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Motivated by the popularity of mobile-order-and-pay applications, especially in fast-casual food restaurants

and coffee shops, we study omnichannel service systems—where customers can employ mobile applications

for self-ordering—with respect to sojourn times, throughput, and social welfare. Our models are two-stage

queues with two customer classes: walk-ins and mobiles. We identify Pareto efficient prioritization policies,

highlighting trade-offs between each class’s mean sojourn times. We allow customers to make strategic joining

decisions based on their anticipated delays under an information structure where walk-ins observe partial

queue length information. We draw from a wide array of techniques, including steady-state, transient, busy

period, hitting-time analyses, and matrix analytic methods. We showcase the significance of prioritization

on the system throughput and social welfare. We demonstrate settings where a traditional service system’s

(typically beneficial) transformation to an omnichannel reduces throughput. Our analysis highlights the

importance of prioritization policy choice for an efficient transition to an omnichannel service system. The

throughput-optimal policy choice highly depends on the operational parameters and customer patience levels;

implementing a wrong policy can yield a significant loss in throughput and profitability.

Key words : Service systems; Queueing systems; Strategic queueing; Omni-channel services; Self-ordering
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1 Introduction

Millions daily wait for services at coffee shops, government offices, and medical clinics. Recent

developments in mobile technologies aim to improve customers’ waiting time experience. For exam-

ple, in some fast-food restaurants and coffee shops, customers can use their mobile phones to

place online orders and pay in advance, effectively skipping the in-store ordering line. The use

of such applications has been growing. For example, the fraction of transactions conducted via

Starbucks’s Mobile Order & Pay application increased from 4% in 2016 to 24% in 2020 (Campbell

2020). Self-processing has also gained traction in other services. For example, car rental companies

enable customers to bypass the counter entirely, provided they have completed certain information

beforehand, allowing them to proceed directly to their rental vehicle (Alamo 2023).
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Despite their potential advantages, introducing the self-processing applications has also caused

complications. Reports of “long lines that are being exacerbated by an uptick in mobile order-

ing... [that are causing] customers to walk out” at Starbucks (Ryan 2017) illustrate the need for

proper system design to mitigate throughput loss due to unsatisfied customers. Leveraging detailed

queueing models and analyses, we highlight task prioritization as a crucial operational design lever

impacting system throughput and customers’ waiting experience in omnichannel services, in which

customers can employ mobile applications for self-ordering.

A coffee shop is a paradigmatic case of an omnichannel service system, which has two stages:

customers wait in line to place and pay for their order and then wait for the order to be prepared.

Major brands, including Starbucks, Dunkin’ Donuts, and McDonald’s, offer online ordering appli-

cations, enabling mobile customers (mobiles for short)—those who use the application—to make

and pay for their selections, skip the cashier line, wait only for preparation. Meanwhile, walk-in

customers (walk-ins for short)—those who cannot or choose not to use the application—must first

wait to place their order.

Under this paradigm, the staff preparing orders for mobiles often take orders from—and prepare

orders for—walk-ins; i.e., the service capacity is shared between both channels. Mobiles bypass the

first stage by processing their own ordering and payment, which reduces their waiting times and

frees up some service capacity. These benefits could reduce total service requirements and waiting

times (potentially for walk-ins and mobiles) and yield higher profits. This omni-channel paradigm

is distinct from its long-existing predecessor, whereby customers can call in an order (e.g., pizza);

the latter does not involve self-processing as the phone call keeps the employee occupied.

Mobile self-processing applications, however, could result in inferior customer satisfaction, even-

tually leading to throughput and revenue loss (Ryan 2017). We show that part of these inefficiencies

stems from higher task prioritization complications (compared to the single-channel services). The

introduction of self-processing applications splits the homogeneous pool of customers (with respect

to service requirements) into two classes (walk-ins and mobiles) with distinct service flows. An

essential system design choice is how to prioritize the orders from the two customer classes. Popular

and easy-to-implement service policies (e.g., first-come-first-served (FCFS)) might not correctly

differentiate the walk-ins’ and mobiles’ distinct requirements and waiting time expectations.

We capture the complicated stochasticity in omni-channel services by modeling them as two-

stage tandem queueing networks under single- and two-server settings (§3). We identify and analyze

Pareto efficient prioritization policies (with respect to the class-specific mean sojourn times of

walk-ins and mobiles) in the case of non-strategic customers and show that they generate the entire

Pareto frontier (§4). Then, we allow strategic customers to join or balk based on their anticipated

delays (§5) with the challenge that walk-ins observe the first stage’s state (based on which they
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draw inferences about the second stage) when constructing their delay anticipation, while mobiles

observe nothing. We draw from various techniques to address this challenge: steady-state, transient,

busy period, hitting-time analyses, and matrix analytic methods. We showcase the significance of

the prioritization policy choice on the system throughput and social welfare (§6) and examine how

our models can be extended in a number of ways (§7).

We find that the throughput increases, on the aggregate level, with the rate customers adopt

mobile ordering technology. However, such benefits are not homogeneous and heavily rely on imple-

menting the optimal prioritization policy. Furthermore, such throughput gains are not universally

achievable. We locate diverse settings where transforming to an omni-channel service reduces

throughput, even under the optimal prioritization policy (among those we study). This observation

runs counter to both the intuition on the benefits of offering a more efficient service stream and

insights generated by some recent work on omni-channel services, which celebrate the advantages

of the mobile channel’s introduction.

Our findings are driven by explicitly modeling previously abstracted queueing-theoretic and

information-structural features of omni-channel services, including the availability of self-service

opportunities for mobile customers. When customers exhibit strategic behavior, the operational

advantages of self-service opportunities (i.e., service requirement reductions) are not always suf-

ficient to overcome inefficiencies introduced by mobile customers having less information than

walk-ins and/or the waiting-time externalities the classes impose on one another. Such losses in

efficiency can degrade the throughput and/or social welfare.

2 Literature Review

Methodologically, our work draws from several research streams. In exploring the Pareto efficient

prioritization policies with respect to class-specific mean sojourn times, we take inspiration from

the achievable regions methods developed in Bertsimas (1995) and further articulated in Dacre

et al. (1999). While our single-server models can also be interpreted as polling models (as surveyed

by Boon et al. (2011) and Borst and Boxma (2018)) and our two-server models resemble tandem

queues with intermediate arrivals (e.g., Morrison 1979, Shalmon and Kaplan 1984, De Clercq and

Walraevens 2020), our objectives, design choices, and analytic techniques are mainly unrelated to

those found in the polling and tandem queueing literature streams. In terms of strategic customer

behavior, we are indebted to Naor (1969) classical paper and the long tradition of work on queueing

games that it has inspired, as surveyed in Hassin and Haviv (2003) and Hassin (2016).

In our strategic models, walk-ins observe only the queue length in the first stage and infer a

distribution on the second stage’s queue length when deciding to join. Similarly, D’Auria and

Kanta (2015), Kim and Kim (2016), Kerner et al. (2017), and Ji et al. (2023) present models
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where arrivals make joining decisions while observing only partial queue-length information. In

these papers, the unobserved information is a random variable with finite support. In our work, the

support is unbounded; hence, we must contend with an infinite state space, necessitating distinct

analytic techniques. One feature of our single-server model—the server alternation between the

two stages—is shared with the model studied by Nimrod et al. (2020); however, our model differs

significantly in that their work renders both queues unobservable. Most significantly, our model

differs from those featured in the papers above in that we consider an omnichannel system with

two customer classes; the papers cited above study single-class single-channel systems.

The analytical modeling of omni-channel retailing has received significant attention from various

aspects (examples include Chopra 2016, Gao and Su 2016, Bayram and Cesaret 2017, Gallino

et al. 2017, Gao and Su 2017, Bell et al. 2018, Jin et al. 2018, Delasay et al. 2022). However, the

queueing-theoretic study of omni-channel services remains in its infancy. In the remainder of this

section, we discuss several related papers.

Gao and Su (2018) investigate the high-level impact of self-processing technologies on capacity

planning (i.e., staffing). While—like our work—they model omni-channel services as tandem queues,

they consider an unobservable queueing setting in their model. Consequently—unlike our work—

the technical contributions of the paper are not queueing-theoretic. Although Gao and Su (2018)

endogenize the arrival rate as a function of the waiting time, they do not explicitly model customers

as rational. Meanwhile, considering rational customers in omni-channel services is a primary focus

of both our paper and a number of papers that we discuss in the following paragraphs.

Baron et al. (2023) study customers’ channel choice in a single-stage FCFS omni-channel system

and show that offering an online ordering channel will increase the system throughput; this increase

comes at the cost of a drop in social welfare due to the resulting information uncertainty. However,

they find that prioritizing walk-ins can overcome this social welfare loss. Our paper complements

this line of investigation by highlighting prioritization as a primary design choice for an efficient

transition from single-channel to omni-channel (although we show that such a transition is not

always possible). Moreover, much of our paper addresses what Baron et al. (2023) identify as “an

intriguing question and a promising future research direction.” Namely, a model where “walk-in

customers are aware of the availability of the online channel but only observe the physical queue...

[which] increases the analysis complexity of walk-in customers’ joining decisions.” Moreover, in §7.2,

we discuss how our modeling framework can be adapted to studying channel choice.

Roet-Green and Yuan (2020) study omni-channel services in a way that can also be thought

of as addressing the “intriguing question” posed in Baron et al. (2023). They treat information

settings—in terms of the level of system occupancy observability—as the primary design choice.

By contrast, our work treats prioritization policies as the primary design choice. Each approach
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results in fundamentally different insights. Furthermore, mobiles are also privy to some system state

information in all information settings in Roet-Green and Yuan (2020). This induces a threshold

joining behavior on the part of mobiles and thus yields finite state spaces, which—together with

their restricted focus on single-stage models—precludes their need for much of the sophisticated

queueing-theoretic analysis that forms an integral part of our paper. These differences have salient

consequences: e.g., they prove that each instance of their model yields a unique equilibrium, whereas

we find many instances where our models give rise to multiple equilibria. Roet-Green and Yuan

(2020) express interest in exploring models of heterogeneous customers’ patience levels; we explore

such heterogeneity as it pertains to our models in §EC.4.7.

Ghosh et al. (2020) explore a discrete-time model, addressing the phenomenon of channel

choice (like Baron et al. 2023). Their work considers some additional features (e.g., not all customers

are given the opportunity to choose their channel) and also—as in the work of Roet-Green and

Yuan (2020)—explores more than one information setting (either mobiles have full, but delayed,

information, or no information at all). Unlike the models in Roet-Green and Yuan (2020) and Baron

et al. (2023), the extra features in the models in Ghosh et al. (2020) lead to settings where the

system throughput under an omni-channel structure falls below that of a single-channel system. In

that respect, they draw conclusions that match ours, despite emphasizing different design aspects

of omni-channel services. An important contribution of Ghosh et al. (2020) is the study of the

possibility of quality degradation during a mobile customer’s travel time. This feature connects the

paper to another stream of research on omni-channel services with rational customers that focus

on issues associated with travel (examples less closely related to our work include Baron et al.

