
E-Companion for “A Queueing-Theoretic Framework for
Evaluating Transmission Risks in Service Facilities During a
Pandemic”

EC.1 Model Implications: Comparing the Rsys
0 and E[N(N − 1)] metrics

Perlman and Yechiali (2020) propose E[N(N − 1)] (where N is the number of customers in the

system) as a measure of public health risk in a queueing model of a grocery store. This metric

gives the time average number of pairs of customers in the system. Each pair represents a possible

transmission, as one customer in the pair may be infectious and the other susceptible. While

this metric represents a reasonable candidate for studying public health risks due to congestion

in queueing systems (especially, as existing methods exist for its computation across a variety of

system settings), our Rsys
0 metric captures certain features of disease transmission (and therefore

distinguish between varying levels of risk) in ways that the E[N(N − 1)] metric does not. In

particular, there exist systems with identical E[N(N − 1)] values but considerably different Rsys
0

values, which makes E[N(N − 1)] unable to assess the efficacy of some interventions.

The following example, although artificial, illustrates the primary shortcoming of the E[N(N −

1)] metric, which is that it does not account for transmission times and thresholds. Consider

a Dm/Dm/1 system with deterministic arrival and service processes where m customers arrive

simultaneously every 1/λ time units (i.e., exactly at times t= 0,1/λ,2/λ, . . .), and a server serves

the m customers as a batch after they have been in the system for 1/µ time units (where µ> λ in

order to ensure system stability), so that the number of customers in the system at time t is given

by N(t) =m during time intervals (0,1/µ), (1/λ,1/λ+1/µ), (2/λ,2/λ+1/µ), etc., and N(t) = 0

during the time intervals (1/µ,1/λ), (1/λ+1/µ,2λ), (2/λ+1/µ+3/λ), etc. It is straightforward

to obtain E[N(N − 1)] = λm(m− 1)/µ for this system.

Meanwhile, we can compute Rsys
0 as follows: if we assume that one arrival is infectious, while

others are susceptible, then the infectious arrival’s sojourn will coincide with the m − 1 other

customers who arrived (and will depart) with that customer. Their sojourn will not overlap with

that of any other customers. Hence, by the linearity of expectation, the infectious customer will

infect Rsys
0 = (m − 1)P(θ ≥ 1/µ) other customers on average. Now assume that each arrival is

infectious, independent of all others, with some probability p≪ 1/m, allowing us to safely ignore

the possibility of there ever being more than one infectious arrival in the system. Then, since this

system features an infectious customer arrival rate of pmλ, the rate at which customers become

infected (under our transmission assumptions) is

pmλRsys
0 = pλm(m− 1)P(θ≥ 1/µ) = pµP(θ≥ 1/µ)E[N(N − 1)].
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Hence, under our transmission assumptions, within this context, E[N(N − 1)] is an appropriate

choice for evaluating the efficacy of various interventions if and only if pµP(θ ≥ 1/µ) remains (at

least nearly) unchanged as a result of these interventions. If we further assume that θ ∼ Exp(α),

the aforementioned quantity becomes pµ
(
1− e−α/µ

)
. Presumably, most operational interventions

will leave p and α unchanged, and moreover pµ(1 − e−α/µ) ≈ pα when α ≪ µ. So, in a regime

where transmission takes a very long time on average relative to the service rate, E[N(N − 1)]

can even be used to assess interventions that change µ (so long as it is kept in this regime).

But, when α/µ is not negligibly small, then interventions that change µ may not be adequately

assessed by the E[N(N − 1)] metric. For example, an intervention which leads to both doubling λ

and µ, which leaves E[N(N − 1)] unchanged, can actually have a significant effect on reducing

transmissions, as individual customers cut their exposure times in half.

In fact under the exponential dose response model (i.e., when θ∼Exp(α)), what the E[N(N−1)]

metric captures is a measure of risk that measures the number of times infection events would

have occurred under the assumption that a customer who has already become infected can become

infected again (during the same sojourn in the service facility). This type of framework would

suggest that spending 100 time units with one infected individual is 100 times worse (in terms of

some expected healthcare risk) than spending 1 unit of time with the same individual. Note however

that the likelihood of becoming infected more than once in this hypothetical sense is equal to the

likelihood of experiencing two arrivals in a Poisson process with rate α in an interval of length 1/µ

which is o(α/µ), and hence, negligible when α ≪ µ, which explains why an E[N(N − 1)]-driven

analysis agrees with our Rsys
0 -driven analysis in this regime.

While we have focused on an artificial model in our discussion, it is important to note that the

differences between the E[N(N − 1)] and Rsys
0 metrics persist across a variety of settings (although

their quantitative relationships can be setting-dependent). We will discuss one other crucial differ-

ence between these metrics is that due to its abstraction of transmission dynamics, the E[N(N−1)]

can exhibit insensitivity to scheduling policies in the presence of exponentially distributed service

requirements, making it unsuitable for assessing scheduling-based interventions (see Section 5.2).

EC.2 Proofs

EC.2.1 Proof of Proposition 1

Given that the IC arrives to a system seeing state s, we find the expected number of customers

who will become infected by the IC among those present in the system upon the IC’s arrival. In

our model, the IC infects customer i ∈ {1,2, . . . , n(s)}) if and only if W
(s)
i ≥ θi. Hence, it follows
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from the linearity of expectation that the expected number of customers that IC will infect among

the n(s) customers follows:

E

[
n(s)∑
i=1

I
{
W

(s)
i ≥ θi

}]
=

n(s)∑
i=1

E
[
I
{
W

(s)
i ≥ θi

}]
=

n(s)∑
i=1

P
(
W

(s)
i ≥ θi

)
.

Next, we assume that the system is in steady state (rather than assuming it is in a given state s).

We then condition on the state s ∈ S observed by the IC upon their arrival, which allows us to

deduce that the expected number of (pre-existing) customers that will be infected by the IC is

∑
s∈S

π(s)

n(s)∑
i=1

P
(
W

(s)
i ≥ θ

)
. (EC.1)

We prove Eq. 1 by arguing that Rsys
0 is precisely equal to twice the quantity given above in

Display (EC.1) by way of a symmetry argument, where we show that the distribution of the number

of customers that the IC infects among those who arrived to the system before the IC is equal to

(but not necessarily independent of) to the distribution of customers that the IC infects among

those who arrived to the system after the IC. For further details, see Appendix EC.2. □

For any arbitrary value of t > 0, consider the number of other customers—who must all be

susceptible by assumption—Ov(t) that the IC’s sojourn overlaps with for a nonzero duration of

time that is less than or equal to t. If we further let OvB(t) and OvA(t) be the set of such

customers that arrived before and after the IC, respectively, then Ov(t) =OvB(t)+OvA(t) (since

we are assuming Poisson arrivals, no other customer’s arrival coincided with the instant of the IC’s

arrival with probability 1, so each other customer arrived either before or after the IC). Moreover,

since the system is ergodic (and assumed to be in steady state) and since infectious customers

are functionally indistinguishable from their susceptible counterparts, OvB(t) and OvA(t) are

distributed in the same way (although not necessarily independent); this is because given any pair

of customers, where one is susceptible and the other is infected, it is equally likely that that infected

one arrived before or after the other, and the same is true when conditioning on the pair’s sojourn

time overlap.

