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Abstract—The ability to obtain the steady-state probability distribu-
tion of a Markov chain is invaluable for modern service providers who
aim to satisfy arbitrary tail performance requirements. However, it is
often challenging and even intractable to obtain the steady-state distri-
bution for several classes of Markov chains, such as multi-dimensional
and infinite state-space Markov chains with state-dependent transitions.
Two examples include the M/M/1 with Discriminatory Processor
Sharing (DPS) and the preemptive M/M/c with multiple priority classes
and customer abandonment. This paper proposes a Lyapunov function-
based state-space truncation technique for such Markov chains. Our
technique leverages the available moments, or bounds on moments,
of the state variables of the Markov chain to obtain tight truncation
bounds while satisfying arbitrary probability mass guarantees for the
truncated chain. We demonstrate the efficacy of our technique for the
multi-dimensional DPS and M/M/c priority queue with abandonment
and highlight the significant reduction in state space (as much as 72%)
afforded by our approach compared to the state-of-the-art.

Index Terms—Markov chains, state-space truncation,
discriminatory processor sharing, priority queues, tail measures

I. INTRODUCTION

Continuous-Time Markov chains (CTMCs) are widely used to

model and analyze networked systems, such as processor-sharing

(PS) and priority queue systems. Evaluating these systems’

performance often requires the steady-state probability distribution

of an underlying CTMC model. For example, to obtain tail
measures (e.g., the tail queue length), which are the performance

metric of choice for modern service operators such as those at

Google [1] and Amazon [2], it is often necessary to first obtain

the steady-state probability distribution by solving the balance

equations governing the state transitions of a CTMC model.

Obtaining the exact steady-state probability distribution is not

always practical or even possible. For many applications, the

state space of the CTMC is infinite and multi-dimensional; exact

analysis of such models is challenging. For CTMCs with specific

structures, efficient numerical techniques exist for obtaining the

exact steady-state distribution. For example, Matrix Analytic

Methods are known to be efficient for solving CTMCs with a

repeating pattern of transitions between adjacent states, including

quasi-birth-and-death processes (QBDs, which are infinite state

space multi-dimensional CTMCs in which states are organized into

levels and transitions are skip-free between the levels) [3].

For chains with more general transitions, obtaining the exact

steady-state probability distribution can be more challenging. For

example, finding the distribution of the number of jobs in the

system in the Discriminatory Processor Sharing (DPS) model (first

introduced by Kleinrock in 1967 [4] and one of the models that we

analyze in this paper) is still an open challenge. Even for CTMCs

with a finite but large state space, computing the steady-state

probability distribution can be computationally prohibitive [5].

We instead resort to obtaining accurate approximations of the

steady-state probability distribution for such chains.

An approach to approximate the steady-state probability distri-

bution of multi-dimensional infinite CTMCs with general state

transitions is to truncate their state space in one or more dimensions

and then solve for the steady-state probability distribution of the

truncated CTMC using existing analytical or numerical methods.

Truncation algorithms [6] (e.g., algorithms based on Lyapunov
functions; see Section II) have been proposed in the literature to

carefully find truncation bounds such that the steady-state probability

distribution of the truncated CTMC closely approximates that of

the original infinite CTMC. As acknowledged by prior work [6], an

issue with such truncation techniques is that they lead to loose trunca-
tion bounds, which results in unnecessarily large truncated CTMCs

and, consequently, expensive computational effort to analyze them.

In this paper, we use the moments (or bounds on moments) of the

state variables of a CTMC to derive tighter truncation bounds while

ensuring that these bounds satisfy the desired probability mass

guarantees. By leveraging the moments and using concepts from

probability theory (specifically the Paley-Zygmund inequality [7]),

we scale the drift of the Lyapunov function (the expected rate

of change in its value) more efficiently to achieve much tighter

truncation bounds without increasing the computational complexity,

compared to the existing Lyapunov-function truncation techniques.

Our bounds are, in theory, at least as tight as those obtained by

the state-of-the-art Lyapunov function-based procedure proposed

by Dayar et al. [6]. In practice, our bounds are significantly tighter,

resulting in as much as 7× computational time efficiency.

We demonstrate the effectiveness of our proposed truncation

technique by applying it to the M/M/1-DPS system, which is a

multi-class extension of the classic processor sharing system where

the server capacity can be unequally shared, via user-specified

weights, among different job or customer classes. The M/M/1-

DPS system is known to be a “class of models notoriously hard
to analyze in an exact manner” [8]. We analyze the K-class DPS

system (for K=2,3,4) using our truncation technique, leveraging

the known moments of the queue-length distribution of the DPS

system [9]. Across different parameter settings, our technique

achieves, on average, 34% (and up to 72%) tighter truncation bounds

than those obtained when applying the Dayar et al.’s procedure for

the same desired accuracy. We also apply our truncation technique

to the M/M/c+M model (an M/M/c queue with exponential abandon-

ment) with multiple priority classes and preemptive service policy
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as another example where our technique yields tighter truncation

bounds. Our technique can reduce the size of the truncated state

space by as much as 42% for the same accuracy level.