(2020) and Sun et al. (2020)). We briefly address the issue of travel times in our models in §7.2.

The study of channel choice extends to other settings such as the FASTPASS system at Disney-

land (Kostami and Ward 2009), call centers offering the call-back option (Engel and Hassin 2017),

tele-medicine (Liu et al. 2023), and food delivery services (Chen et al. 2022). In the first three

aforementioned settings, the customers choosing the FASTPASS, call-back, or tele-health option

receive the same service as their counterparts who choose the traditional option; the channels differ

only in the queue each customer must wait in and in the service capacity allocated to that queue.

By contrast, in Chen et al. (2022), all customers’ orders are served in the same food preparation

queue regardless of their choice of channel (online-delivery vs. walk-in). Crucially, in all four of

these papers, customers’ service needs do not depend on the choice of channel. As a result, these

models do not capture the operational benefit associated with the opportunity for some customers

(e.g., the mobile customers in our model) to partially process their own requests.

Among the mentioned papers studying omni-channel services in the presence of rational cus-

tomers, only our work considers a two-stage tandem queueing system. This consideration allows our
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models to capture the reduction in the need for service capacity when processing mobile customers

due to their ability to self-order. Studying a partially observable two-stage queueing system under

various prioritization policies necessitates substantial queueing analysis, which constitutes one of

the key contributions of our paper. These features also differentiates our models from customers’

self-routing models studied in Parlaktürk and Kumar (2004), which also focuses on prioritization

policies in an observable two-stage queueing network (though, unlike ours, under the fluid limit

analysis and with both stages fully observable).

Together with Ghosh et al. (2020), Roet-Green and Yuan (2020), and Baron et al. (2023),

discussed above, we view our paper as providing valuable complementary perspectives on the

various quintessential features of omni-channel services. Considering all perspectives simultaneously

allows one to grasp the bigger picture better than taking each perspective in isolation. That said,

it may be infeasible to analyze a single model that fully incorporates and exhaustively explores

all of these features (e.g., service requirement reduction from self-ordering, prioritization design,

information design, channel choice, travel time, etc.) simultaneously, justifying the need for any

given study to emphasize some of these features over others.

3 Model

We consider a family of queueing systems with two service stages and two customer classes. Each

service stage consists of an infinite buffer queue. Walk-ins arrive to Stage 1 according to a Poisson

process with rate λw and proceed to Stage 2 upon service completion at Stage 1. Meanwhile,

mobiles bypass Stage 1 and arrive directly at Stage 2 according to a Poisson process with rate λm;

let Λ = λw + λm denote the total arrival rate to the system. A walk-in’s (resp., mobile’s) sojourn

time, Tw (resp., Tm), is the duration of time from the moment of arrival to Stage 1 (resp., Stage 2)

until the completion of service at Stage 2. We emphasize that while only walk-ins can be present

at Stage 1, customers of both classes can be simultaneously present at Stage 2. For tractability, we

assume that all service requirements are independent and exponentially distributed with rates µ1

and µ2 at Stages 1 and 2, respectively.

We consider two models: (i) In our single-server model (see Fig. 1), a single flexible server moves

between the two stages instantaneously to serve customers according to a prioritization policy

(defined in §3.1). (ii) In our two-server model (see Fig. 2), each stage is served by its dedicated

(inflexible) server; while the Stage 1 server serves walk-ins at Stage 1 in their arrival order, the

Stage 2 server can make service order decisions; e.g., they could prioritize mobiles ahead of walk-

ins. The single-server model allows us to highlight the sojourn time trade-offs between the walk-ins

and mobiles, while the two-server model allows us to test the generalizability of our insights.

In a coffee shop setting, we can think of each walk-in as beginning their sojourn when they arrive

at a physical waiting line (Stage 1) leading to a cashier who takes orders, while each mobile begins
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λw µ1 µ2

λm

Stage 1 Stage 2

Server (currently at Stage 2)

Figure 1 Single-server model (server at Stage 2)

λw µ1 µ2

λm

Stage 1 Stage 2

Figure 2 Two-server model

their sojourn as soon as they place their order via an app. A barista (who is also the cashier in the

single-server model) prepares food and beverages from a virtual queue of orders (Stage 2) placed by

walk-ins and mobiles. Additional modeling considerations such as travel times and the possibility

of a walk-in deciding to switch to using the app after their arrival are addressed in §7.

3.1 Prioritization Policy Structure

At any time, the flexible server in the single-server model must choose at which stage to work.

Furthermore, a server at Stage 2 (the flexible server in the single-server model or the Stage 2

dedicated server in the two-server model) must choose which customer class to serve. To this

end, we introduce the notion of prioritization policies that dictate whom the flexible (or Stage 2

dedicated) server must serve at any time. It is helpful to add further granularity in how we view

customers by breaking up each walk-in’s service into two tasks. At any given time, each customer’s

service belongs to one of three task classes: walk-in tasks at Stage 1 (Os), walk-in tasks at Stage 2

(Ws), and mobile tasks at Stage 2 (Ms).

In the single-server model, we use the convention MWO, for example, to represent a specific

work-conserving preemptive class-based priority policy in which the flexible server prioritizes tasks

in the following order: (1) Ms (mobiles), (2) Ws (walk-ins in Stage 2), and (3) Os (walk-ins in

Stage 1). We can construct 3! = 6 policies by permuting the three task classes. We use a similar

convention in the two-server model: Noting that Stage 1’s dedicated server can only serve Os

(and Os can only be served by this server), we only need to consider the relative prioritization

between Ws and Ms at Stage 2. This yields only two work-conserving preemptive class-based

priority policies: MW (where Ms are prioritized) and WM (where Ws are prioritized). In both

models, tasks within each class are served in FCFS order.

The families of policies discussed above are not exhaustive. Other feasible policies include those

that are not work-conserving, non-preemptive policies, randomized mixtures of other policies, and

policies that give two or more classes an equal priority. We note that in the single-server model,

much of our work extends to non-preemptive policies with modest modifications to our analytic

contributions. Still, we restrict attention to preemptive policies in the interest of brevity. Also, note

that our prioritization rules are different from those in Parlaktürk and Kumar (2004) and Kostami



8

and Ward (2009) in the sense that we do not allow for splitting of the server’s capacity between

the customer classes.

Given any policy P, we are primarily interested in the class-specific mean (equivalently, expected)

sojourn times, EP[Tw] and EP[Tm], that emerge under that policy in steady state. We facilitate

steady-state analysis by making the following assumption:

Assumption 1. The parameters Λ, λw, µ1, and µ2 must ensure system stability; i.e., (a) λw/µ1 +

Λ/µ2 < 1 for the single-server model, and (b) λw <µ1 and Λ<µ2 for the two-server model.

3.2 Customer Behavior and Information Structure

Drawing from the standard framework of rational queueing for risk-neutral customers with linear

waiting-time costs (see, e.g., Naor (1969)), we consider risk-neutral delay-sensitive customers who

associate a reward (or value) for service and experience a waiting cost linear in their sojourn time.

In particular, walk-ins (resp., mobiles) who experience a sojourn time of Tw (resp, Tm) attain a

utility of Rw − CwTw (resp., Rm − CmTm) where Rw is the reward a walk-in attains for receiving

service and Cw is the waiting cost rate of a walk-in (with Rm and Cm playing analogous roles for

mobiles). Normalizing the value of the “outside option” to zero, a customer joins the queue for

service if their anticipated utility is positive, balks if this value is negative, and are indifferent if

this value is exactly zero. For convenience, we define each customer class’s patience level as follows:

Tmax
w ≡Rw/Cw and Tmax

m ≡Rm/Cm, and observe that the criteria for joining or balking described

above are equivalent to customers (i) joining if their patience level (i.e., Tmax
w for walk-ins and Tmax

m

for mobiles) exceeds their anticipated expected sojourn time, (ii) balking if the reverse is true, and

(iii) being indifferent when their patience level is equal to their anticipated expected sojourn time.

Note that while we consider homogeneous patience levels within each customer class (i.e., Tmax
w

and Tmax
m are constants, which is the case when Rw, Cw, Rm, and Cm are all constants), our approach

and insights largely generalize to the heterogeneous case (see §EC.4.7 for details). Further note

that when anticipating their expected sojourn times, customers indirectly take into account the

prioritization policy: they have become accustomed to the policy’s steady-state mean sojourn time,

e.g., from experience or word-of-mouth.

Walk-ins’ joining behavior.

Walk-ins only observe the number of customers N1 in Stage 1 upon arrival, motivated by the fact

that a customer walking into a coffee shop sees how many other customers have lined up to place

orders but cannot see how many outstanding orders are currently awaiting preparation in Stage 2.

However, given that a walk-in observes N1 = i customers in Stage 1, they will infer their expected

sojourn time (under policy P) conditioned on this observation (should they ultimately join the

queue), EP[Tw|N1 = i]. While the mathematical derivation of this conditional expectation in our
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analysis involves computing the joint distribution of N1 and N2, we need not assume that customers

know the structure of this joint distribution. The walk-ins’ ability to infer such conditional expected

sojourn times in our model is meant to capture their ability to develop informed beliefs about their

expected sojourn times based on the visible queue length (for example, through past experience

with the system). This modeling approach whereby customers can form beliefs about their expected

sojourn times based on two statistically correlated queue lengths—one observable and the other

unobservable—conditioned on the observable queue resembles the approach taken by, e.g., Hassin

(1996) and Altman et al. (2004).

In light of the above, a walk-in joins if their conditional expected sojourn time under policy P

is no greater than their patience level (i.e., EP[Tw|N1 = i]≤ Tmax
w ). This gives rise to a threshold b

whereby walk-ins join if N1 < b and balk otherwise; consequently, b acts as a finite buffer size for

Stage 1. Here, we simplify exposition by implicitly considering that all indifferent walk-ins join.

Mobiles’ joining behavior.

Unlike walk-ins, mobiles enter the system observing nothing: they place their order online before

being present to witness the system occupancy. While hypothetically, a mobile application could

provide real-time delay estimates, we do not consider such a feature in our model. We concur

with the following assessment of this issue provided in Baron et al. (2023): “The invisibility of the

online channel also reflects industry practice. To the best of our knowledge, no omnichannel ser-

vice provider offers real-time queue length information to online customers ... Yet, some providers,

e.g., Starbucks, quote expected waiting times to online customers.” Even in the absence of such

announcements, mobiles can still behave strategically by employing a mixed joining strategy. Specif-

ically, under prioritization policy P, each mobile joins with probability pm (independently of other

mobiles) and balks otherwise, where pm is the highest probability for which EP[Tm]≤ Tmax
m .