With this new notation and the fact that OvA(t) and OvB(t) are distributed in the same way,

we can rewrite Rsys
0 as follows:

Rsys
0 =E

[∫ ∞

0

P(t≥ θ)dOv(t)

]
=E

[∫ ∞

0

P(t≥ θ)d(OvA(t)+OvB(t))

]
= 2E

[∫ ∞

0

P(t≥ θ)dOvB(t)

]
,

where the expectation operators are needed as for any given value of t, the Ov(t), OvA(t),

and OvB(t) are random variables. Now observe that the last equality describes twice the expected

number of customers that the IC will infect among those already present in the system, which is

precisely twice the quantity given in Display (EC.1), completing the proof.
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EC.2.2 Proof of Corollary 1

Eq. (2) follows directly from Eq. (1) noting that (i) for any random variable X for which a

Laplace transform X̃ exists and any random variable θ∼Exp(α) independent of X, we have P(X <

θ) = X̃(α) (see exercise 25.7 of Harchol-Balter 2013) and (ii) E[N ] =
∑

s∈S
n(s)π(s).

EC.2.3 Proof of Proposition 2

This result is derived by combining traditional M/M/1 analysis together with an examination

of W
(s)
i . Since the service policy is FCFS, W

(s)
i denotes the remaining sojourn time of customer i

given that there are s customers in the system when the infected customer arrives, and so, W
(s)
i ∼

Erlang(i, µ) for all i∈ {1,2, . . . , s}. Hence, recalling that η≡ α/µ

W̃
(s)
i (α) =

(
µ

α+µ

)i

=

(
1

1+ η

)i

,

which together with the fact that π(s) = (1− ρ)ρs and E[N ] = ρ/(1− ρ) in an M/M/1 system, let

us use Eq. (2) to prove the claim as follows:

Rsys
0 = 2

(
ρ

1− ρ
− (1− ρ)

∞∑
s=0

ρs
s∑

i=1

(
1

η+1

)i
)

= 2

(
ρ

1− ρ
−
(
1− ρ

η

) ∞∑
s=0

ρs
(
1−

(
1

1+ η

)s))
= 2

(
ρ

1− ρ

)(
η

η+1− ρ

)
.

The claims that Rsys
0 and λRsys

0 are convex increasing, convex decreasing, and concave increasing

in λ, µ, and α, respectively, can be verified in a straightforward manner by taking first and second

derivatives.

EC.2.4 Proof of Proposition 3

It is known that for an M/M/c system

π(s) =


c!(1− ρ)

s!(cρ)c−s
C(c, ρ) 0≤ s≤ c

1− ρ

ρc−s
C(c, ρ) s > c,

and E[N ] =
ρ

1− ρ
C(c, ρ)+ cρ (Harchol-Balter 2013, chapter 14). These two facts, together with the

claimed values of W̃
(s)
i (α) and Eq. (2), yield

Rsys
0 = 2

(
E[N ]−

∞∑
s=0

π(s)
s∑

i=1

W̃
(s)
i (α)

)

= 2

(
E[N ]−

c∑
s=0

π(s)
s∑

i=1

W̃
(s)
i (α)−

∞∑
s=c+1

π(s)

(
c∑

i=1

W̃
(s)
i (α)+

s∑
i=c+1

W̃
(s)
i (α)

))

= 2

((
ρ

1− ρ

)
C(c, ρ)+ cρ− 1

η+2

(
C(c, ρ)

(
2cρ− cη

η+ c− cρ

)
+2cρ

))
,
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as claimed.

It remains only to prove that the sojourn time overlap between the IC and customer i is dis-

tributed according to

W
(s)
i ∼


Exp(2µ) 1≤ s < c

min(Erlang(s− c+1, (c− 1)µ)+Exp(µ),Exp(µ)) i≤ c≤ s

Erlang(i− c, cµ)+W (s−(i−c))
c c < i≤ s

,

where all component distributions above are independent of one other, and (as claimed in Propo-

sition 3) takes the following Laplace Transform:

W̃
(s)
i (α) =



2/(η+2) 1≤ s < c(
η

(
c− 1

η+ c

)s−c+1

+ η+2

)(
1

η2 +3η+2

)
i≤ c≤ s(

c

η+ c

)i−c
(
η

(
c− 1

η+ c

)s−i+1

+ η+2

)(
1

η2 +3η+2

)
c < i≤ s

,

for all s∈S and i∈ {1,2, . . . , s},

We address case 1 (i.e., when 1≤ s < c), case 2 (i.e., when i≤ c≤ s), and case 3 (i.e., when c <

i≤ s), separately and sequentially.

Under case 1 (i.e., when 1≤ s < c), the IC’s service starts upon arrival, seeing some customer i

who is already in service at that time. Therefore, the IC’s sojourn overlaps with that of customer i

for an amount of time that is whichever is less of the service time of the IC (call this X) or the

remaining service time of customer i (call this Xi), i.e., W
(s)
i =min(X,Xi). Clearly, X ∼ Exp(µ),

but we must also have Xi ∼ Exp(µ), due to the memoryless property of the exponential distri-

bution. Moreover, since X and Xi are independent, we must have W
(s)
i =min(X,Xi)∼ Exp(2µ)

and W̃
(s)
i (α) = 2/(η+2) as claimed.