We numerically validate the accuracy of our truncation technique,

where possible. For example, the M/M/1-DPS with equal weights

for customer classes reduces to the well-studied M/M/1-PS system.

Likewise, the marginal distribution of the higher priority jobs

under the M/M/c+M queue with preemptive priority reduces to the

distribution of jobs in the standard M/M/c. Across all validations,

the maximum difference in per-state probability between our

truncated CTMC and the original CTMC is about 3×10−6% for

the DPS system and about 9×10−4% for the M/M/c+M queue

with preemptive priority.

Finally, we use our truncation technique to conduct several

performance analyses that are otherwise intractable, such as

determining when the DPS system outperforms the PS system (and

vice-versa) in terms of the tail of the number of jobs in the system

or comparing the tail performance of the M/M/1-FCFS system with

that of the M/M/1-DPS system. Such performance analyses are

crucial for designing customer-facing web applications that meet

strict tail performance targets [1, 2].

This work improves and refines the theory we proposed in

an earlier, preliminary work [10] and demonstrates its broader

application to processor sharing and priority systems through more

in-depth analytical and numerical analysis

II. BACKGROUND AND PRIOR WORK

A. State space reduction

When a CTMC with an infinite state space cannot be solved

exactly, a natural alternative is to find an approximate solution by

reducing the size of the state space. Prior research in this area has

primarily focused on two key techniques: (i) state space aggregation
and (ii) state space truncation.

The idea of aggregation is to replace a subset of the state space

of a CTMC with a single state. However, a common limitation in

aggregation approaches (e.g., see the works by Muntz et al. [5] and

Mahévas and Rubino [11]) is the assumption that the state space

can be decomposed by the user into two disjoint sets, with one set

containing the states frequently visited by the system in steady state.

Further, aggregation approaches either help find the performance

measures or provide bounds on the performance measures (e.g., see

Buchholz [12]) for Markov chains with infinite state space but do not

find bounds on the steady-state distribution. Thus, guarantees on the

probability mass after aggregation cannot be immediately obtained.

State space truncation: A more popular approach for state

space reduction is truncation, whereby the state space of a Markov

chain is truncated along one or more dimensions. However, ad-hoc

truncation can result in inaccurate approximations. There has been

prior work on truncation techniques that provide some upper bound

on the loss of accuracy due to truncation. Bright and Taylor [13]

propose a numerical method to solve LDQBDs, which involves

iteratively finding a sufficiently large truncation level. However,

the iterative procedure is computationally intensive and more

concernedly, the authors explicitly state that the proposed method

is not guaranteed to provide accurate results.

Lyapunov analysis has often been used in prior works to find

bounds on the moments and tail probabilities for Markov chains.

Bertsimas et al. demonstrate how lower and upper bounds on the

moments and tail probabilities of a discrete-time Markov chain

can be obtained provided that a suitable Lyapunov function can be

found [14]. One of the conditions on the Lyapunov function is a

finite “jump size,” i.e., the requirement that the maximum change in

the value of the drift function is bounded. Maguluri and Srikant build

on prior works [14, 16] to find an upper bound on tail probabilities

of CTMCs [15]. However, their approach requires the drift of the

Lyapunov function to have a finite lower and upper bound, thus

restricting the approach’s applicability given the difficulty of finding

Lyapunov functions even without these additional constraints [6].

By contrast, our technique does not impose any requirements on

the Lyapunov function. In fact, the drift is unbounded from below

for the Lyapunov functions we employ throughout this paper.

B. Lyapunov function-based truncation

Dayar et al. developed a Lyapunov function-based truncation

method that provides probability mass guarantees for LDQBDs [6].

The central idea is to identify a subset of states towards which the

CTMC drifts and then truncate the infinite state space to ensure that

this subset is part of the truncated CTMC. Our truncation technique

builds on this work, and so we provide an overview of Dayar et al..

Let {N(t),t≥0} be an ergodic k-dimensional CTMC with state

space S and generic state n=(n1,n2,...,nk). Let Ni denote the ran-

dom variable corresponding to ni, with N(t)=(N1(t),...,Nk(t)).
Let π(n)=π(n1,n2,...,nk) denote the steady-state probability of

being in state n, and let Q denote the infinitesimal generator matrix.

Without loss of generality, assume that the CTMC is infinite in the

first m-dimensions and finite in the remaining (k−m) dimensions.