Strategy profiles.

Based on the discussion above, the joining behavior of all customers is described by the strategy

profile (b, pm), where walk-ins join if and only if they observe N1 < b upon arrival and mobiles join

with probability pm. For any b ∈ Z≥0 and pm ∈ [0,1], the strategy profile (b, pm) results in a well-

defined queueing system; we are most interested in equilibrium strategy profiles, i.e., consistent with

the joining behavior outlined above (see §5 for details). For example, if (b, pm) is an equilibrium,

then EP[Tw|N1 = i]≤ Tmax
w for all i∈ {0,1, . . . , b− 1}. However, the notation used in expressing the

walk-in’s expected sojourn time obfuscates a vital subtlety: EP[Tw|N1 = i] can depend on b and pm;

similarly, EP[Tm] can depend on b and pm. We write PP
(b,pm) and EP

(b,pm) to denote the probability

and expectation operators, respectively, under the strategy profile (b, pm) and priority policy P.
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3.3 Throughput, Overall Mean Sojourn Time, Social Welfare

The throughput rate of walk-ins χw (resp., mobiles χm) is the rate at which they are served. When

patience levels are infinite (i.e., Tmax
w = Tmax

m =∞), we have throughput rates χw = λw and χm = λm;

otherwise, we have χw = λwPP
(b,pm)(N1 < b) and χm = λmpm under the strategy profile (b, pm) and

priority policy P. We measure the overall throughput rate as X ≡ χw + χm, which can serve as

a proxy for revenue if walk-ins and mobiles pay the same average price for service. The overall

mean sojourn time is given by EP[T ] ≡ (λwEP[Tw] +λmEP[Tm])/Λ when Tmax
w = Tmax

m = ∞ and

by EP
(b,pm)[T ] ≡

(
χwEP

(b,pm)[Tw|N1 < b] +χmEP
(b,pm)[Tm]

)
/X when customers are strategic.

When customers are finitely patient, we define the social welfare—denoted by SWP
(b,pm) under

strategy profile (b, pm) and policy P—as the mean surplus experienced across all customers, where

a customer’s surplus is their patience level less their sojourn time (0 if they balk). Our definition

corresponds to the standard one in the rational queueing literature:

SWP
(b,pm) =

λw

Λ

b−1∑
i=0

(
Rw−CwEP

(b,pm)[Tw|N1 = i]
)
PP
(b,pm)(N1 = i) +

pmλm

Λ

(
Rm−CmEP

(b,pm)[Tm]
)
.

In §§4 and 5, we analyze the cases where customers have infinite and finite patience, respectively.

In the infinite patience case (Tmax
w = Tmax

m =∞, which corresponds to the case where Rw =Rm =∞

or Cw = Cm → 0+), since all customers join (i.e., (b, pm) = (∞,1)), the primary metrics of inter-

est are the class-specific and overall mean sojourn times. Meanwhile, in the finite patience case

(Tmax
w , Tmax

m <∞), we are most interested in the equilibrium throughput and social welfare values,

requiring the computation of expected sojourn times.

4 Analysis: The Case of Customers with Infinite Patience

Customers always join when they have infinite patience, i.e., patience levels Tmax
w = Tmax

m =∞ (e.g.,

when the “outside option” is absolutely unacceptable, yielding Rw =Rm =∞ when we normalize the

value of that option to zero). Thus, we need not consider strategic joining behavior. Assumption 1

guarantees systems stability and throughput-optimality under any work-conserving policy. In this

setting, we aim to understand the trade-offs associated with prioritizing one customer class over

the other in terms of the mean sojourn time of each class, assuming that λw, λm > 0.

We formalize these tradeoffs by letting P denote the set of all possible policies P. For any P∈P,

we let aP ≡ (EP[Tw],EP[Tm]) denote policy P’s allocation (i.e., the pair of class-specific mean sojourn

times) and O ≡ {aP ∈ R2
+ : P ∈ P} denote the allocations’ achievable region. Given two policies P

and P′, we say that a customer class is “better off” under policy P as opposed to P′ if the class

experiences a lower mean sojourn time under P; if one class is better off under P and the other

is not better off under P′, then we say that P dominates P′, writing aP � aP′ . The relation ‘�’

induces partial orders on both P and O. We call a policy P Pareto optimal—writing P ∈ P∗—if
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no other policy dominates it; equivalently, in symbols: (P∈P∗) ≡ (6 ∃P′ ∈P : aP
′ � aP). The set of

allocations yielded by Pareto optimal policies is the Pareto frontier, O∗ ≡ {aP : P∈P∗}.

Typically, a system designer prefers a policy that minimizes some function of the class-specific

sojourn times (e.g., the overall mean sojourn time, either class’s mean sojourn time, or any weighted

average of these) that is strictly monotone with respect to the ordering on allocations induced by

the ‘�’ relation. Consequently, the system designer needs only consider Pareto-optimal policies.

We observe that given any pair of policies P,P′ ∈ P, we can construct a family of poli-

cies {〈P,P′〉(θ) : θ ∈ [0,1]} ⊆P parameterized by θ where we use either P or P′ in each busy period

with probabilities θ and 1− θ (independent of past choices), respectively. It follows that for any

work-conserving policies P and P′, a〈P,P
′〉(θ) = θaP + (1− θ)aP′ ∈ O. By this reasoning, the set of

achievable allocations O is convex. We identify several Pareto optimal policies and show that

these policies can generate all other Pareto optimal policies through random mixtures of the kind

described above; we call such policies Pareto generators. Formally, for a given model, a set of

policies G ⊆P∗ is a set of Pareto generators if the Pareto frontier O∗ ⊆ conv
({
aP : P∈ G

})
.

Recall our notation for work-conserving preemptive class-based priority policies where, for exam-

ple, MWO denotes the policy that prioritizes Ms (mobiles) ahead of Ws (walk-ins at Stage 2)

and Ws ahead of Os (walk-ins at Stage 1). Of the six policies in the single-server model, three—

MOW, OMW, and OWM—prioritize Os over Ws; it is straightforward to show that none of

these three policies are Pareto optimal, so we disregard them, focusing instead on MWO, WMO,

and WOM. Meanwhile, in the two-server model, the only relevant prioritization is between the

two Stage 2 task classes, Ms and Ws (as the Stage 1’s dedicated server only serves Os), yielding

the MW and WM policies. We additionally examine a third policy in the two-server model, FCFS

(first-come-first-served). This commonly-used policy prioritizes the Ms and Ws equally and serves

them in the order they enter Stage 2.

In §EC.1.1, we explicitly compute aP under all six of the policies described above and establish

that these policies are Pareto generators for their respective models:

Proposition 1 The set {MWO,WMO,WOM} and the set {MW,FCFS,WM} form a set of Pareto

generators for the single- and two-server models, respectively.

Fig. 3 shows an example of the achievable region and Pareto frontier for each of the two models.

The proof of Proposition 1 establishes that these examples are “representative:” In the single-server

model, the allocations under WOM, WMO, and MWO are connected (from the “northwest” to

“southeast” in that order) by two line segments, where the latter segment is steeper. Meanwhile, in

the two-server model, aFCFS lies on the line segment running from aWM southeast to aMW; i.e., FCFS

is an extraneous generator, in the sense that {MW,WM} also forms a set of Pareto generators.
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Figure 3 Examples of the achievable region for the parameter setting λw = 0.1, λm = 0.5, µ1 = µ2 = 1.

Finally, we turn our attention to one particular metric that is often of interest to system designers:

the overall mean sojourn time EP[T ] ≡ (λwEP[Tw] +λmEP[Tm])/Λ (as opposed to its class-specific

counterparts). While any policy P minimizing EP[T ] must be Pareto optimal, it is natural to ask if

the converse of this statement is true, i.e., does any P ∈ P∗ minimize EP[T ]? The following result

answers this question in the affirmative for the two-server model, while highlighting WOM as a

counterexample to the converse in the single-server model:

Proposition 2 (a) In the single-server model, a work-conserving prioritization policy minimizes

the overall mean sojourn time if it preemptively prioritizes customers in Stage 2 over those in

Stage 1; consequently, WMO and MWO are optimal. Meanwhile, WOM is suboptimal with respect

to the overall mean sojourn time despite being Pareto optimal. (b) In the two-server model, all

Pareto optimal policies are optimal with respect to the overall mean sojourn time.

This section highlighted how each customer class affects the other. The “interaction” between the

two classes becomes more complicated once we consider strategic behavior on the part of customers

with finite patience levels, which is the focus of the next two sections.

5 Analysis: The Case of Customers with Finite Patience

In the setting where customers have finite patience levels, i.e., Tmax
w , Tmax

m <∞, we need to consider

customers’ strategic joining behavior. We are interested in the equilibrium strategy profiles that

emerge under policies we identified as Pareto generators in the infinite patience case (see §4).

Recall that walk-ins observe the current Stage 1 occupancy N1 upon arrival, while mobiles observe

nothing. As implied by our choice of notation, each of EP
(b,pm)[Tw|N1 = i] and EP

(b,pm)[Tm] can depend

on both b and pm. Hence, given a policy P, we seek to find an equilibrium of the form (b∗, p∗m) where
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(i) b∗ is the equilibrium threshold such that EP
(b∗,p∗m)[Tw|N1 = i]≤ Tmax

w whenever N1 = i≤ b∗ and

(ii) p∗m is the highest probability with which mobiles can join while ensuring that EP
(b∗,pm)[Tm]≤ Tmax

m .

Formalizing, we have the following necessary and sufficient conditions on equilibrium (b∗, p∗m):

EP
(b∗,p∗m)[Tw|N1 = i]≤ Tmax

w , ∀i∈ {0,1, . . . , b∗− 1},

EP
(b∗,p∗m)[Tw|N1 = b∗]>Tmax

w ,

arg max{pm ∈ [0,1] : EP
(b∗,pm)[Tm]≤ Tmax

m }= p∗m,

where arg max{∅} ≡ 0. While Assumption 1 guarantees that EP
(b,pm)[Tw|N1 = i]<∞ and EP

(b,pm)[Tm]<

∞ for all policies P under consideration, b∈Z≥0, and pm ∈ [0,1], we will see in §6 that neither the

uniqueness nor the existence of equilibria is guaranteed.

5.1 Determining Equilibria in the Finite Patience Model

We proceed by discussing our method of finding equilibria, which applies to both the single- and

two-server models with minimal differences. The method requires one to obtain EP
(b,pm)[Tw|N1 = i]

and EP
(b,pm)[Tm]. For now, we assume these expressions are given, deferring their derivations for the

single- and two-server models to §§5.2 and 5.3, respectively. The following proposition simplifies the

process of searching for equilibria by limiting the candidate values of threshold b and establishing

that there exists a mobile joining probability pm that is a “best response” to any threshold b.