Under case 2 (i.e., when i≤ c≤ s), the IC arrives at position s− c+ 1 of the queue (i.e., so

that the IC will enter service at one of the c servers after the system experiences s− c+1 service

departures), while customer i is already in service. In this case, the IC’s sojourn overlaps with that

of customer i for an amount of time equal to whichever is less of the sojourn time of the IC or the

remaining service time of customer i (call thisXi;Xi ∼Exp(µ) as in the previous case). The sojourn

time of the IC is Y +X (so that W
(s)
i =min(Y +X,Xi)), where Y and X are the durations of time

the IC spends in the queue and in service, respectively. The random variable Y (the distribution

of which depends on s) corresponds to the time it takes for s− c+1 successive departures (from

any of the c servers), while X ∼ Exp(µ) as in the previous case. Note that the IC is in the queue

during the entire time it takes for these s− c+1 successive departures (that makes up Y ) to take

place, and hence, all c servers are busy during this time, and so these s−c+1 successive departures
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will each take up an amount of time that is drawn from the Exp(cµ) distribution, and since all

such “inter-departure” times are independent (as service times are independent and exponentially

distributed), we have Y ∼Erlang(s− c+1, cµ). Note, however, that Y and Xi are not independent

(while X is independent of both Y and Xi), because a departure from the system may actually

be due to customer i being served. We can alternatively view W
(s)
i =min(Y ′ +X,Xi), where Y ′ ∼

Erlang(s− c+1, (c− 1)µ) is the time it takes for s− c+1 successive departures to occur assuming

only c− 1 servers are running (i.e., ignoring the server on which job i is running); in this case Y ′

and Xi are independent, and we have W
(s)
i ∼min(Erlang(s− c+1, (c− 1)µ)+Exp(µ),Exp(µ)), as

claimed.

We obtain W̃
(s)
i using first-step analysis by observing that W

(s)
i is in fact distributed according to

a Coxian phase-type distribution (See Harchol-Balter 2013, Chapter 21.1, for details) with s−c+2

phases, all but the last of which have a rate of cµ as they correspond to a service at any of the c

servers; at the conclusion of each of these phases the entire process terminates with probability 1/c

(corresponding to customer i’s service, as this would conclude the sojourn overlap) or continue to

the next phase (correspond to a departure due to any customer in service other than customer i, as

this would advance the IC one position in the queue, or bring them into service if they previously

at the head of the queue). The last phase has a rate of 2µ as it corresponds only to the service

of either the IC or server i (either of which would conclude the sojourn overlap). Denote by Um

the remaining duration of such a distribution given that we currently have m phases left to go

after the current phase (assuming the process does not terminate early), so that Um =Xm + (c−

1)Um−1/c, for all m≥ 1 where Um ∼ Exp(cµ), while U0 ∼ Exp(2µ). Clearly, W
(s)
i = Us−c+1. Using

standard manipulations of Laplace Transforms (See Harchol-Balter 2013, Chapter 25, for details)

and recalling that η≡ α/µ, we have

Ũm(α) =

(
1

η+ c

)(
1+ (c− 1)Ũm−1(α)

)
for all m ≥ 1, and Ũ0(α) = 2µ/(α+ 2µ) = 2/(η + 2). Solving this linear recursion (and recalling

that η≡ α/µ) yields

Ũm(α) =

(
η

(
c− 1

η+ c

)m

+ η+1

)(
1

η2 +3η+2

)
,

which coincides with the claimed value of W̃
(s)
i (α) for case 2, when we set m = s− c+ 1, thus

verifying the claim.

Under case 3 (i.e., when c < i≤ s), the IC arrives at position s− c+1 of the queue, and finds

customer i in position i− c of the queue. We break up the sojourn time overlap between the IC

and customer i into two parts: the duration of time their sojourns overlap while both the IC and

customer i are present in the queue (call this Q, which depends on i), and the remaining portion of
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the sojourn time overlap, which corresponds to the duration of time their sojourns overlaps while

customer i is in service (call this V , and note that the IC may—but need not necessarily be—in

service during some of this time). The first of these durations corresponds to the time it takes for

the system to experience i− c consecutive departures, so Q∼ Erlang(i− c, cµ). Meanwhile, when

customer i enters service, the IC will be in position s− c+1− (i− c) = s− i+1 of the queue, and

hence, the remaining sojourn time overlap, V , will be the same as the total sojourn time overlap

between a customer who had arrived to position s− i+ 1 of the queue (i.e., who had arrived to

a system with s− (i− c) other customers already present in the system), while customer i was

in service (e.g., in position c). That is, V ∼W (s−(i−c))
c ; also note that Q and V are independent.

It follows that in this case W
(s)
i = Q+ V ∼ Erlang(i− c, cµ) +W (s−(i−c))

c as claimed. Moreover,

it follows that W̃
(s)
i (α) = Q̃(α)Ṽ (α) = (c/(η+ c))i−cW̃ (s−(i−c))

c (α). Substituting in the expression

for W̃ (s−(i−c))
c from case 2 shows that W̃

(s)
i (α) is also as claimed in case 3.

EC.2.5 Proof of Proposition 4

The buffer size does not affect the distribution of the sojourn time overlap under the FCFS pol-

icy. Therefore, W̃
(s)
i (α) remains the same as in the case of Proposition 3. Also, the steady-state

probability distribution of an M/M/c/k system is known to follow Eq. (4) (Shortle et al. 2018,

Chapter 3). Using these in Eq. (2) we can establish the claimed result.

EC.2.6 Proof of Proposition 5

We first outline the expressions for the values appearing in Proposition 5, and then we prove the

proposition.

In the setting considered in Proposition 5, let π(h, ℓ, τ) be the limiting probability distribution of

the number of high- and low-risk customers and the type (τ ∈ {H,L}) of customer who is currently

in service under steady state of the system (see Marks (1973) for the algorithm to compute it), the

expressions for the five terms are given in the following Proposition:

Proposition EC.2.1 In the M/M/1 system with non-preemptive priorities described above, we

have

RH
B→H

0 =

∞∑
h=1

∞∑
ℓ=0

[
π(h, ℓ,H)

h∑
i=1

(
1−

(
1

1+ η

)i
)
+π(h, ℓ,L)1ℓ≥1

h∑
i=1

(
1−

(
1

1+ η

)i+1
)]

(EC.2)

RH
B→L

0 =

∞∑
h=0

∞∑
ℓ=1

[
π(h, ℓ,H)1h≥1

ℓ∑
i=1

(
1−

(
1

1+ η

)h+1
)
+π(h, ℓ,L)

(
1− 1

1+ η
+

ℓ∑
i=2

(
1−

(
1

1+ η

)h+2
))]
(EC.3)

RL
B→H

0 =RH
B→H

0 (EC.4)
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RL
B→L

0 =

∞∑
h=0

∞∑
ℓ=1

[
π(h, ℓ,H)1h≥1

ℓ∑
i=1

(
1− W̃h(d)

(
1

1+ η

)i(
W̃ (d)

)i−1
)]

+

∞∑
h=0

∞∑
ℓ=1

[
π(h, ℓ,L)

(
1− 1

1+ η
+

ℓ∑
i=2

(
1− W̃h+AS

(d)

(
1

1+ η

)i(
W̃ (d)

)i−2
))]

(EC.5)

RL
A→H

0 =

∞∑
h=0

∞∑
ℓ=1

[π(h, ℓ,H)1h≥1A1 +π(h, ℓ,L)A2]. (EC.6)

where d= α+λH −λHB̃(α), B̃(α) = 1
2λH

(
λH +µ+α−

√
(λH +µ+α)

2 − 4λHµ

)
, and

A1 =
∞∑

n=1

[
V (h,n)

(
1−

(
1

1+ η

)n+1
)
+(ℓ− 1)V (1, n)

(
1−

(
1

1+ η

)n+1
)]

+
λH

µ

(
1− 1

1+ η

)

A2 =
∞∑

n=1

[
V (h+1, n)

(
1−

(
1

1+ η

)n+1
)
+(ℓ− 2)V (1, n)

(
1−

(
1

1+ η

)n+1
)]

+
λH

µ

(
1− 1

1+ η

)
.

