𝜌. This is because we have analytical characterizations for
Regime  and  for discontinuous regions of 𝜌; see Figure 4.
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