Proposition 3 For any fixed threshold b and any P ∈ {MWO,WMO,WOM} (in the single-server

model) or P∈ {MW,WM,FCFS} (in the two-server model):

(a) If we take pm to be a value such that (b, pm) is an equilibrium under P, then the threshold

b <B ≡ µ1(T
max
w − 1/µ2).

(b) When we view pm ∈ [0,1] as a variable, the expected sojourn time of mobiles EP
(b,pm)[Tm] is

strictly increasing in pm.

Proposition 3(a) simplifies the process of searching for an equilibrium threshold b, requiring us

to consider only finitely many cases, b∈ {0,1, . . . , dBe− 1} (for all six policies of interest). Given a

policy P, for each possible b ∈ {0,1, . . . , dBe − 1} (where the bound B ≡ µ1(T
max
w − 1/µ2) or some

better bound if available), we compute

pm(b)≡ sup{pm ∈ [0,1] : EP
(b,pm)[Tm]≤ Tmax

m },

where sup{∅} ≡ 0. Meanwhile, Proposition 3(b) (together with the continuity of the mobiles’

mean sojourn time in pm) guarantees the existence of pm(b). Specifically, pm(b) = 1 if

EP
(b,1)[Tm] ≤ Tmax

m , pm(b) = 0 if EP
(b,0)[Tm] > Tmax

m , and pm(b) = f−1b (Tmax
m ) (letting the function

fb(·) ≡ EP
(b,·)[Tm]) in any other case. While f−1b (Tmax

m ) is well-defined, it may not be possible to
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compute it exactly, in which case we can resort to arbitrarily accurate numerical inversion tech-

niques (e.g., the bisection method). Finally, we must check whether each (b, pm(b)) pair is an

equilibrium; this is the case if and only if EP
(b,pm(b))[Tw|N1 = i]≤ Tmax

w , for each i∈ {0,1, . . . , b− 1}),

and EP
(b,pm(b))[Tw|N1 = b]>Tmax

w .

To complete our analysis, we obtain EP
(b,pm)[Tw|N1 = i] and EP

(b,pm)[Tm] for the single- and two-server

policies of interest in §§5.2 and 5.3, respectively. We begin each discussion with an examination

of the continuous-time Markov chain (CTMC) governing (N1,N2) and/or (N1,N2,w), where N2,w

is the number of W tasks in Stage 2. In particular, we must find the steady-state limiting prob-

ability distributions of these chains, which we denote by πP
(b,pm)(i, j)≡ PP

(b,pm)(N1 = i,N2 = j) and

φP
(b,pm)(i, j)≡ PP

(b,pm)(N1 = i,N2,w = j) for any policy P and strategy profile (b, pm).

5.2 Single-Server Finite Patience Model: Mean Sojourn Times

We derive exact expressions for the mean sojourn times in the single-server model under poli-

cies MWO,WMO, and WOM by analyzing their underlying CTMCs. We begin with MWO

and WMO, under which (N1,N2) ∈ {0,1, . . . , b} × Z≥0 evolves according to the same CTMC

(Fig. 4a). We use the limiting probabilities of this CTMC (πMWO
(b,pm)(i, j) ≡ πWMO

(b,pm)(i, j)) in terms of

infinite series later to derive the mean sojourn times. For any specified value of b∈ {0,1, . . . ,B−1},

these limiting probabilities—and hence, the expected sojourn times of interest—can be determined

in closed form (see §EC.3.1).

To find the mean sojourn times under WOM, rather than analyzing the CTMC govern-

ing (N1,N2), we analyze a chain with state variables (N1,N2,w)∈ {0,1, . . . , b}×{0,1} where N2,w is

the number of Ws in Stage 2. Note that under WOM, Os (i.e., walk-ins in Stage 1) receive service

only when there are no Ws in the system. Moreover, once a walk-in’s O task completes service at

Stage 1, their W task arrives to Stage 2 and immediately receives the highest priority, entering

service, and precluding the service of any Os until its service completion. Hence, there can be at

most one W in the system at any given time under WOM, resulting in the finite-state CTMC

illustrated in Fig. 4b. The chain’s finite state space allows for the straightforward determination of

its exact limiting probabilities, φWOM
(b,pm)(i, j) (see §EC.3.2). In the special case where b= 0, we have a

degenerate chain where φWOM
(b,pm)(0,0) = 1. In any case, the limiting probabilities allow us to express

the conditional expected sojourn time EWOM
(b,pm)[Tw|N1 = i].

On the other hand, the φWOM
(b,pm)(i, j) values do not immediately lend themselves to determin-

ing EWOM
(b,pm)[Tm]. Instead, we express EWOM

(b,pm)[Tm] in terms of the first and second moments of two

hitting time random variables, U and V , which depend on (b, pm) (for the computation of these

moments—which can be found in closed-form for any specified value of b—see §EC.3.3): U repre-

sents the waiting time of a mobile (i.e., the duration from arrival time until service begins) who
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Figure 4 Single-server CTMCs. In (a), N1 increases by 1 with rate λw due to a walk-in arrival when N1 < b; N2

increases by 1 with rate pmλm due to a mobile arrival; N1 decreases by 1 and N2 increases from 0 to 1 with rate µ1

due to a Stage 1 service when N1 >N2 = 0; N2 decreases by 1 with rate µ2 due to a Stage 2 departure when N2 > 0.

In (b), N1 increases by 1 with rate λw due to a walk-in arrival when N1 < b; N1 decreases by 1 and N2 increases

from 0 to 1 with rate µ1 due to a Stage 1 service when N1 >N2 = 0; N2 decreases from 1 to 0 with rate µ2 due to a

Stage 2 departure when N2 = 1.

arrives when there are no other mobiles in the system, while V represents the sojourn time of a

mobile who enters an empty system.

Carrying out the analysis described above for all three policies of interest, we obtain all of the

desired expected sojourn times in the following proposition:

Proposition 4 Under MWO, WMO, and WOM in the single-server model, we have
EMWO

(b,pm)
[Tm] =

1

µ2− pmλm

EMWO
(b,pm)

[Tw|N1 = i] =

((
µ2

µ1

+ 1

)
(i+ 1) +

∞∑
j=0

jπMWO
(b,pm)

(i, j)

/
∞∑

j=0

πMWO
(b,pm)

(i, j)

)
EMWO

(b,pm)
[Tm]

, (1)


EWMO

(b,pm)
[Tm] =

1

µ2

(
1 +

b∑
i=0

∞∑
j=0

jπWMO
(b,pm)

(i, j)

)
EWMO

(b,pm)
[Tw|N1 = i] =

1

µ2

−EMWO
(b,pm)

[Tm] +EMWO
(b,pm)

[Tw|N1 = i]

, (2)


EWOM

(b,pm)
[Tm] = EWOM

(b,pm)
[V ] +

pmλmEWOM
(b,pm)

[V 2]

2
(

1− pmλmEWOM
(b,pm)

[V ]
) +

2EWOM
(b,pm)

[U ] + pmλmEWOM
(b,pm)

[U2]

2
(

1 + pmλmEWOM
(b,pm)

[U ]
)

EWOM
(b,pm)

[Tw|N1 = i] = (i+ 1)

(
1

µ1

+
1

µ2

)
+

φWOM
(b,pm)

(i,1)

µ2

(
φWOM
(b,pm)

(i,1) +φWOM
(b,pm)

(i,0)
) . (3)

The results presented in Proposition 4 can then be used to determine the equilibria of the

form (b∗, p∗m) in the single-server model under all three prioritization policies of interest.
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(b) (N1,N2,w) under WM

Figure 5 Two-server CTMCs. In (a) N1 increases by 1 with rate λw due to a walk-in arrival when N1 < b; N2

increases by 1 with rate pmλm due to a mobile arrival; N1 decreases by 1 and N2 increases by 1 with rate µ1 due to

a walk-in service at Stage 1 when N1 > 0; N2 decreases by 1 with rate µ2 due to a Stage 2 departure when N2 > 0.

The CTMC in (b) corresponds to that in (a) when pm = 0.

5.3 Two-Server Finite Patience Model: Mean Sojourn Times

We proceed to seek expressions for the appropriate expected sojourn times in the two-server

model—again with the ultimate goal of determining equilibria of the form (b∗, p∗m). Determining

such expected sojourn times for the two-server model will often necessitate analyzing intractable

infinite-state CTMCs and computing infinite sums over recursively defined quantities. Conse-

quently, unlike in the single-server model, the expected sojourn times in the two-server model

cannot generally be expressed in closed form (with EMW
(b,pm)[Tm] being a notable exception). While

we provide exact expressions for all sojourn times of interest, these expressions will be in terms of

auxiliary quantities (e.g., infinite sums of limiting probabilities) that cannot be determined exactly;

we provide methods for approximating these quantities throughout §EC.3.

Under the two-server policies—MW, WM, and FCFS—the system occupancy (N1,N2) ∈

{0,1, . . . , b}×Z≥0 evolves according to the Fig. 5a CTMC. Our analysis requires the limiting prob-

abilities πTS
(b,pm)(i, j) of this CTMC (where TS stands for our three policies of interest in the Two-

Server model), which can be approximated with arbitrary accuracy (see §EC.3.4).

Prioritization plays a less critical role in the two-server model, as it only affects Stage 2 tasks.

However, in this model, service can be provided at both stages simultaneously; this complicates

system dynamics, leading to significant analytic challenges. For example, consider the FCFS pol-

icy: a tagged walk-in must infer the distribution of N2 based on the observed value of N1 upon
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arrival. Even if the tagged walk-in knows N2 = j with certainty when they arrive, by the time they

finally reach Stage 2, the occupancy there may have varied significantly from j due to arrivals

and departures. Hence, the tagged walk-in’s conditional expected sojourn time is E[Tw|N1 = i] =

(i+ 1)/µ1 + Y (i, j), where Y (i, j) is the expected workload that the tagged walk-in will encounter

at Stage 2 once it arrives there, given that they initially observed N1 = i and N2 = j when first

arriving at Stage 1. By the workload at Stage 2, we mean the amount of time needed to clear

all Stage 2 tasks—including the tagged walk-in’s task—assuming no further arrivals to Stage 2.