Also

W̃ (s) = ÂS

(
S̃(s)

)
= S̃

(
λH

(
1− µ

µ+ s

))
=

µ(µ+ s)

µ(µ+ s)+λHs

W̃h+AS
(s) =

(
µ

µ+ s

)h

S̃

(
λH

(
1− µ

µ+ s

))
=

µ

(
µ

µ+ s

)h

µ+λH

(
1− µ

µ+ s

)
note that when h= 0, W̃h+AS

(s) = W̃ (s).

Proof of Proposition 5. We first consider the expected number of high-risk customers who were

already in the system being infected when the IC arrives. No matter being which type of customer,

this IC will be served after all the high-risk customers who were already in the system, so each pair

of sojourn time overlap ends when the high-risk SC within the pair leaves the system. Note that

when the IC arrives, if a low-risk customer is currently in service, then all the high-risk SCs have to

experience one more service duration for their remaining sojourn time due to the non-preemptive

policy. Therefore, Eqs. (EC.2) and (EC.4) follow directly after conditioning on different system

states and applying Eq. (EC.1). Then we consider the expected number of low-risk SCs who were

already in the system being infected when the high-risk IC arrives, similarly, we have Eq. (EC.3)

since if a low-risk SC is currently in service, then this SC’s sojourn time overlap with the IC will

end when she finishes the service while that of other SCs will end when the IC leaves the system

since they have lower priority and the SCs will experience one more service duration in this situ-

ation for their sojourn time overlaps with the IC; if the customer currently in service is high-risk,

then all sojourn time overlaps with low-risk SCs end when this high-risk IC leaves. In the case of

considering the expected number of low-risk SCs who were already in the system being infected

when a low-risk IC arrives, the sojourn time overlaps with the low-risk SCs will only depend on
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the departure time of the SCs. We have two situations: (i) the customer in service is high-risk,

then for the i-th low-risk SC, the time until she leaves the system consists of three parts: the busy

period of high-risk customers started by the first h high-risk customers, all the service times of

the i low-risk SCs (including herself), and (i− 1) busy periods started by all the work created

during each low-risk SC’s service time (i.e. the time gaps between any two consecutive low-risk

SCs of receiving the service); (ii) the customer in service is low-risk, then the pair of sojourn time

overlap with the low-risk SC in service will end when the SC finished the service while the other

overlap times of the i-th low-risk SC will include three parts: the busy period started by the work

created by h high-risk customers and the arrivals of high-risk customers during the first low-risk

SC’s service time, all the service times of the i low-risk SCs (including herself), and (i− 2) busy

periods started by all the work created during each low-risk SC’s service time (i.e. the time gaps

between any two consecutive low-risk SCs of receiving the service). So we let W , Wh, and Wh+AS

denote the length of busy period started by the work created by the number of high-risk arrivals in

one service duration, the length of busy period started by the work of h number of service duration,

and the length of busy period started by the work of h high-risk customers and the number of

high-risk arrivals in one service duration respectively. Conditioning and rearranging terms yield

Eq. (EC.5). We finish the proof by figuring out RL
A→H

0 with the use of V (x, y) introduced in the

proof of Lemma 2 in Section EC.5. Recall that V (x, y) gives the expected number of arrivals to an

M/M/1 system with ρ= ρH in state y during current busy period given the initial state x. In this

case that there is ℓ low-risk customers in the system and the high-risk is currently in service when

the low-risk IC arrives, we define the first busy period as the amount of time until the first low-risk

customer enters the service, then the next busy period will be defined as the time until the second

low-risk customer enters the service (note that at this moment the system will have no high-risk

customer) and so on. Except the first busy period, the following busy periods will start when the

low-risk customer enters the service and end when there is no more high-risk customer. Hence, the

first busy period will contribute
∑∞

n=1 V (h,n)

(
1−

(
1

1+ η

)n+1
)

and each following (ℓ− 1) busy

period except the last one will each contribute
∑∞

n=1 V (1, n)

(
1−

(
1

1+ η

)n+1
)
. For the last busy

period, since the sojourn time overlaps will end earlier when the IC leaves the system, so it will con-

tribute
λH

µ

(
1− 1

1+ η

)
instead. Similarly, when there is ℓ low-risk customers in the system and the

low-risk customer is currently in service when the low-risk IC arrives, the first busy period will con-

tribute
∑∞

n=1 V (h+1, n)

(
1−

(
1

1+ η

)n+1
)

(with one more low-risk customer) and the next (ℓ−2)

following busy periods except the last one will each contribute
∑∞

n=1 V (1, n)

(
1−

(
1

1+ η

)n+1
)

and the last one contributes
λH

µ

(
1− 1

1+ η

)
which completes the proof.
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EC.2.7 Proof of Proposition 6

We let q =
λH

λH +λL

(0< q < 1), for any set of parameters 0< λ< µ and ∀ 0< f < 1 which satisfy

the stability conditions, we claim that f = q yields the optimal (minimum) value of Rsys
0 .

We can write the Rsys
0 in this setting as follows:

Rsys
0 = 2q


qλ

fµ

1− qλ

fµ


 η

η+1− qλ

fµ

+2(1− q)


(1− q)λ

(1− f)µ

1− (1− q)λ

(1− f)µ


 η

η+1− (1− q)λ

(1− f)µ

 .