The stability of a Markov chain can be established if a Lyapunov
function that maps the state space to positive real numbers is found

such that its drift (the expected rate of change in the value of the

Lyapunov function in a state) is negative outside a finite subset of the

state space and is bounded in this finite subset; such a finite subset

is referred to as the attractor set, C. Formally, if N(t) is ergodic,

there exists a Lyapunov function g :S→R≥0 and a set C⊂S such

that the following conditions hold for some γ>0 [6]:

(i) d(n)≤−γ, ∀n∈C, where C=S\C,

(ii) d(n)<∞, ∀n∈C, and

(iii) {n∈S |g(n)≤r} is finite, ∀r<∞,

where d(n) denotes the value of the drift function in state n:

d(n)=(d/dt)E[g(N(t)) |N(t)=n], (1)

where E[X] denotes the expectation of X. Dayar et al. use the

above conditions to derive an upper bound on the probability mass

(sum of steady-state probabilities of all states) in C. The authors

define a function g∗(n) = g(n)/(c+γ), where c = supn∈S d(n)
(note that c is finite from condition (ii)) and γ is as defined in

condition (i). Figure 1 illustrates the above concepts pictorially,

where the x-axis and y-axis correspond to the state variable and the

value of the drift function, respectively. The figure also shows the

parameter γ that partitions the state space into the attractor set and its

complement. All the states whose value of the drift function is above

the line corresponding to −γ can be grouped into an attractor set.
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Fig. 1: Illustration of the drift d(ni), supremum c, parameter γ, and

our state-dependent drift bounds f1(ni) and f2(ni).

Using conditions (i)–(iii), the authors derive an upper bound on

the probability mass outside the attractor set C, thereby providing

a lower bound on the probability mass inside C. Conditions (i)

and (ii) and the fact that c=supn∈Sd(n) yield:

d∗(n)=
d(n)

c+γ
≤ c

c+γ
, ∀n∈C; and d∗(n)≤− γ

c+γ
, ∀n∈C

=⇒d∗(n)≤ c

c+γ
−IC , (2)

where IC = 1 if n ∈ C and 0 otherwise. If d, g, and π are the

vectors of drift function values, Lyapunov function values, and

steady-state probabilities for all states, respectively, by the definition

of drift in Eq. (1) and the fact that πQ=0 [17], we have:

dT =QgT =⇒ πdT =πQgT =0=⇒ πd∗T =πQg∗T =0. (3)

Using Eqs. (2) and (3), a bound on the probability mass in C is

obtained as follows:

0=
∑
n∈S

d∗(n)·π(n)≤
∑
n∈S

π(n)· c

c+γ
−
∑
n∈C

π(n)

=⇒
∑
n∈C

π(n)≤
∑
n∈S

π(n)· c

c+γ
=

c

c+γ
. (4)

This guarantees that the probability mass in C is at

least 1 − c/(c+γ). Hence, the value of γ obtained by

solving c/(c+γ)=ε, where 0<ε<1, guarantees that a truncated

CTMC containing C has at least (1−ε) fraction of the probability

mass and thus loses at most ε fraction of the probability mass after

truncation. Once γ is found, the set C can be found as follows:

C={n∈S |d(n)>−γ}. (5)

Omitting the states outside the attractor set C truncates the CTMC
from “below” and from “above.”

Note that Eq. (4) only provides an upper bound on the probability

mass in C; the actual probability mass in C could be much smaller

than c/(c+γ), as Dayar et al. acknowledge in their work [6].

Indeed, our experiments in Section IV show that the truncation

bounds obtained via the above technique are loose. Our work aims

to address this issue and provide tighter truncation bounds.

III. OUR TRUNCATION TECHNIQUE

Figure 1 illustrates the high-level idea of our state space truncation

technique for the Discriminatory Processor Sharing (DPS) system

that we analyze later in Section IV. The solid black line is the drift as

a function of the state variable, d(ni). Dayar et al.’s method obtains

truncation bounds by bounding the drift function with the trivial

upper bound of c=supn∈Sd(n) (the dashed black line). The ad-

vantage of using the supremum is that the bound on
∑

n∈Cπ(n) in

Eq. (4) can be easily obtained as
∑

n∈Sπ(n)·c/(c+γ)=c/(c+γ).
However, there is a gap between the drift and the supremum, which

tends to grow larger for higher values of ni, as highlighted in

Figure 1. The drift is a state-dependent function, but the supremum

is a fixed function that does not adapt to changes in the state variate,

thus making it a loose upper bound of the drift.

The key idea in our technique is to employ a state-dependent
bounding function that mimics, to some extent, the changes in

the drift function in response to the state variable to provide

tighter upper bounds of the drift function; examples of such

state-dependent bounding functions include a step function and a

decaying function (e.g., f1(ni) and f2(ni) in Figure 1). However,

when using a generic state-dependent bounding function, f(n), in

place of c in Eq. (4), the upper bound on the probability mass in C
may not be easily obtained in closed-form, making it difficult to

solve for the set C. We formalize this challenge below.