Determining the expected workload Y (i, j) requires transient queueing analysis while determining

the distribution of N2 conditioned on N1 = i requires steady-state analysis. To allow for transient

analysis, let {Mρ(t)}t≥0 denote the number of customers in an M/M/1 system under load ρ∈ (0,∞)

at time t and {tn}n≥1 denote the time of the n-th Poisson arrival to this system since time 0. Now

consider Definition 1, adapted from Kaczynski et al. (2012):

Definition 1 For integers u ≥ 0, v ≥ 1, and w ∈ {1,2, . . . , u + v},

let P (u, v,w;ρ)≡ P (Mρ(tv) =w|Mρ(0) = u); i.e., P (u, v,w;ρ) is the probability that the occupancy

of an M/M/1 system under load ρ> 0 transitions from u to w after exactly v further arrivals.

Lemma 1 expresses Y (i, j) exactly in terms of infinite sums of these probabilities, which allows

for Y (i, j)—and further infinite sums expressed in terms of Y (i, j)—to be approximated by using

sum truncation together with a recursive method presented in Kaczynski et al. (2012) for computing

the P (u, v,w;ρ) exactly (see §EC.3.5 for details).

Lemma 1 If a walk-in joins a two-server system when (N1,N2) = (i, j), the expected Stage 2

workload upon arrival of this customer to Stage 2 (including the customer’s own Stage 2 service

requirement) under any work-conserving policy is given by:

Y (i, j) =

(
µ1

µ1 + pmλm

)i+1 ∞∑
k=0

i+j+k+1∑
`=1

`

µ2

P

(
j, i+ k+ 1, `;

µ1 + pmλm

µ2

)(
k+ i

k

)(
pmλm

µ1 + pmλm

)k

. (4)

The probabilities P (u, v,w;ρ) are also instrumental in deriving the mean sojourn times under

the WM policy. Under WM, (N1,N2) is again governed by the Fig. 5a CTMC, with limiting prob-

abilities πTS
(b,pm)(i, j). However, in this case, we are also interested (N1,N2,w) ∈ {0,1, . . . , b} × Z≥0,

which is governed by the CTMC depicted in depicted in Fig. 5b. In particular, we need the limit-

ing probabilities of this chain φWM
(b,pm)(i, j), which we can approximate with arbitrary accuracy (see

§EC.3.7). We also need the expectation of the “hitting time” random variable Z(i, j), which repre-

sents the time it takes to reach a state where N2,w = 0 from state (N1,N2,w) = (i, j) under WM, given

the strategy profile (b, pm), i.e., Z(i, j) ∼ inf{s ≥ 0: N2,w(t+ s) = 0|N1(t) = i,N2,w(t) = j},∀t ≥ 0.

Details on approximating EWM
(b,pm)[Z(i, j)] with arbitrary precision are given in §EC.3.8.
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Carrying out performance analysis for all three policies of interest in the two-server setting, we

obtain the following results for the sojourn times of interest in terms of the problem parameters

and sums involving P (u, v,w;ρ), Y (i, j), and/or EWM
(b,pm)[Z(i, j)].

Proposition 5 Under MW, FCFS, and WM in the two-server model, we have
EMW

(b,pm)
[Tm] =

1

µ2− pmλm

EMW
(b,pm)

[Tw|N1 = i] =
i+ 1

µ1

+
1

1− pmλm/µ2

∞∑
j=0

Y (i, j)πTS
(b,pm)

(i, j)

/
∞∑

j=0

πTS
(b,pm)

(i, j)
, (5)


EFCFS

(b,pm)
[Tm] =

1

µ2

(
1 +

b∑
i=0

∞∑
j=0

jπTS
(b,pm)

(i, j)

)

EFCFS
(b,pm)

[Tw|N1 = i] =
i+ 1

µ1

+

∞∑
j=0

Y (i, j)πTS
(b,pm)

(i, j)

/
∞∑

j=0

πTS
(b,pm)

(i, j)

, (6)


EWM

(b,pm)
[Tm] =

b∑
i=0

∞∑
j=0

EWM
(b,pm)

[Z(i, j+ 1)]πTS
(b,pm)

(i, j)

EWM
(b,pm)

[Tw|N1 = i] =
i+ 1

µ1

+

∞∑
j=0

i+j+1∑
`=1

`

µ2

P

(
j, i+ 1, `;

µ1

µ2

)
φWM
(b,pm)

(i, j)

/
∞∑

j=0

φWM
(b,pm)

(i, j)

. (7)

6 Results and Insights

This section employs our equilibrium determination methodology in the case of finite patience

levels (outlined in §5) to explore the impact of our two service design choices on throughput and

social welfare: (1) whether to offer a mobile ordering option and, if so (2) the prioritization policy

to be implemented. We investigate what happens if a single-channel walk-in only system transitions

to an omni-channel system when an exogenous fraction α ∈ [0,1] of customers “adopt” the new

technology once the app is introduced, converting from being walk-ins to mobiles (i.e., λw = (1−α)Λ

and λm = αΛ). Note that the “market size” (i.e., Λ) remains unchanged after the app introduction;

we investigate the case where the app expands the market to §7.1. We examine what occurs under

the new steady-state equilibrium resulting from the adoption of the app. In reality, some new

customers who were previously uninterested in the single-channel system may also adopt the service

(allowing for an increase in Λ); while we do not consider this possibility in the interest of brevity,

we can study such scenarios using the same methods by setting λw and λm to any desired values.

6.1 Illustration of the Adoption Rate Impact

This section demonstrates the possible impact of the adoption rate α on the normalized throughput

rate X/Λ and social welfare SWP
(b,pm), using an illustrative problem instance; we note that other

problem instances can lead to different phenomena (and result in different plots) and we differ an

examination of the impact of parameters to §6.2.

This problem instance considers a single-server system in which walk-ins are less patient (Tmax
w =

5.2<Tmax
m = 8), with this difference in patience times coming as a result of differing waiting costs
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Figure 6 Single-server model: Λ =
5

8
, µ1 = 2, µ2 = 1,Rw =Rm = 1, Tmax

w =C−1w = 5.2, Tmax
m =C−1m = 8.

(but identical rewards attained from receiving service). For illustration, we generate the plots in

Figs. 6a and 6b, by computing equilibria and the resulting metrics for the adoption rate α ∈

{0,0.005, . . . ,0.995,1}. Some α values result in multiple equilibria for a policy (the gray regions).

Furthermore, at some α values, no pure strategy on the part of walk-ins yields an equilibrium

(the yellow regions). Therefore, we plot the metrics associated with a mixed strategy equilibrium

on walk-ins by relaxing the assumption that the indifferent walk-ins join; i.e., arriving walk-ins

randomize their joining when b− 1 other customers are in the Stage 1 queue (see §EC.4.1).

According to Fig. 6a, although WMO always performs at least as well as MWO, the two poli-

cies yield the same throughput for most adoption rates (orange-blue dashed curves) due to the

discrete nature of the walk-ins’ equilibrium threshold b∗. As a higher mobile adoption alleviates

Stage 1’s load —and because mobiles are more patient in this case—unsurprisingly, a higher α

tends to improve the throughput. Nevertheless, α’s increase may trigger a discontinuous drop in

the throughput due to a downward shift of size one in b∗. That is, a slight rise in α could minimally

affect mobiles’ throughput while notably reducing the throughput of walk-ins, as the walk-ins are

balking at a shorter queue length than they would at the slightly lower α value; the result would

be a net drop in the overall throughput. As WOM aggressively favors walk-ins, mobiles do not join

when α is below A. Due to the lack of mobile participation, the overall throughput is initially

decreasing in α, because the arrival rate of walk-ins λw = (1− α)Λ is decreasing in α and only

walk-ins are contributing to the throughput before the mobiles begin to join. Once α exceeds A,
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λw is low enough to allow a fraction of mobiles to join using a mixed strategy, pm ∈ (0,1). At adop-

tion rates beyond point B, enough mobiles opt to join such that WOM outperforms the other two

policies. Finally, when the adoption rate is beyond a threshold (point C), all mobiles join (pm = 1)

as service interruptions due to walk-ins become sufficiently infrequent.

As expected, there is little throughput benefit in offering the app when the adoption rate is

very low (below point D). Most surprisingly, the no-app benchmark outperforms all three policies

for α between points D and E. This examples serves to show that the omni-channel structure is

not always beneficial. Below we provide intuition for why an increase in α may be detrimental to

throughput even when choosing the best among the three policies, and in particular, why settings

exist where all three policies perform worse than not offering an app at all.

First, recall that an α fraction of those who would be walk-ins in the “no-app” scenario will

be mobiles when the app is introduced. Intuitively, we may reason that since mobiles self-order,

they require less service than walk-ins, thus allowing for less operational load on the system when

throughput is held fixed, which may allow for greater total throughput in equilibrium. One possible

corrective to this argument is that if mobiles are (sufficiently) less patient than walk-ins, then

replacing walk-ins with mobiles may be detrimental with respect to throughput, because mobiles

may be more likely to balk than walk-ins; however, this counterargument does not apply to the

current example, because mobiles are actually more patient than walk-ins; so, the conversion of

walk-ins to mobiles must sometimes introduce a type of inefficiency that is sufficient to overcome

both their reduced needs and their greater patience. Such an inefficiency can arise from the different

available information for walk-ins and mobiles when making their joining decision: walk-ins observe

the queue length at Stage 1, whereas mobiles observe nothing. Depending on the setting, having

less information can either induce or deter joining. See Lingenbrink and Iyer (2019) for a thorough

investigation of this phenomenon in a single-class M/M/1 setting. While we can prioritize mobiles

when their lack of queue length information leads them to balk, this may impose too great an

externality on the walk-ins. Ultimately, we find that when some would-be walk-ins become mobiles,

information loss and/or inter-class externalities can sometimes outweigh the potential throughput

gain from the mobiles’ reduced service (even when mobiles are more patient).

Turning our attention to social welfare, according to Fig. 6b, MWO and WMO outperform the

no-app benchmark for the vast majority of α values. Social welfare tends to increase with α partially

because the average system-wide patience level also increases with α (because Tmax
m >Tmax

w in this

problem instance). On the other hand, aggressive prioritization of walk-ins (i.e., WOM) often yields

considerably lower social welfare than the no-app benchmark; by prioritizing walk-ins—who have

higher service requirements than mobiles—WOM yields relatively poor mean sojourn times and

hence lower social welfare.
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Figure 7 Two-server model: Λ =
1

20
, µ1 =

4

25
, µ2 =

2

25
, Rw =Rm = 1, Tmax

w =C−1w = Tmax
m =C−1m = 40.

We observe qualitatively similar phenomena in the two-server model. Specifically, Fig. 7a shows

that in a two-server setting with equally patient customer classes, there once again exist values

of α where the no-app benchmark dominates the other three policies with respect to throughput.