Taking the first and second order derivatives gives:

∂Rsys
0

∂f
= 2αλ

(
q2

(λq− fµ)(λq− f(α+µ))
+

fµq2

(λq− fµ)2(λq− f(α+µ))
+

fq2(α+µ)

(λq− fµ)(λq− f(α+µ))2

)

− 2αλ(q− 1)2

(−fµ+µ+λ(q− 1))(α+α(−f)− fµ+µ+λ(q− 1))

− 2αλ(f − 1)µ(q− 1)2

(−fµ+µ+λ(q− 1))2(α+α(−f)− fµ+µ+λ(q− 1))

− 2αλ(f − 1)(q− 1)2(α+µ)

(−fµ+µ+λ(q− 1))(α+α(−f)− fµ+µ+λ(q− 1))2
,

and

∂2Rsys
0

∂f2
=

4αλ(1− f)(q− 1)
2
(α+µ)

2

((q− 1)λ+(1− f)µ) ((1− f)α+(1− f)µ− (1− q)λ)

+
(1− f)(q− 1)

2
µ(α+µ)− (1− f)µ(q− 1)

2
(α+µ)+ (1− q)λ(q− 1)

2
(α+µ)

((1− f)µ− (1− q)λ)
2
((1− f)α+(1− f)µ− (1− q)λ)

2

+
(1− f)(q− 1)

2
µ2 − (1− f)µ2(q− 1)

2
+(1− q)λ(q− 1)

2
µ

((1− f)µ− (1− q)λ)
3
((1− f)α+(1− f)µ− (1− q)λ)

+
fq2(α+µ)

2

(qλ− fµ) (qλ− f(α+µ))
3 +

fq2µ(α+µ)+ q2(α+µ)(qλ− fµ)

(qλ− fµ)
2
(qλ− f(α+µ))

2

+
fq2µ2 + q2µ(qλ− fµ)

(qλ− fµ)
3
(qλ− f(α+µ))

.

According to the stability conditions we know that (1−f)µ− (1− q)λ> (1− f)
2
µ− (1− q)λ> 0

and qλ−fµ< qλ−f2µ< 0. Clearly, it is straightforward to check
∂2Rsys

0

∂f2
> 0 with these conditions

and
∂Rsys

0

∂f

∣∣∣
f=q

= 0. Hence, Rsys
0 is convex in f and when f = q, Rsys

0 achieves its minimum. Moreover,

when f = q, it is clear that ρT =
λH +λL

µ
, therefore, the Rsys

0 in this case is identical to that under

the FCFS scheduling policy which completes the proof.
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EC.2.8 Proof of Proposition 7

Before proving Proposition 7, we include the Rsys
0 expression under PLCFS policy as well, the

proof follows by the similar analysis in the proof of Proposition 2 and the distribution of W
(s)
i is

identically distributed as an M/M/1 busy period started by Exp(µ) amount of work with system

load ρ for all s ∈ S and i ∈ {1,2, . . . , s} under PLCFS policy, we summarize the results in the

following Proposition:

Proposition EC.2.2 In an M/M/1/PLCFS system with arrival rate λ, service rate µ, load ρ≡

λ/µ, transmission threshold θ ∼ Exp(α) and normalized transmission rate η ≡ α/µ, W
(s)
i is iden-

tically distributed for all s∈S and i∈ {1,2, . . . , s}, such that

W̃
(s)
i (α) =

η+1+ ρ

2ρ

(
1−

√
(η+1− ρ)2 +4ηρ

η+1+ ρ

)
,

while

Rsys
0 =

−(η+1− ρ)+
√

(η+1− ρ)2 +4ηρ

1− ρ
.

Moreover, for an M/M/1 queue with exponentially distributed transmission thresholds.

Then we proceed to start the proof of Proposition 7 by considering any two work-conserving

scheduling policies P1 and P2. Given any sample path of arrival times and service requirements,

the scheduling policies P1 and P2 each yield their own sequence of departure times. Moreover,

since we are assuming that service requirements are exponentially distributed (and independent of

the arrival process), then we can couple sample paths with the same arrival sequences that also

generate the same departure time sequences under P1 and P2 (although, the order in which jobs

depart may differ across the two policies); this coupling is valid due to the memoryless property of

exponential distributions.

Now observe that under the assumption that only a single infectious customer will arrive to

the system, the infectious customer must arrive during some busy period. Therefore, whenever

it is the case that during any busy period, featuring any number of jobs, with any sequence of

departure times (coupled across P1 and P2) P1 yields an expected number of transmissions no

greater than that yielded by P2, then P1 yields an Rsys
0 no greater than that yielded by P2. Note

that the expectation of the number of transmissions is taken over the randomness associated with

the transmission thresholds, randomness associated with the sequence in which jobs will be served

under the policy, and the identity of the infectious customer, which is equally likely to be any of

the customers that arrived during that busy period. Given the fact that comparisons across sample

paths are sufficient, the proof of the claimed result reduces to the proof of the following lemma.
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Lemma 1 For any integer n ≥ 1 and any real numbers a1, a2, . . . , an, d1, d2, . . . , dn ≥ 0 such that

(i) a1 < a2 < · · ·< an, (ii) d1 < d2 < · · ·< dn, (iii) dk > ak+1 for all k ∈ {1,2, . . . , n− 1}, and (iv)

dn > an, consider a busy period of an M/M/1 system with n customers, where arrivals occur at

times a1, a2, . . . , an, and departures occur at times d1, d2, . . . , dn. If we assume that exactly one

customer among these n customers is infectious and each of the n customers is equally likely

to be the infectious one, and we further assume i.i.d. transmission thresholds drawn from the

Exp(α) distribution, then—among all work-conserving scheduling policies—the expected number

of transmissions during this busy period is minimized under the preemptive-last-come-last-served

(PLCFS) scheduling policy and maximized under the first-come-first-served (FCFS) scheduling

policy; note that the departure times are fixed regardless of the choice of scheduling policy.

The result is trivially true in the case where n= 1, as no infections are possible in busy periods

with only one customer arrival and furthermore, scheduling policies are irrelevant in such busy

periods, so we will henceforth assume that n≥ 2.

First, see that whenever we run the system under some policy, at the conclusion of the busy

period, the process yields a unique bijective function σ : {1,2, . . . n}→ {1,2, . . . , n} (i.e., a unique

permutation on n elements, sigma) where σ designates the order in which customers depart the

system, that is dσ(1) < dσ(2) < · · · < dσ(n). Since scheduling policies can make use of randomness

(or, e.g., information about past busy periods), a priori scheduling policy results in a probability

distribution over such permutations (of which there are finitely many), although scheduling policies

such as FCFS and PLCFS will result in a single specific permutation with probability 1.