Generic bounding functions: Consider a generic state-

dependent bounding function f(n) that bounds the drift d(n),
i.e., f(n)≥max(d(n),0), ∀n∈S. Expanding Eq. (3) gives us:

0=
∑
n∈S

π(n)·d(n)=
∑
n∈C

π(n)·d(n)+
∑
n∈C

π(n)·d(n)

=⇒ 0≤
∑
n∈C

π(n)·d(n)−γ
∑
n∈C

π(n) ∵d(n)≤−γ ∀n∈C

=⇒
∑
n∈C

π(n)≤
∑

n∈Cπ(n)·f(n)
γ

∵f(n)≥max(d(n),0). (6)

The truncated CTMC consisting of the set C can now be

obtained by setting the right-hand-side of Eq. (6) to ε, solving for γ,

and then using Eq. (5). However, this requires knowing the exact

value or an upper bound of the term
∑

n∈Cπ(n)·f(n). We show,

in subsections III-A and III-B, examples of one-dimensional and

two-dimensional generic bounding functions f(n) that result in

simple expressions for
∑

n∈Cπ(n)·f(n). In all the cases, the final

expressions are in terms of the moments of the state variables.

Reliance on the CTMC moments: Though our technique relies

on the knowledge of the first few moments of the original CTMC’s

state variables, it can also be applied to CTMCs with known lower

bounds on the moments. In general, knowledge of moments may

not be enough to obtain the steady-state probability distribution [18].

The DPS system is an example of a CTMC for which the moments

of the number of jobs are computationally achievable [9]; however,

obtaining its closed-form and exact steady-state distribution has

proven to be extremely challenging [18]. The preemptive M/M/c

priority queue with abandonment is another example with some

known moments (e.g., for the highest priority jobs, since they

constitute the classic M/M/c queue), but the exact steady-state

probability distribution is not known, especially for c>2 [19].

A. Truncation bounds based on the moments

We now employ a specific function, a simple step function, along

one of the dimensions of a CTMC to bound its drift function. Con-

sider a 1-D step function (depicted in Figure 1 as f1(n)) that initially

is equal to the supremum and then drops to a lower value, c1, along

one dimension of the state space, resulting in a tighter bounding
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of the drift for larger values of the state variate. Note that the step

function subsumes the supremum function used by Dayar et al. [6].

Consider a k-dimensional CTMC with state space S with a

generic state denoted by n= (n1,n2,...,nk), and let the CTMC

be infinite in m-dimensions and finite in the remaining (k−m) di-

mensions. We denote with Nj the random variable corresponding to

the jth dimension of the state space,nj. We improve the upper bound

of the drift along an arbitrary infinite dimension, say dimension i,
corresponding to Ni. We formally define the step function, which

drops to c1≤c for R={n |ni>n}, where n is a parameter, as:

f1(n)=

{
c =sup∀n∈Sd(n), ∀n∈R,

c1 =sup∀n∈Rd(n), ∀n∈R.
(7)

Substituting f1(n) in place of f(n) in Eq. (6) and rearranging
the terms gives us:

γ
∑

n∈C

π(n)≤c
∑

n∈C∩R

π(n)+c1
∑

n∈C∩R

π(n)

=c
∑

n∈R

π(n)+c1
∑

n∈R

π(n)−c
∑

n∈C∩R

π(n)−c1
∑

n∈C∩R

π(n)

≤c
∑

n∈R

π(n)+c1
∑

n∈R

π(n)−c1
∑

n∈C

π(n) ∵−c≤−c1

=⇒
∑

n∈C

π(n)≤ c

c1+γ
− c−c1
c1+γ

∑

n∈R

π(n). (8)

Recall from Section II-B that C is the set of states outside

the attractor set. Thus,
∑

n∈C π(n) represents the probability

mass outside the attractor set. To obtain the probability mass

guarantee on
∑

n∈C π(n), we require a lower bound on the tail

probability,
∑

n∈Rπ(n). While any applicable lower bound can

be employed, we leverage a generic lower bound.

Definition 1. Paley-Zygmund inequality [7]: For
a positive random variable X with finite variance
and 0≤θ≤1, Pr(X>θE[X])≥(1−θ)2E[X]2/E[X2].

Applying the Paley-Zygmund inequality for Ni and

setting n=θE[Ni], we have, from Eq. (8):∑
n∈C

π(n)≤ c

c1+γ
− c−c1
c1+γ

(1−θ)
2E[Ni]

2

E[N2
i ]

. (9)

The above upper bound on the probability mass in C (or the

lower bound on the probability mass inside C) results in a provably

tighter truncation bound compared to Dayar et al. when ε≤ E[Ni]
2

E[N2
i ]

(proof deferred to Appendix B of the technical report [20]):

Lemma 1. The truncation obtained via our 1-D step bounding
function (given in Eq. (7)) is at least as tight as that obtained via the
supremum bounding function, as employed in Dayar et al., when ε≤
E[Ni]

2

E[N2
i ]

, where i is an arbitrary infinite dimension of the CTMC.

B. Tighter truncation bounds using joint moments of state variables

In general, since the drift function is defined on the state space

of the CTMC, it can be multi-variate. To obtain tighter truncation

bounds, we now consider multi-dimensional bounding functions.

In such cases, the joint moments of the state variables may be

needed to obtain the truncation bounds. For simplicity, we consider

two-dimensional bounding functions; however, our proposed

technique can be extended to higher-dimensional functions.