Beyond these very small α values, the best-performing policy with respect to throughput is FCFS

at moderate α values (tied with MW when α is fairly low) and WM at high α values. Moreover,

Fig. 7b reveals that is even possible for all three policies to under-perform the no-app benchmark

with respect to social welfare (even at α= 1). The dominance of the no-app at α= 1 is initially

counter-intuitive: Moving from a customer base of all walk-ins (no-app) to one of all mobiles

(α= 1)—who require less service, are equally patient, and equally numerous—may be expected to

generate higher social welfare. It turns out that in the “all walk-in” (no-app) case, about 20% (see

the dashed red line in Fig. 7a where X/Λ≈ 0.8) of customers balk. This throughput inefficiency

in the no-app case has a beneficial side effect of reducing congestion and hence expected sojourn

times. As a result, despite (in fact, because of ) the lower throughput in the no-app case, reduced

congestion allows the average customer to experience a greater surplus (i.e., contribution to social

welfare) than what they would experience in the omni-channel system at some α values, including

the “all mobile” system. Apart from an intermediate region where α is roughly between 28%–40%,

the policy that prioritizes mobiles (i.e., MW) performs very well with respect to social welfare

until α> 90%, where the congestion effect sharply increases the overall mean sojourn time. These

results suggest a rich space of trade-offs between throughput and social welfare.
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6.2 Full Factorial Experiment

In §6.1, we showed through illustrative examples that introducing the self-ordering technology

may sometimes hurt throughput and social welfare. To explore the generality of this observa-

tion and other discussions provided in §6.1, we design an extensive problem set by setting λ= 1

and varying the other parameters as follows: µ2 ∈ {1.5,2,2.5,3}, µ1/µ2 ∈ {0.25,0.5,1,2,4}, α ∈

{0.05,0.15, . . . ,0.95}, and Tmax
m ∈ {0.5,1,2,4}, Tmax

w /Tmax
m ∈ {0.8,1,1.25}. We focus on the single-

server model under which we can obtain all expected sojourn times exactly. Of the 2400 possible

combinations, we remove 980 instances where customers of at least one class are too impatient to

join even an empty system (i.e., b= 0 is the best response to pm = 0 or vice-versa; such cases occur

precisely when Tmax
w ≤ 1/µ1 + 1/µ2 or Tmax

m ≤ 1/µ2). We do not remove cases where Assumption 1

is violated; such violations merely limit the space of feasible b and pm that yield finite sojourn times

and do not preclude the existence of equilibria.

For each problem instance, we record the policy that yields the highest throughput (including

the no-app scenario with α = 0). Occasionally, there will be a tie for the highest throughput

between MWO and WMO; where possible, we break such ties in favor of the policy with the higher

social welfare, while in the remaining cases—where the systems behave identically—we report a

tie. In summary, we list our key observations below:

- In most settings (93.2% of problem instances), introducing the app using the optimal prioriti-

zation policy increases the throughput. Under the optimal policy, throughput increases almost

linearly with the adoption rate (see Fig. 9).

- In some settings (6.8% of problem instances), introducing the app, even using the optimal

policy, reduces the throughput substantially (on average, 12.4%).

- Prioritizing walk-ins (i.e., WOM) is often the best policy (61.1% of problem instances), but

the regret from suboptimally employing it is the highest (on average, 8.4%).

We elaborate on these and other observations in the remainder of this section.

When should an omni-channel structure be employed? According to Table 1, transi-

tioning to an omni-channel setting reduces the throughput in 96 (6.8% of the) experiments. This

suggests that the detrimental effect of app introduction is not so unlikely that it can be safely dis-

missed out of hand. Across these 96 no-app cases, the throughput loss resulting from suboptimally

offering the app (compared to the policy that generates the highest throughput) can be as high

as 40.3%, with a mean of 12.4% (see Table 2).

Based on Fig. 8, the incidence of no-app cases initially increases with the adoption rate, peaking

at α = 0.25, after which the frequency of these cases drops monotonically; two-thirds of no-app

cases occur in the lower half of the α values examined (i.e., between 0.05 and 0.45). As expected,

the likelihood of these cases decreases as Tmax
m grows: more patience among mobiles is favorable
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Table 1 Policies and associated regrets

No-app MWO WMO WOM Tie
Optimality freq. 96 4 63 867 390
Optimality prop. (%) 6.8 0.3 4.4 61.1 27.5
Regret prop. (%) 93.2 72.3 68.1 38.9
Regret magn. (%) 15.9 5.4 3.3 8.4

Table 2 Throughput loss of
suboptimally offering the app

Average Std. dev. Median Max
12.4% 11.0% 10.6% 40.3%
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Figure 8 Impact of parameters on the optimality proportion. (No app: , MWO: , WMO: ,

WOM: , MWO & WMO tie: )

for the app introduction. Note that for a fixed Tmax
w /Tmax

m , Tmax
w grows along with Tmax

m , but more

patience among walk-ins is also favorable for app introduction as walk-ins will be willing to wait

behind mobiles, under say MWO. Similarly, the likelihood of such cases drops as µ2 rises (and µ1

with it): faster service rates play a similar role to that of higher patience levels. On the other hand,

there is no such clear trend associated with Tmax
w /Tmax

m , although we note that the no-app cases
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are more likely to arise when Tmax
w >Tmax

m . Meanwhile, cases where app introduction is detrimental

rise sharply with µ1/µ2. The faster the walk-in’s service at Stage 1 (relative to that at Stage 2),

the less significant the advantage of bypassing Stage 1; consequently, the operational advantage of

offering a mobile-ordering option diminishes as µ1/µ2 increases.

What prioritization policy should be implemented? Based on Table 1, WOM outperforms

the other policies in 61.1% of our experiments. Table 1 also quantifies the regret associated with

choosing a policy and implementing it across all experiments in terms of the “proportion” of

experiments where another policy would yield either greater throughput or the same throughput

(but greater social welfare) and the “magnitude” of this regret (average throughput loss relative to

the optimal policy). Prioritizing walk-ins (i.e., WOM) generates regret in the fewest experiments

by far. However, it performs quite poorly when suboptimal. This observation is corroborated by

Fig. 9, which plots the average throughput change as a function of α relative to the no-app case.

We attribute the widespread dominance of WOM (and the lesser success of the other two policies)

to the fact that it is possible to achieve mobile throughput optimality (i.e., pm = 1) in many

experiments, even when prioritizing walk-ins. As long as the full participation of mobiles can be

guaranteed, the problem of maximizing the overall throughput reduces to maximizing that of

walk-ins, which is achieved through WOM. As (i) faster service, (ii) a reduction in the share of

customers that are walk-ins (i.e., increased adoption rate), and (iii) more mobile patience all tend

to reduce the effect of the negative externality imposed on mobiles by the prioritization of walk-ins,

the number of instances in which WOM is optimal increases with (i) µ2 (and µ1/µ2), (ii) α, and

(iii) Tmax
m (Fig. 8). On the other hand, these instances become more rare as Tmax

w /Tmax
m increases:
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when the ratio of walk-in patience to mobile patience grows—and the latter is not high enough

to guarantee pm = 1 under WOM—the alternative policies (i.e., MWO and WMO) tend to become

more favorable. We can explain this tendency by observing that while prioritizing mobiles can lead

to both a mobile throughput gain and a walk-in throughput loss, as Tmax
w /Tmax

m grows, it becomes

increasingly likely that the gain will outweigh the loss.

7 Discussion of Modeling Modifications

In the previous section, we assumed that offering the app causes an exogenously given fraction of

potential customers, α, to place orders through the app instead of walking in for service, while

the overall size of the market (i.e., the total potential arrival rate Λ) remains unchanged. In this

section, we explore relaxations of the endogeneity and fixed market size assumptions. First, we

elaborate on what happens when the market size can expand when the app is introduced (§7.1).

Next, we sketch two methods of endogenizing app adoption such that (at least some) customers

choose their channel (walk-in vs. mobile) strategically, either prior to their arrival (§7.2) or after

they arrive and observe the queue length at Stage 1 (§7.3). The performance analysis of these two

endogenized models constitutes a straightforward (although involved) modification of the analysis

presented in this paper and its appendices. However, we anticipate that the equilibrium analysis

of these models will present new challenges due to the greater complexity in the space of possible.

Therefore, we relegate the detailed study of these models to future work.

7.1 Market expansion

In this section, we consider that the app can also be adopted by new customers who would not

have been customers were the app unavailable; i.e., the introduction of the app leads to market

expansion through an increase in the total potential arrival rate Λ.

Since Λ = λw + λm can change as the market grows, we use Λ0 to represent the total potential

arrival rate in the absence of market expansion, i.e., Λ0 coincides with Λ in the no-app case. We

now capture adoption via two parameters: (i) α ∈ [0,1], as before, is the fraction of walk-ins who

“convert” to being mobiles once the app is offered, and (ii) β ∈ [0,∞) captures the market size

growth—represented as a multiple of Λ0—due to new customers who would not have considered

using the service prior in the absence of the app; i.e., we have λw = (1−α)Λ0 and λm = (α+β)Λ0,

so that the overall market size Λ = (1 +β)Λ0.

In Fig. 10, we examine two possible setting to model market expansion. In setting (a) β is

proportional to α, while in setting (b) α= 0, so that offering the app causes the market to grow by

a factor of 1+β, without a reduction in λw. Examining the setting (a), we find that there exist pairs

of nonzero α and β such that not offering the app dominates all three of MWO, WMO, and WOM

with respect to throughput. Therefore, even market expansion can fail to overcome throughput loss
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Figure 10 Market expansion setting: Λ0 = 0.625, µ1 = 2, µ2 = 1, Tmax
w = 5.2, Tmax

m = 8.

induced by the “converted” walk-ins’ loss of information and/or inter-class externalities. Whenever

some or all mobiles opt to balk in equilibrium under the throughput-maximizing prioritization

policy, an increase in β will fail to increase the throughput, unless β were sufficiently high enough

to induce a change in the optimal policy.

On the other hand, in setting (b), where α = 0, we cannot find any values of β such that

“no-app” dominates all three policies. Indeed, it must always be the case that no-app cannot

outperform WOM (with respect to throughput) when α= 0. This is because λw remains constant

in β when α= 0, and allowing some mobiles to join the system does not affect the walk-ins since

they have full priority. Consequently, χw (the throughput due to walk-ins) is the same under no-

app and WOM for all β ≥ 0 when α= 0. Moreover, since the overall throughput is the sum of the

class-specific throughput values (i.e., X = χw +χm) and χm = 0 under the no-app case while χm ≥ 0

under WOM, the throughput under no-app is no greater than that under WOM.

Our examination of market expansion leads to a qualification of our earliest insights regarding

the potential harm of app introduction: it is not the introduction of the app itself that can cause

inefficiencies, per se, but rather the potential for the app to lead to a kind of “cannibalization” if

and when some of the walk-ins become mobiles (as modeled in setting (a)).