Now consider a policy, P that does not behave exactly like PLCFS during this busy period. It

follows that P that yields a specific permutation σ with some probability pσ > 0 such that there

exist j, k ∈ {1,2, . . . , n} where j < k and aj <ak <dσ(j) <dσ(k), i.e., under σ some arrival (the j-th)

departs after some later arrival. Fix such a j and k and construct a new policy, Pσ
j,k that yields the

same permutation of P, except whenever P would yield the permutation σ, Pσ
j,k instead yields the

permutation σj,k, where σj,k is defined as follows:

σj,k(i) =


i i∈ {1,2, . . . , n}\{j, k}
k i= j

j i= k.

That is, σj,k acts like σ, except it applies the transposition that swaps the departure times of

the j-th and k-th jobs that would be completed under σ. We will show that Pσ
j,k yields an expected

number of transmissions no greater than that yielded by P.

Now let Oℓ,m and O∗
ℓ,m denote the sojourn time overlap of the customers arriving at times aℓ

and am under departure orders represented by the permutations σ and σj,k, respectively. That
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is, let Oℓ,m ≡min(dσ(ℓ), dσ(m))−max(aℓ, am) and O∗
ℓ,m ≡min(dσj,k(ℓ), dσj,k(m))−max(aℓ, am). Since

any pair of customers arriving during the busy period will consist of one IC and one SC with

probability 2/n (as there is exactly one SC, and it is equally likely to be any of the customers), it

follows that the expected number of transmissions during this busy period under the σ departure

order is

2

n

n−1∑
ℓ=1

n∑
m=ℓ+1

(
1− e−α·Oℓ,m

)
= n− 1− 2

n

n−1∑
ℓ=1

n∑
m=ℓ+1

e−α·Oℓ,m . (EC.7)

The expected number of transmission during this busy period under the σi,j departure order is

naturally given by equivalent expressions in display (EC.7) if we replace Oℓ,m by O∗
ℓ,m in each of the

equivalent expressions. We note that Oℓ,m =O∗
ℓ,m whenever {ℓ,m}= {j, k} and whenever {ℓ,m} ⊆

{1,2, . . . , n}\{j, k}. With this fact in mind, we proceed measure ∆ the decrease in the mean number

of transmissions when implementing policy Pσ
j,k rather than P (recalling that the two policies yield

different departure orders with probability pσ when the latter yields the departure order σj,k rather

than σ):

∆= pσ

((
n− 1− 2

n

n−1∑
ℓ=1

n∑
m=ℓ+1

e−α·Oℓ,m

)
−

(
n− 1− 2

n

n−1∑
ℓ=1

n∑
m=ℓ+1

e−α·O∗
ℓ,m

))

=
2pσ
n

n−1∑
i=1

n∑
m=ℓ+1

(
e−α·O∗

ℓ,m − e−α·Oℓ,m

)
=

2pσ
n

n∑
i=1

(
e−α·O∗

i,j + e−α·O∗
i,k − e−α·Oi,j − e−α·Oi,k

)
.

We will argue that every term of ∆ is non-negative, and therefore, ∆ ≥ 0, establishing that

implementing Pσ
j,k reduces (or leaves unchanged) the mean number of transmissions as compared

to implementing P. Before doing so, we will establish three important results. First, observe that

for all i∈ {1,2, . . . , n}, we must have

Oi,j +Oi,k =
(
min(dσ(i), dσ(j))−max(ai, aj)

)
+
(
min(dσ(i), dσ(k))−max(ai, ak)

)
=
(
min(dσj,k(i), dσj,k(k))−max(ai, aj)

)
+
(
min(dσj,k(i), dσj,k(j))−max(ai, ak)

)
=
(
min(dσj,k(i), dσj,k(j))−max(ai, aj)

)
+
(
min(dσj,k(i), dσj,k(k))−max(ai, ak)

)
=O∗

i,j +O∗
i,k,

from which it follows that O∗
i,j = Oi,j + δi and O∗

i,k = Oi,k − δi where (for fixed σ, j, and k) we

define δi ≡O∗
i,j −Oi,j =Oi,k −O∗

i,k for each i∈ {1,2, . . . , n}. We now have

∆=
2pσ
n

n∑
i=1

(
e−α(Oi,j+δi) + e−α(Oi,k−δi) − e−α·Oi,j − e−α·Oi,k

)
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Second, we must have

δi =O∗
i,j −Oi,j

=
(
min(dσj,k(i), dσj,k(j))−max(ai, aj)

)
−
(
min(dσ(i), dσ(j))−max(ai, aj)

)
=min(dσj,k(i), dσj,k(j))−min(dσ(i), dσ(j))

=min(dσ(i), dσ(k))−min(dσ(i), dσ(j))≥ 0,

because dσ(j) <dσ(k). Third, for all i∈ {1,2, . . . , n}, we must have

δi +Oi,j −Oi,k =O∗
i,j −Oi,k

=
(
min(dσj,k(i), dσj,k(j))−max(ai, aj)

)
−
(
min(dσ(i), dσ(k))−max(ai, ak)

)
=
(
min(dσ(i), dσ(k))−max(ai, aj)

)
−
(
min(dσ(i), dσ(k))−max(ai, ak)

)
=max(ai, ak)−max(ai, aj)≥ 0,

as aj <ak, from which it follows that δi ≥Oi,k −Oi,j.

Having established the above observations, we now express the i-th term of ∆ (for any i ∈

{1,2, . . . , n}) as

∆i(x)≡
2pσ
n

(
e−α(Oi,j+x) + e−α(Oi,k−x) − e−α·Oi,j − e−α·Oi,k

)
evaluated at x= δi. Now observe that for each i∈ {1,2, . . . , n}, ∆i(x) is a convex function in x, as

∂2∆i(x)

∂x2
=

2α2pσ
n

(
e−α(Oi,j+x) + e−α(Oi,j−x)

)
> 0,

so ∆i(x) has at most two roots; by inspection, those roots are at x= 0 and x=Oi,k−Oi,j (and it is

easily seen that x= 0 is th only root when Oi,j =Oi,k); moreover, limx→∞∆i(x) = limx→−∞∆i(x) =

+∞, hence, ∆i(x) ≥ 0 at all values of x that do not lie in between the aforementioned roots;

as δi >max(0,Oi,k −Oi,j), ∆i(δi)≥ 0, as desired, and hence, ∆≥ 0.

Therefore it follows that any policy except PLCFS can be (weakly) improved by using an “oper-

ation” where some σ that is used some nonzero probability of the time is improved to some σj,k.

Hence, PLCFS minimizes the expected number of transmissions. Using “inverse operations” of this

kind on any non-FCFS policy where we replace some σ with some σj,k where j and k satisfy j < k

and aj < ak < dσ(k) < dσ(j), we can a policy yielding a higher mean transmission rate. Hence, any

policy except FCFS can be (weakly) worsened by such (inverse) operations, so FCFS maximizes

the expected number of transmissions.
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EC.3 Hyperexponential Transmission Thresholds

When transmission thresholds are hyperexponentially distributed, we have the following decompo-

sition result, in terms of systems with exponentially distributed transmission thresholds.