Figure 2a plots a two-dimensional step function that bounds the

drift; here, we assume that the CTMC is k-dimensional, k>1, but

we only show the bounding function for the two dimensions, say i
and j, along which it takes a step. Mathematically, we define the

2-D step function as:

f12(n)=

{
c =sup∀n∈Sd(n), ∀n∈R,

c1 =sup∀n∈Rd(n), ∀n∈R,
(10)

where R= {n∈S |max{ni,nj}≤n} and R=S \R. Thus, the

bounding function takes the value c in the “square” region (if

projected onto two dimensions) defined by ni≤n and nj≤n, and

takes the value c1 outside this region. Substituting Eq. (10) in the

generic upper bound on the probability mass in C (Eq. (6)) gives

us a result similar to Eq. (8):∑
n∈C

π(n)≤ c

c1+γ
− c−c1
c1+γ

∑
ni∈R

π(n). (11)

To obtain a lower bound on the probability mass in R, we define

the new set T ={n∈S |ni+nj ≤2·n} and T =S\T . Let π(S)
denote

∑
n∈Sπ(n). Since T⊂R, we have π(R)≥π(T). Figure 2b

illustrates the different regions of the state space S. We now use

the Paley-Zygmund inequality to find the lower bound on π(T) by

considering Z=Ni+Nj:

P(Z>θE[Z])≥(1−θ)2
E[Z]2

E[Z2]
, with 2n=θE[Z]

=⇒ π(R)≥π(T)=P(Z>θE[Z])≥(1−θ)2
E[Z]2

E[Z2]
. (12)

Finally, substituting Eq. (12) in Eq. (11) gives us our upper bound

on the probability mass in C as:∑
n∈C

π(n)≤ c

c1+γ
− c−c1
c1+γ

(1−θ)2
E[Z]2

E[Z2]
. (13)

The above bound is provably tighter than Dayar et al.

when ε≤ E[Z]2

E[Z2] (proof deferred to Appendix B of tech. report [20]):

Lemma 2. The truncation obtained via the 2-D step bounding
function (given in Eq. (10)) is at least as tight as that obtained via the
supremum bounding function, as employed in Dayar et al., when ε≤
E[Z]2

E[Z2] where Z=Ni+Nj and Ni and Nj represent state variables
corresponding to two arbitrary infinite dimensions of the CTMC.

IV. APPLICATION TO THE DPS SYSTEM

We now evaluate the efficacy of our truncation technique by

applying the truncation bounds for the Discriminatory Processor

Sharing (DPS) system. We first consider the DPS system with two

customer classes for ease of exposition. We investigate the tightness

of the drift bounding functions presented in Section III and compare

the resulting bounds with those obtained from Dayar et al. [6].

DPS was first introduced by Kleinrock as a generalization

to the PS system [4]. While all customer classes receive equal

server capacity in the case of an egalitarian PS policy, the server

capacity under DPS is processor shared based on a given weight
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Fig. 2(a): Illustration of a 2-D drift bounding function.

Fig. 2(b): State space subsets. The shaded square corresponds
to the set R= {n ∈ S |max{ni,nj} ≤ n} and the region
bounded by the orange line and the axes corresponds to the
set T={n∈S |ni+nj≤2·n}.
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Fig. 3: M/M/1-DPS with two customer classes; for state (n1,n2), n1

and n2 are the number of class-1 and class-2 jobs, respectively.

vector α=(α1,α2,...,αk), where αi is the weight associated with

class-i customers. If there are Ni jobs of class-i, each class-j job

gets a fraction αj/
∑k

i=1αiNi of the server’s capacity.

M/M/1-DPS system: Consider an M/M/1 system operating

under the DPS policy with two customer classes, where the server’s

capacity is shared between two customer classes with the service

priority expressed through weights α1 and α2. Arrivals for each

customer class follow a Poisson distribution with mean λi,i∈{1,2},

and the service times for each class follow an Exponential

distribution with mean 1/μi,i∈{1,2}. Figure 3 shows the CTMC

for M/M/1-DPS in which a state is represented by the pair (n1,n2),
where n1 and n2 are the number of jobs in the system for classes

1 and 2, respectively; note that the CTMC is infinite in both

dimensions. The transition rates from state (n1,n2) to (n1−1,n2)
and (n1, n2 − 1) are rn1,n2 = n1α1μ1/(n1α1+n2α2)
and sn1,n2

=n2α2μ2/(n1α1+n2α2), respectively.

Significance of the M/M/1-DPS system and the challenges in
solving its underlying CTMC: The M/M/1-DPS system, with

the proper choice of weights, has been shown to outperform the

classical M/M/1-PS system for more than one customer class [21].

This has sparked interest in the community in the last decade

to investigate the performance of DPS under various traffic

regimes. Despite the popularity of the DPS model, which was first

introduced in the late 1960s [4], the exact steady-state probability

distribution of its underlying CTMC continues to remain elusive.