7.2 Channel Choice

We now sketch a modification of our model that allows for (some) customers to strategically choose

whether they will be a walk-in or a mobile (or balk) based on their anticipated expected sojourn
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time in each of these cases. In the simplest case, there is a single customer class where everyone is a

“chooser” who strategically chooses a channel in advance. In a more complex setting, we may have

three types of customers: ordinary walk-ins (who cannot choose to use the app, perhaps because

their phone is incompatible with the app), ordinary mobiles (who cannot approach the store as a

walk-in, perhaps because they are habituated to using the app), and choosers. Of course, all three

classes of customers still have the option to balk.

In this setting, the choosers select a strategy that specifies a probability distribution over the

three options: choosing to be a walk-in, a mobile, or balking. If they choose to be a walk-in with a

nonzero probability, their strategy must also specify the probability that they will balk after their

arrival given that they observe N1 = i customers in Stage 1 (for each possible i). In equilibrium, a

chooser opts for the option with the highest expected utility, while taking the utility of balking to

be zero and randomizing when indifferent between two (or three) utility-maximizing alternatives.

Denoting the strategy adopted by the choosers (or more generally, the joint strategy adopted

by the walk-ins, mobiles, and choosers) as s, we must compute EP
s [Tw|N1 = i] and EP

s [Tm]. These

computations largely mimic those of their analogues in the models without channel choice (as given

in Propositions 4-5). Assume that choosers receive a reward Rc from receiving the service, incur

a waiting cost Cc per unit time, and balk under s when they arrive as a walk-in and see a queue

length under which they anticipate negative utility (which is true in equilibrium). Then, the utility

of a chooser associated with being a walk-in under P is
∑∞

i=0(Rc −CcEP
s [Tw|N1 = i])+PP

s (N1 = i),

while the utility associated with being a mobile is Rc − CcEP
s [Tm]. We note that PP

s (N1 = i) is

straightforward to compute once the relevant limiting probabilities have been determined.

We can make this model even more realistic by introducing the notion of travel times, as the

convenience of ordering before one arrives at the service location (and therefore experiencing less of

a wait at the conclusion of travel) may attract choosers to opt for the mobile channel. Adopting the

modeling approach in Baron et al. (2023) results in all customers incurring a traveling cost unless

they opt to balk before traveling; notably, those that opt to walk-in and then balk upon seeing the

length of the Stage 1 queue have still incurred the sunk cost of traveling. Adding traveling costs to

our model in this fashion is game-theoretically equivalent to increasing a chooser’s utility for the

“outside option” (balking before traveling value) from 0 to some value reflecting the travel cost

and leaving all other utilities unchanged.

Alternative methods for modeling travel times could allow for distinguishing between the waiting

costs experienced during travel and those experienced after one arrives at service location (e.g.,

the coffee shop) and capturing the phenomenon of quality degradation during travel (see Ghosh

et al. 2020). Such models may require taking expectations of nonlinear functions of Tm, which may

inhibit tractability given our nuanced queueing framework.
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7.3 Channel Switching

Another possible model extension is to allow customers to arrive as a walk-in, and then make one

of three decisions based on the observed length of the Stage 1 queue: join, balk, or switch to being

a mobile. This captures real-world situations where a customer who encounters an unusually long

queue might decide to place an order immediately through the app to “jump” the physical queue.

Whereas in the previous section where we discussed a type of channel choice where a decision

was made in advance, here we discuss how our model can be adapted to accommodate channel

switching, which can be thought of as a type of delayed channel choice. Moreover, by analogy

with the previous section, in the simplest setting allowing for switching all customers could be

“switchers,” whereas in a more complex setting, we could have up to three classes: dedicated

walk-ins, dedicates mobiles, and switchers.

Note that simple sample path coupling arguments can show that regardless of the length of the

Stage 1 queue observed by the switcher upon arrival, they will always experience a lower sojourn

by (i) switching to be a mobile in the single-server model under the MWO and WMO and in the

two-server model under MW and FCFS policies or by (ii) remaining a walk-in in the single-server

model under WOM.

Among the six policies we studied, only under WM (in the two-server model) does the optimal

(i.e., expected sojourn time-minimizing) channel on the Stage 1 queue length. In this setting, the

switchers choose a strategy that gives a probability distribution over the three options—joining

(as a walk-in), switching, or balking—for each possible observed queue length. In equilibrium,

a switcher’ strategy is utility-maximizing. Denoting the strategy adopted by the switchers (or

more generally, the joint strategy adopted by the walk-ins, mobiles, and switchers) as s, we must

compute EWM
s [Tw|N1 = i], EWM

s [Tm] (if the model includes mobiles), and EWM
s [Tm|N1 = i], which

can be expressed in forms very similar to the expressions given for EWM
(b,pm)[Tw|N1 = i], EWM

(b,pm)[Tm],

and a conditioned variant of EWM
(b,pm)[Tm], respectively. We note, however, that in these forms, one

must replace πTS
(b,pm)(i, j), φ

WM
(b,pm)(i, j), and EWM

(b,pm)[Z(i, j + 1)] πTS
(b,pm)(i, j) with analogous quantities

associated with the CTMCs that result from the strategy (or joint strategy profile) s.

While the discussion above seems to preclude a rational basis for channel switching under any of

the five non-WM policies, this behavior can be rationalized by assuming either (i) that waiting costs

are non-linear or (ii) that switchers derive a reward for service (and/or experiencing a waiting cost

rate) that depends on their chosen channel. Note that (i) introduces non-linearity, which can further

complicate equilibrium analysis. On the other hand, our framework can accommodate (ii) in a more

straightforward fashion, as we already allow for differing values of Tmax
m and Tmax

w . Nevertheless, (ii)

may appear to stretch credulity: why would the same customer derive a different reward (before

deducting waiting costs) for the same service based on a channel choice decision that is made after
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arrival? We could explain this by an appeal to an idiosyncratic preference for one channel over the

other (such as a desire for or aversion to human interaction). While idiosyncratic preferences can

form part of a reasonable justification for the existence of fixed walk-ins and mobiles in our base

model, it is unreasonable to assume that all switchers exhibit the same idiosyncratic preference.

Hence, a channel-dependent reward and/or waiting cost modeling assumption is only appropriate

when allowing for heterogeneity across the switchers, so that some attach a higher reward to the

mobile channel, while others are predisposed to prefer the walk-in channel.

8 Conclusion

This paper utilizes queueing-theoretic techniques to evaluate single- and two-server omni-channel

service models in the presence of non-strategic customers with infinite patience levels and strategic

customers with finite patience levels. We highlight the importance of prioritization for an efficient

transition to an omnichannel service with a finitely-patient customer base. The throughput-optimal

policy choice is highly dependent on the operational parameters and on customer patience levels;

implementing a wrong policy can yield a significant loss in throughput and, hence, profitability.

We uncover a non-negligible number of settings where offering the app under any of the policies we

have studied (i.e., Pareto optimal in the setting where customers are infinitely patient) would be

detrimental. Such settings arise in the single- and two-server models (and in the former case, even

when patience levels are heterogeneous). Such settings also exist (at least in single-server models)

when customers exhibit heterogeneous patience levels within each class (see §EC.4.7), and when

offering the app leads to an expansion in the size of the market (§7.1).

We believe our contributions open up ample room for future work in game-theoretic queueing

models of omni-channel services. First, our results implicitly feature the occasional existence of

throughput-welfare trade-offs, suggesting a rich space of problems that would emerge from intro-

ducing a (channel-specific) pricing design lever and the objective of profit maximization. Second,

mobile apps are beginning to provide delay estimates to customers, suggesting a real-world need for

future work to explore models like those in this paper that assume different information structures.

As mentioned in §2, Roet-Green and Yuan (2020) have already begun an exploration of this space,

and we are optimistic that a detailed examination of a richer model incorporating features of both

our models and theirs can shed further light on the dynamics of omni-channel services.

Additionally, future work on customers with finite patience could introduce dynamic (state-

dependent) policies and new techniques for analyzing their performance and equilibria. We are

particularly curious about how alternate information structures and dynamic policies can avoid or

mitigate the potential harm associated with omni-channel services that this paper highlights.

Finally, the blend of queueing-theoretic methods we have employed in evaluating expected

sojourn times may have implications beyond omni-channel services. Specifically, our performance
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evaluation methods may be seen as the first steps in analyzing a rich space of queueing network

models where some—but not all—service stations are buffered. Another interesting direction for

future is to consider the possibility of more than one server at each queue.

We conclude by summarizing our key insights. We find that introducing the self-ordering tech-

nologies using the optimal prioritization policy generally increases the throughput (and social wel-

fare). However, there exist settings where introducing such technologies, even when implemented

optimally, reduces the throughput substantially. This suggests that the detrimental effect of the

self-ordering is not so unlikely that it can be safely dismissed out of hand. Hence, the omni-channel

structure is not always beneficial. Under the optimal policy, throughput increases as the adoption

rate of the self-ordering technology increases and as customers (on the side of walk-ins and mobiles)

exhibit higher patience tolerance. With respect to the optimal prioritization policy, prioritizing

walk-ins over mobiles is often best as achieving full participation of mobiles is possible in many

parameter settings (even when they receive lower priority). However, in some settings, prioritizing

mobiles may offer a modest improvement over not offering the app at all, while prioritizing walk-ins

over mobiles will scare mobiles away and yield a substantial loss in throughput.

Our findings emphasize the critical role of prioritization in transitioning to an omni-channel

service, especially when dealing with a customer base with finite patience. While it is clear that the

adoption of mobile ordering technology can lead to increased throughput, the key takeaway here is

that the benefits are not universal and heavily rely on implementing the right prioritization policy.

One size does not fit all, as the study reveals that introducing the app, even with the optimal

policy, can sometimes reduce throughput substantially. Prioritization strategies must be carefully

tailored to operational parameters and customer patience levels to maximize profitability.
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Prioritization in the Presence of Self-ordering Opportunities
in Omni-channel Services—Technical Appendices.

The following five technical appendices are provided as a supplement the body of the paper “Pri-

oritization in the Presence of Self-ordering Opportunities in Omni-channel Services.”

First, Appendix EC.1 provides the supplemental results and proofs while Appendix EC.2 pro-

vides proofs of the results presented throughout the body of the paper. Second, several quantities

discussed in the paper (such as a variety of limiting probability distributions) appear in formulas

of the key results, but details on how to compute these quantities (either exactly or approximately)

are omitted from the main body of the paper. A discussion on how to obtain these values exactly

or approximately is provided in Appendix EC.3. Third, Appendix EC.4 provides a discussion of

mixed strategies on the part of walk-ins. Building off of this discussion, this appendix also provides

the analysis of the case where patience levels are heterogeneous. Next, Appendix EC.5 presents

tables of results associated with the pruned full factorial experiment presented in Section 6 of the

body of the paper. Finally, in the interest of aiding the reader, we provide a near-exhaustive table

of the notation used throughout the body of the paper and/or these appendices in Appendix EC.6.