Proposition EC.3.1 If transmission thresholds are hyperexponentially distributed so that there

exists some set of infectious-susceptible customer pair types J such that θ ∼ Exp(αj) with proba-

bility qj and
∑

j∈J
qj = 1, then

Rsys
0 =

∑
j∈J

qjR
sys
0 [j],

where Rsys
0 [j] is the Rsys

0 when θ∼Exp(αj) for all infectious-susceptible customer pairs.

Proof First observe that in this setting we have

P
(
W

(s)
i ≥ θ

)
=
∑
j∈J

qjP
(
W

(s)
i ≥ θ

∣∣∣θ∼Exp(αj)
)
=
∑
j∈J

qj

(
1− W̃

(s)
i (αj)

)
,

and so, following Eqs. (1) and (2), the claim follows:

Rsys
0 = 2

∑
s∈S

π(s)

n(s)∑
i=1

(∑
j∈J

qj

(
1− W̃

(s)
i (αj)

))
=
∑
j∈J

qj

(
2
∑
s∈S

π(s)

n(s)∑
i=1

(
1− W̃

(s)
i (αj)

))
=
∑
j∈J

qjR
sys
0 [j].

□

EC.4 A Supplemental Discussion on the Impact of Spatial Positioning on
Transmission

Consider the setting where transmission thresholds are position-dependent as discussed in Sec-

tion 6.2. In this setting, the following proposition gives Rsys
0 for an M/M/1/FCFS system:

Proposition EC.4.1 Consider an M/M/1/FCFS system where transmission rates αm,j depend

on positions as described in Section 6.2. Letting ηm,j ≡ αm,j/µ, we have

Rsys
0 =

(
2ρ

1− ρ
− (1− ρ)

∞∑
s=0

ρs
s∑

i=1

(
2−

i−1∏
j=0

{
1

(ηs+1−j,i−j)+ 1

}
−

i−1∏
j=0

{
1

(ηi−j,s+1−j)+ 1

}))
.

Proof of Proposition EC.4.1. This proof follows a similar argument to that presented in Propo-

sition 2. The first crucial difference is that the probability that the IC infects the SC initially at

position i is not 1−(η+1)−i in this setting, but rather, it is and is given by 1−
∏i−1

j=0

{
1

(ηs+1−j,i−j)+1

}
.

This is because initially the IC is in position s+1 while the SC is in position i, then the IC is in

position s while the SC is position i− 1, and so on, until the SC is in position s+1− i, while the

IC is in position 1. The IC and SC (that was initially at position i) spend a duration of time that

is distributed Exp(µ) in each of these i positional configuration. Hence, during the IC’s sojourn in
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position s+1−j, given that the SC did not previously become infected, the IC fails to infect the SC

(who is concurrently in position i− j), with probability µ/((αs+1−j,i−j)+µ) = 1/((ηs+1−j,i−j)+1),

from which the claimed infection probability follows. Following the proof of Proposition 2, the

expected number of customers that the IC infects among those who arrived before the IC is given

by

ρ

1− ρ
− (1− ρ)

∞∑
s=0

ρs
s∑

i=1

(
1−

i−1∏
j=0

{
1

(ηs+1−j,i−j)+ 1

})
. (EC.8)

Given that the M/M/1 system is time-reversible (See chapters 9 and 13 of Harchol-Balter 2013,

for details), together with the assumption that the IC is functionally indistinguishable from SCs,

and the fact that we are considering a first-come-first-serve system, the expected number of cus-

tomers that the IC infects among those who arrived after the IC is given by a modified version of

the same formula given in Display (EC.8): the only modification is that ηs+1−j,i−j is replaced by

ηi−j,s+1−j (i.e., we have reversed indices). This modification is due to the fact that the symmetry

introduced by time-reversibility does not necessarily apply to the infection rates between pairs of

positions (i.e., αi,j need not be equal to αj,i, and hence, ηi,j need not be equal to ηj,i). The claimed

result then follows by summing these two expectations. □

We proceed to discuss a special case of position-dependent transmission rates where rates depend

on distance. Assuming a queue proceeding in a straight line where distances between successive

customers are the same, we consider a transmission model where αi,j = αI{|i− j| ≤ d}, where I{·}

denotes the indicator function. That is, an IC can only infect those customers who are waiting

up to d positions in front of or behind them in the queue. This model would be reasonable, if,

e.g., successive customers in the queue are spaced exactly 6 feet apart and we believe that there

is a non-negligible transmission risk (occurring with rate α) when customers are spaced 6–18 feet,

but the risk is assumed to be negligible when customers are spaced 24 or more feet apart; in this

example, d = 3. In the case of an M/M/1/FCFS queue, we can compute the Rsys
0 value for this

distance-based transmission model in closed form:

Proposition EC.4.2 Consider the same M/M/1/FCFS system as in Proposition 2 where a sus-

ceptible customer can only be infected by an infected customer within d positions in the queue from

themselves. Then we have

Rsys
0 =

2ρ

(
((1+ η)ρ)d(2ρ− 1)+ η2(1+ η)d(ρ2 − 1)+ ρd

(
(1− ρ)2 − (1+ η)d

((
1

1+η

)d

(1− ρ)2 +2ρ− 1

)))
η(1+ η− ρ)(ρ− 1)(1+ η)d
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Proof. Noting that a tagged IC overlaps with, at most, d customers at the back of the queue upon

their arrival, we can again follow the same symmetry argument as in Proposition 2 and condition

on whether or not the length of the queue on arrival exceeds the threshold amount d to find

Rsys
0 = 2

∞∑
s=0

π(s)

min{s,d}∑
k=1

(
1− W̃

(s)
s−k+1(α)

)
= 2

(
d∑

s=0

π(s)

s∑
k=1

(
1− W̃

(s)
s−k+1(α)

)
+

∞∑
s=d+1

π(s)

d∑
k=1

(
1− W̃

(s)
s−k+1(α)

))

= 2

(
d∑

s=0

(1− ρ)ρs

s∑
k=1

(
1−

(
1

1+ η

)s−k+1
)
+

∞∑
s=d+1

(1− ρ)ρs

d∑
k=1

(
1−

(
1

1+ η

)s−k+1
))

=

2ρ

(
((1+ η)ρ)d(2ρ− 1)+ η2(1+ η)d(ρ2 − 1)+ ρd

(
(1− ρ)2 − (1+ η)d

((
1

1+η

)d

(1− ρ)2 +2ρ− 1

)))
η(1+ η− ρ)(ρ− 1)(1+ η)d

.