This is because of the complex and non-repeating structure of its

multi-dimensional and infinite CTMC. Specifically, the per-class

service rate transitions (rn1,n2
and sn1,n2

in Figure 3) depend on

the current number of customers in each class. Exact analysis has

been performed only for finite DPS queues [22].

A. Results for truncation bounds

Fortunately, the exact moments of M/M/1-DPS queue-length

distribution are known [9] in terms of the solution to a system

of linear equations. This allows us to apply our moment-

based truncation bounds via Eqs. (9) and (13). To apply our

truncation bounds (and Dayar et al.’s bounds for comparison)

to the M/M/1-DPS system, we employ the following feasible

Lyapunov function, motivated by prior work in the stability

literature [23]: g(n1,n2) = (α1n
2
1)/2λ1+(α2n

2
2)/2λ2. The drift

function for the M/M/1-DPS chain in the state (n1,n2), obtained

by substituting g(n1,n2) in Eq. (1), is as follows:

d(n1,n2)=λ1(g(n1+1,n2)−g(n1,n2))+λ2(g(n1,n2+1)−g(n1,n2))

+s1(g(n1−1,n2)−g(n1,n2))+s2(g(n1,n2−1)−g(n1,n2)). (14)

For the 1-D step drift bounding function, we start by setting

an appropriate value for n in Eq. (7), which in turn is determined

via θ since n= θE[Ni] where i ∈ {1,2} is the dimension along

which the drift bound is being improved. Noting that a smaller θ
provides a tighter bound in Eq. (9), we set θ = 0.01; this value

of θ also satisfies the requirements of Lemmas 1 and 2. We then

derive n by obtaining E[Ni] via the known first moment of the ith

state variable of the M/M/1-DPS model [9]. We compute c and c1
via Eq. (7). Using the known second moments [9], we compute

the right-hand-side of Eq. (9); by setting this to ε (the tolerance

for probability mass loss due to truncation), we solve for γ, which

in turn gives us the attractor set C via Eq. (5). The chain is then

truncated to include all states in C. We employ the step function

over either dimension (i={1,2} in Eq. (7)) and use the tighter of

the two. Finally, the CTMC is truncated along the two dimensions

at m1 = max
(n1,n2)∈C

n1 and m2 = max
(n1,n2)∈C

n2. A step-by-step

illustration is provided in Appendix A of the technical report [20].

For the 2-D step drift bounding function, we again set θ to a low

value and set n=(θE[Z])/2, where Z=Ni+Nj. The remaining

steps are similar to the 1-D step bounding function discussed above.

Evaluation results: To evaluate the truncation improvement over

the Dayar et al., we numerically experiment with different parameter

values spanning the total offered load in the range [0.1,0.95]; the

total offered load is expressed as ρ = ρ1 + ρ2, where ρi = λi/μi.

We set μ2=1 and μ1=1.2 and vary λ1 and λ2. Figure 4 shows the

reduction in the state space afforded by our drift bounding functions

as a function of the total offered load for different class-1 load shares
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(a) Case 1: ρ1<ρ2 (ρ1/ρ=0.1). (b) Case 2: ρ1=ρ2 (ρ1/ρ=0.5). (c) Case 3: ρ1>ρ2 (ρ1/ρ=0.8).

Fig. 4: State space reduction by our bounding functions over Dayar et al. [6] for M/M/1-DPS under different total offered loads (ρ) and

class-1 load shares (ρ1/ρ); ε=0.01, α1=0.2, and α2=1−α1=0.8.

(a) Case 1: ρ1<ρ2 (ρ1/ρ=0.1). (b) Case 2: ρ1=ρ2 (ρ1/ρ=0.5). (c) Case 3: ρ1>ρ2 (ρ1/ρ=0.8).

Fig. 5: State space reduction by our 2-D step bounding function over Dayar et al. [6] for M/M/1-DPS under different DPS weights (α1),

total offered loads (ρ), and class-1 load shares (ρ1/ρ).

when α1=0.2, α2=1−α1=0.8, and ε=0.01. The improvement

is typically greater for moderate total offered loads (ρ≈0.5).

In general, the 2-D step function provides more improvement

over Dayar et al. compared to the 1-D step function, with as much

as 65% reduction in state space. In other words, using our technique,

the truncated DPS CTMC can be up to 65% smaller while

providing the same probability mass accuracy guarantee (ε=0.01).

For this peak reduction case, Dayar et al.’s method truncates the

CTMC at n1=1358 and n2=101, whereas our 2-D step bounding

function truncates at n1=801 and n2=60; the truncation bounds

from “below” are n1=0 and n2=0 in both cases.

Across all experiments in Figure 4, the average improvements

over Dayar et al. are around 39% and 27% for the 2-D and 1-D step

functions, respectively. The corresponding average improvements

for 0.5≤ ρ≤ 0.95 are 45% and 33%; since the truncated CTMC

contains more states for higher loads, the absolute reduction in state

space (the number of states) is much higher for this range.