EC.5 Analysis of Preemptive Priority Service Policies

For the system described in Section 5.2.1 except having preemptive priority service policy instead, we have

the following proposition:

Proposition EC.5.1 In the M/M/1 system with preemptive priorities, we have

Rsys
0 = 2

(
qH

(
RH

B→H
0 +RH

B→L
0

)
+ qL

(
RL

B→H
0 +RL

B→L
0

))
(EC.9)

RH
0 = 2qH

(
ρH

1− ρH

)(
η

η+1− ρH

)
+ qL

(
RL

B→H
0 +RL

A→H
0

)
(EC.10)

RL
0 =Rsys

0 −RH
0 , (EC.11)

where expressions for RH
B→H

0 , RH
B→L

0 , RL
B→H

0 , RL
B→L

0 , and RL
A→H

0 together with their derivations are given (in terms

of the limiting probability distribution of the M/M/1 system with two priority classes) in Appendix EC.5.1.

Proof. The first equation follows from the symmetry argument that for the whole system, the expected

number of susceptible customers (SCs) that the IC infects among those who arrive before and after the IC

are the same. Conditioning on the type of IC, either high-risk or low-risk SCs who were present in the system

when the IC arrives will possibly be infected which yields Eq. (EC.9). Next, we obtain the second equation

by conditioning on the type of the IC. If the IC is high-risk, then applying Proposition 2 with the load ρH

gives the first half of the equation. Otherwise, the IC will be low-risk and infect RL
B→H

0 +RL
A→H

0 high-risk SCs

on average. Finally, the last equation follows from the fact that Rsys
0 =RH

0 +RL
0 .

EC.5.1 Expressions for the values appearing in Proposition EC.5.1.

In the setting considered in Proposition EC.5.1, let π(h, ℓ) be the limiting probability distribution of the

number of high- and low-risk customers in the system under steady state (see Marks (1973) for the exact

solutions), the expressions for the five terms are given in the following Proposition:
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Lemma 2 In the M/M/1 system with preemptive priorities described above, we have

RH
B→H

0 =

(
ρH

1− ρH

)(
η

η+1− ρH

)
(EC.12)

RH
B→L

0 =

∞∑
h=0

∞∑
ℓ=1

π(h, ℓ)

ℓ∑
i=1

(
1−

(
1

1+ η

)h+1
)

(EC.13)

RL
B→H

0 =

(
ρH

1− ρH

)(
η

η+1− ρH

)
(EC.14)

RL
B→L

0 =

∞∑
h=0

∞∑
ℓ=1

π(h, ℓ)

ℓ∑
i=1

P(W (h,ℓ)
L→L(i) ≥ θ) (EC.15)

RL
A→H

0 =
∑

(h,ℓ)∈S

π(h, ℓ)A (EC.16)

where

A=
1− ρH − (1+ η)h (1− ρH − η (h+ η+hη+ ℓη−hρH))

η(1− ρ)(1+ η− ρ)(1+ η)h
− (1+ ℓ)

(
1− 1

1+ η

)
and W

(h,ℓ)
L→L(i) denotes the length of a busy period started by (h+ i)/µ amount of work in an M/M/1 system

with arrival rate λH and service rate µ.

Proof. Eq. (EC.12) and Eq. (EC.14) follow from Proposition 2 and the observation that in both cases, we

only consider the SCs who are all high-risk customers, so we can treat it as an M/M/1/FCFS system which

only has high-risk customers (load becomes ρH). We can get Eq. (EC.13) and Eq. (EC.15) by directly applying

Proposition 1, the sojourn time overlap distribution in the case of Eq. (EC.13) follows Erlang(h+1, µ) while

the sojourn time overlap W
(h,ℓ)
L→L(i) in the case of Eq. (EC.15) not only depends on the present number of

customers (both high- and low-risk customers) but also will be affected by the future arrival of high-risk

customers (we defer the derivation of P
(
W

(h,ℓ)
L→L(i) ≥ θ

)
right after this proof). We finish this proof by finding

the expression of RL
A→L

0 , when the low-risk IC arrives. Assuming the system state is (h, ℓ), there will be ℓ

low-risk SCs and h high-risk SCs in the system, all of whom will leave the system before the IC leaves.

Note that more high-risk customers may arrive before the IC leaves, and they will be served before the IC.

Therefore, we define the first busy period (with h high-risk SCs) as the time until the first low-risk customer

leaves the system. Each remaining busy period will end when the next low-risk customer leaves the system.

Since only future high-risk SCs will affect the process, we define V (x, y) as the expected number of arrivals

to an M/M/1 system with ρ= ρH in state y during current busy period before the next service completion

of a low-risk customer given the initial state x. V (x, y) can be solved by the following system:
V (x, y) =

ρH

1+ ρH

V (x+1, y)+
1

1+ ρH

V (x− 1, y), ∀ 1≤ x≤ y

V (1, y) =
ρH

1+ ρH

V (2, y),

V (y, y) =
ρH

1+ ρH

(1+V (y, y))+
1

1+ ρH

V (y− 1, y)

which leads to

V (x, y) =

y∑
j=(y+1−x)+

(ρH)
j
. (EC.17)
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Hence, the first busy period will contribute
∑∞

n=1 V (h+1, n) (1− (1/1+ η)n+1) to our risk metric while

the other ℓ busy periods will contribute ℓ
∑∞

n=1 V (1, n) (1− (1/1+ η)n+1), together with Proposition 1 we

get

RL
A→H

0 =
∑

(h,ℓ)∈S

π(h, ℓ)

(
∞∑

n=1

[V (h+1, n)+ ℓV (1, n)]

(
1−

(
1

1+ η

)n+1
))

. (EC.18)

Substituting Eq. (EC.17) into Eq. (EC.18) and simplifying the formulas yield the claimed result in

Eq. (EC.16). □

Next we proceed to derive the expression of P
(
W

(h,ℓ)
L→L(i) ≥ θ

)
. According to the definition of W

(h,ℓ)
L→L(i), we

have (See Chapter 27 of Harchol-Balter 2013, for details on the Laplace transform of the busy period):

P
(
W

(h,ℓ)
L→L(i) ≥ θ

)
= 1− W̃

(h,ℓ)
L→L(i)

(
α+λH −λHB̃(α)

)
where

W̃
(h,ℓ)
L→L(i)(s) =

(
µ

µ+ s

)h+i

,

and

B̃(α) =
1

2λH

(
λH +µ+α−

√
(λH +µ+α)

2 − 4λHµ

)
.
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