Further analysis: We consider the better-performing drift

bounding function and the 2-D step function and experiment

with different α1 values. Figure 5 shows the state space reduction

over [6] as a function of total offered load for different class-1

load shares and for different α1 and ε values. As before, the

improvement is higher for moderate offered loads. In general, the

improvement increases as α1 increases, except when the load share

of class-1 is high, in which case the improvement tends to decrease

as α1 increases. The improvements are largely insensitive to the

truncation error guarantee, ε; we also experimented with smaller ε
values with similar insensitivity results.

Across all experiments in Figure 5, the average improvement

is around 33%, 34%, and 35% for α1=0.2, α1=0.6, and α1=0.8,

respectively. The corresponding improvements for 0.5≤ρ≤0.95

are 41%, 42%, and 44%. The maximum improvement is 71%, with

Dayar et al. truncating at n1=108 and n2=3292, while our 2-D

step bounding function truncates at n1=65 and n2=1610 (here,

the load share of class-2 was higher, so n2 is truncated at a larger

value than n1).

By providing tighter truncation, our technique significantly
reduces the computational effort required to solve the truncated

CTMC. Averaged across all cases in Figure 5, solving the truncated

CTMC (by obtaining the steady-state probabilities via solving

the relevant balance equations) is 3× faster when employing our

bounds than those obtained by Dayar et al. [6].

Validation results: For validation, we compare the obtained mo-

ments from the truncated CTMC with the exact moments provided

in Rege and Sengupta [9]. Using the 1-D step function and set-

ting ε=0.1, the average difference between our results and the exact

results for the first, second, and third moments of the number of jobs

in the system (for either class) across various parameter settings is

around 4×10−4%, 10−3%, and 5×10−3%, respectively. We further

validate our technique by comparing the steady-state distribution

of the truncated CTMC for α1=α2=0.5 with that of the classical

processor sharing system (a DPS with α1 = α2). The maximum

observed difference in per-state probability is only around 10−5%.

Application to higher-dimensional DPS chains: Since the exact

moments of the M/M/1-DPS queue-length distribution are known

for any number of customer classes, our truncation technique can be

readily applied to the M/M/1-DPS CTMC for an arbitrary number of

customer classes (along the same lines as for the 2-class M/M/1-DPS

CTMC analyzed above). Note that for a k-class M/M/1-DPS system,

the CTMC will be k-dimensional and infinite in all k dimensions.

We use the same form of Lyapunov function for the k-dimensional

CTMCs as employed for the 2-dimensional CTMC.
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(a) 1-D step function (b) 2-D step function

Fig. 6: State space reduction by our step bounding functions over

Dayar et al. for M/M/1-DPS with k customer classes; ε=0.1.y

Fig. 7: Comparison of the sum of P90 for both classes of jobs in

the system under the PS and DPS scheduling policies (L1=ρ1/ρ);

results in the [0.90.95] range are zoomed in for illustration.

Figure 6 shows the reduction in state space afforded by our

truncation technique over Dayar et al. [6] as a function of the

total offered load for the M/M/1-DPS with k = 2,3,4 customer

classes. We set ε=0.1 and consider equally-distributed load shares

with αi = 1/k for all k customer classes. We observe that the

reduction in state space increases with k, with the 2-D step function

generally providing better improvements.

Across all experiments shown in Figure 6, the average (and

maximum) state space by our technique is 44% (72%), 36% (68%),

and 30% (58%) for k = 4, k = 3, and k = 2, respectively, using

the 2-D step bounding function. The corresponding improvements

for the 1-D step bounding function are 35% (58%), 30% (53%),

and 24% (45%). In terms of computational effort, across all

experiments in Figure 6, solving the truncated CTMC is as much

as 7× faster when employing our bounds.

B. Applications of the truncated DPS CTMC

For modern web services, such as Amazon [2] and Google [1],

tail performance measures, e.g., tail latency or tail queue length, are

critical to providing acceptable performance to customers. To ana-

lyze the M/M/1-DPS performance, we consider the 90th percentile

of the number of jobs in the system, denoted as P90. Other tail

measures can be similarly computed; for example, tail response time

can be computed by truncating the CTMC and leveraging existing

results for finite DPS queues [22]. We employ our 2-D step drift

bounding function to find the truncation bounds by setting ε=0.01.

We then solve the balance equations for the truncated CTMC and

obtain its steady-state probability distribution; we use the resulting

probability distribution to compute the P90 values.

1) Use case 1: DPS versus PS, for tail metrics: Prior work has

shown that DPS can outperform, in terms of the mean queue length,

the classical M/M/1-PS system with more than one customer class

(a) ρ=0.7 (b) ρ=0.9

Fig. 8: Performance of M/M/1-DPS and non-preemptive M/M/1-

FCFS with priority for different load conditions.

when a larger weight is assigned to the class with a smaller mean

service time [21]. We now investigate whether this result still holds

for tail measures. For both PS and DPS, we consider (the same) two

customer classes with the offered load for class i being ρi=λi/μi,

and the total offered load ρ=ρ1+ρ2.

Figure 7 shows the summation of P90 values of the number

of customers in the system for both classes, P90(N1)+P90(N2),
as a function of ρ for the M/M/1-PS (black line with circles) and

different M/M/1-DPS systems with varying ρ1 values; we set the

parameters for the figure such that the mean service time of class-1

customers is lesser than that of class-2 customers (1/μ1 < 1/μ2)

and set α1 =0.9 to give preferential treatment to the class-1. We

separately zoom in and plot the [0.9 0.95] x-axis range results for

illustration. Note that the P90 values for M/M/1-PS for different

values of ρ1/ρ are quite similar and appear as a single line.

We find that the DPS system outperforms the PS system for

almost all parameter configurations shown in the figure, with more

pronounced (and visible) improvements, ranging from 2%–9%, at

higher offered loads (see zoomed-in plot on the right of Figure 7).

The average improvement over all cases shown in Figure 7 is about

4%. For the DPS cases in Figure 7,α1=0.1, and thusα2=0.9>α1.

By providing higher priority, or weights, for the class with smaller

mean service time (with smaller jobs), DPS can achieve better

performance by as much as 9%. We also experimented withα1>α2,

and found that, in this case, PS outperforms DPS. We analyze the

impact of class weights on the performance of M/M/1-DPS in detail

as a separate use case in our technical report [20].

2) Use case 2: When is DPS better than FCFS with priority?:
This use case focuses on the long-standing debate between PS and

FCFS policies [24]. We investigate the performance of M/M/1-DPS

when compared with that of an M/M/1-FCFS with priority; as

before, we consider two customer (priority) classes. For SLO, we

consider the weighted sum of the tail of the number of jobs in sys-

tem: 10×P90(N1)+P90(N2). For the M/M/1-FCFS with priority,

we employ existing analytical results to obtain the P90 values [25].

We start by considering the non-preemptive version of

the M/M/1-FCFS with priority. Figure 8 shows our results for the

weighted metric as a function of ρ1/ρ. To prioritize class-1 jobs, we

set α1=0.95 for DPS; results are qualitatively similar, but not as

pronounced, under otherα1>0.5 values. We setμ1=0.6 andμ2=1
and experiment with total offered loads ρ=0.7 and ρ=0.9. For

each case, we find values of λ1 and λ2 such that the total load is ρ
and the fractional load of customer 1 is as shown on the x-axis.

When ρ = 0.7, both policies perform similarly. However,

when ρ=0.9, we observe an interesting behavior. When the load
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share of customer class-1 is low, DPS performs better, whereas
when the load share of class-1 is high, FCFS performs better. This is

because for the low load share of class-1, the load is higher for class-

2 jobs, and due to the non-preemptive FCFS policy we consider,

class-2 jobs can “hold up” incoming class-1 jobs, resulting in a high

penalty under our metric that gives a higher weight to P90(N1). For

the high load share of class-1, FCFS outperforms DPS since FCFS

provides strict priority, as opposed to the α1-weighted DPS policy,

which still provides a weight of 1−α1=0.05 for class-2 jobs. We

observed a similar trend for other values of μ1 and μ2 as well.

We also compared the performance of M/M/1-DPS with that of

preemptive M/M/1-FCFS. However, in this case, across different pa-

rameter settings, the preemptive FCFS always outperforms M/M/1-

DPS, with respect to the tail of the number of jobs in the system.

V. APPLICATION TO THE PREEMPTIVE M/M/C+M QUEUE

Multi-server priority queues with preemption have been

widely employed to model differentiated service for multiple

customer classes. For the case of customer abandonment (impatient

customers), referred to as the M/M/c+M priority queue, the exact

steady-state probability distribution for the low-priority customers

is not known. However, truncating using the 1-D step bounding

function (See Section III-A) only requires the moments of one of the

customer classes, which are readily available for the high-priority

class [26]. Employing the 1-D step function for the M/M/3+M

model provides 21% (52%) average (peak) reduction in state space

over Dayar et al. [6]. A detailed discussion of our truncation bounds

and results is provided in Section V of the technical report [20].

We also applied our truncation technique to the preemptive M/M/c

priority queue with two priority classes but without abandonment,

for which the analysis is known to be cumbersome when c>2 [19].

For the preemptive M/M/3 queue with two priority classes, our 1-D

step bounding function provides, on average, a 23% reduction in

state space compared to Dayar et al.’s truncation.

VI. CONCLUSION

This paper presents a Lyapunov function-based technique to

obtain tight truncation bounds with probability mass guarantees for

multi-dimensional and infinite state-space CTMCs. By leveraging

the known moments of the CTMC, our technique significantly

truncates the state space by an average of around 34% and by

as much as 72% (compared to Dayar et al. [6]) in the case

of M/M/1-DPS model; The improvement in the M/M/3+M model

is around 21% on average and by as much as 52%. Importantly, we

prove that the truncation guarantees a user-specified bound on loss

in probability mass, thus allowing for arbitrary accuracy guarantees.
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