EC.1 Supplemental Results

EC.1.1 Allocations under Pareto Generators and Proofs

The following proposition provides the allocations under Pareto generators (MWO, WMO, and

WOM in the single-server model; MW, FCFS, and WM in the two-server model).

Proposition EC. 1 We summarize the class-specific mean sojourn times as follows:

(a) for the single-server model:

aMWO =

(
µ2 (µ1 +µ2−Λ)

(µ2−λm) (µ1µ2−µ1Λ−µ2λw)
,

1

µ2−λm

)
(EC.1)

aWMO =

(
µ3
2 +µ2

2 (µ1−Λ)−µ2λm (µ1−λw) +µ1Λλm

µ2 (µ2−λm) (µ1µ2−µ1Λ−µ2λw)
,

µ2 +λw

µ2 (µ2−λm)

)
(EC.2)

aWOM =

(
µ1 +µ2−λw

µ1µ2− (µ1 +µ2)λw

,
µ2 (µ2

1 +µ2λw)

(µ1µ2−λw (µ1 +µ2)) (µ1µ2−µ1Λ−µ2λw)

)
(EC.3)

(b) for the two-server model:

aMW =

(
µ2

(µ2−Λ)(µ2−λm)
,

1

µ2−λm

)
(EC.4)

aFCFS =

(
µ1 +µ2−λw−Λ

(µ1−λw)(µ2−Λ)
,

1

µ2−Λ

)
(EC.5)

aWM =

(
µ1 +µ2− 2λw

(µ1−λw)(µ2−λw)
,

µ2

(µ2−Λ)(µ2−λw)

)
(EC.6)

Proof of Proposition EC. 1
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The one-server model proof. We derive formulas for the one-server model by focusing on one

policy at a time.

MWO (Eq. (EC.1)). We can view a system under MWO as operating like a two-class M/G/1

system under preemptive-priority scheduling with class-specific service requirement distributions.

Under MWO, the mobiles (resp., walk-ins) form the high-priority (resp., low-priority) class and are

conventionally designated as class 1 (resp., class 2). Therefore, we can obtain the desired sojourn

times by using the formula for the preempt-resume model (where no work is lost under preemption)

given in Harchol-Balter (2013) (Chapter 32.2):

E[Tk] =
E [Sk]

1−
∑k−1

i=1 ρi
+

∑k

i=1 ρiE [S2
i ]/(2E [Si])(

1−
∑k−1

i=1 ρi

)(
1−

∑k

i=1 ρi

) , (EC.7)

where E[Tk] is the sojourn time associated with class k, [Si] and E [S2
i ] are the first and second

moments of the class i service requirement distribution, and ρi = λiE [Si] is the contribution to the

load due to class i (with λi the class i arrival rate).

By observing that under MWO mobiles (resp. walk-ins) require service only at Stage 2 (resp.

both Stages 1 and 2), we see that their service requirements are distributed Exp(µ2) (resp., like

the sum of an Exp(µ1) and an independent Exp(µ2) random variable). It then follows that

λ1 = λw, E[S1] =
1

µ2

, E[S2
1 ] =

2

µ2
2

, λ2 = λm, E[S2] =
1

µ2

+
1

µ1

, E[S2
2 ] =

2

µ1µ2

+
2

µ2
1

+
2

µ2
2

. (EC.8)

Substituting the values given in display (EC.8) into (EC.7) readily yields (EC.1).

WMO (Eq. (EC.2)). Under WMO, once a walk-in finishes service in Stage 1, they will be served

with the highest priority and without interruption in Stage 2 until his service is completed; i.e., the

mean sojourn time of walk-ins in Stage 2 is 1/µ2. Therefore, we can represent the walk-in mean

sojourn time as:

EWMO[Tw] =EWMO[Tw,1] +
1

µ2

, (EC.9)

where Tw,1 represents a walk-in’s sojourn time in Stage 1. A walk-in’s Stage 1 sojourn time consists

of a busy period with initial work equal to the amount of work the walk-in finds in the system

(at both stages) upon its arrival, W , in addition to its own contribution to work in Stage 1—

distributed Exp(µ1)—and interruptions due to mobile arrivals (which arrive according to a Poisson

process with rate λm, where each interruption contributes an average of 1/µ2 additional work).

Hence, standard busy period analysis yields

EWMO[Tw,1] =
E[W ] + 1/µ1

1−λm/µ2

. (EC.10)
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We proceed to determine E[W ]. First observe that W has the same distribution under any

work-conserving service policy, and therefore corresponds to the distribution of the sojourn time

in queue, TQ, associated with an M/G/1 system under first-come-first-serve scheduling with two

independent arrival streams: the first (resp. second) stream corresponds to that of walk-ins (resp.

mobiles) in the original setting and has an arrival rate of λw (resp. λm); meanwhile, service require-

ments are distributed like Exp(µ1)+ Exp(µ2) (resp. Exp(µ2)). By “merging” these arrival streams,

we find that this M/G/1 system has a total arrival rate of Λ = λw +λm, with the first and second

moments of the service requirement distribution—denoted by E[S] and E [S2], respectively—given

by

E[S] =
λw

Λ

(
1

µ1

+
1

µ2

)
+
λm

Λ

(
1

µ2

)
, E

[
S2
]

=
λw

Λ

(
2

µ2
2

+
2

µ1
2

+
2

µ1µ2

)
+
λm

Λ

(
2

µ2
2

)
. (EC.11)

Letting ρ≡ΛE[S] denote the load associated with this M/G/1 system, the Pollaczek-Khinchine

formula yields the following:

E[W ] =E[TQ] =
ρ

1− ρ
E [S2]

2E[S]
. (EC.12)

Substituting the equations in display (EC.11) into Eq. (EC.12), and the result into Eq. (EC.9),

we obtain the EWMO[Tw] expression in Eq. (EC.2) as desired.

Now, we derive the mobiles mean sojourn time. Under WMO, when a mobile begins service, we

know that there are no walk-ins currently at Stage 2, and hence the mobile’s service cannot be

interrupted. Let EWMO[Nm,Q] and EWMO[Tm,Q] denote the mean queue length (ignoring the server)

and mean sojourn time in queue (ignoring the service time) associated with mobiles. We have:

EWMO[Tm,Q] = EWMO[Time to serve orders in queue]

+PWMO(M arrival finds server busy with W or M) ·EWMO[Time to finish current service]

=EWMO[Nm,Q] · 1

µ2

+PWMO(M arrival finds server busy with W or M) · 1

µ2

=
λm

µ2

·EWMO[Tm,Q] +
Λ

µ2

· 1

µ2

(according to the Little’s law.) (EC.13)

From Eq. (EC.13), we derive EWMO[Tm,Q] = Λ/(µ2 (µ2−λm)); using EWMO[Tm] =EWMO[Tm,Q] + 1/µ2,

we derive the EWMO[Tm] expression in Eq. (EC.2).

WOM (Eq. (EC.3)). WOM prioritizes the walk-ins in both stages as opposed to MWO, which

prioritizes the mobiles over all walk-ins. Therefore, applying the same procedure presented in the

case of MWO—with the modification that walk-ins are now designated as class 1 and mobiles as

class 2—yields the desired result.

The two-server model proof. Before deriving specific formulas, we establish a policy-agnostic

framework for approaching the two-server model that will aid us in carrying out these derivations.
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We view the two-server model as a tandem Jackson network, we see that Stage 1 is an M/M/1 queue

with only walk-in customers. We observe that Stage 2 receives two independent arrival streams:

new Ws, which are former Os departing Stage 1 (with rate λw), and external M arrivals (with rate

µ2). The former arrival stream is also the departure process of an M/M/1, and hence, by Burke’s

Theorem (see Harchol-Balter (2013) Ch. 16.3), it constitutes a Poisson process, while the latter

arrival stream is a Poisson process by assumption. As the two arrival streams are independent, the

resulting merged process—and hence, the overall arrival process to Stage 2—is a Poisson process

with rate λw +λm. It follows that Stage 2 is also an M/M/1 queue.

MW (Eq. (EC.4)). Under MW, mobiles have the higher priority in Stage 2, so they experience

an M/M/1 with arrival rate λm and service rate µ2, and hence EMW[Tm] = 1/(µ2−λm). Meanwhile,

we determine the mean sojourn time of walk-ins under WM by summing their Stage 1 mean sojourn

time (which is that of an M/M/1 system with arrival rate λw and service rate µ1) with their Stage 2

mean sojourn time; this latter mean sojourn time is obtained from Eq. (EC.7), by noting that

under WM walk-ins have lower priority than mobiles in Stage 2. Simplifying the result yields the

following:

EMW[Tw] =
1

µ1−λw

+
1

(µ2−Λ)(1−λm/µ2)
=

µ2

(µ2−Λ)(µ2−λm)
.

FCFS (Eq. (EC.5)). Under FCFS, both walk-ins and mobiles have the same mean sojourn time

at Stage 2, so we have EFCFS[Tm] = 1/(µ2−Λ) and

EFCFS[Tw] =
1

µ1−λw

+
1

µ2−Λ
=

µ1 +µ2−λw−Λ

(µ1−λw)(µ2−Λ)
.

WM (Eq. (EC.6)). Under WM, walk-ins have the higher priority in Stage 2, so they experience

two successive M/M/1 sojourn times (one for each stage); summing the resulting mean sojourn

times yields the following:

EWM[Tw] =
1

µ1−λw

+
1

µ2−λw

=
µ1 +µ2− 2λw

(µ1−λw)(µ2−λw)
.

Meanwhile, as mobiles have lower priority than walk-ins in Stage 2 under WM, we determine the

mean mobile sojourn time by applying Eq. (EC.7):

EWM[Tm] =
1

(µ2−Λ)(1−λw/µ2)
=

µ2

(µ2−Λ)(µ2−λw)
.

EC.1.2 The Statement and Proof of the Deconditioning Lemma

The following lemma—which we call the deconditioning lemma—is helpful in proving a number of

this paper’s propositions:
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Lemma EC. 1 For any policy P, we have

EP
(b,pm)[Tw|N1 = i] =

∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2 = j]πP

(b,pm)(i, j)

/
∞∑
j=0

πP
(b,pm)(i, j)

=
∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2,w = j]φP

(b,pm)(i, j)

/
∞∑
j=0

φP
(b,pm)(i, j).

Proof of Lemma EC. 1 The first equality follows from “deconditioning” on N2 = j—along with

the implicit use of the PASTA (Poisson Arrivals See Time Averages) property—as follows:

EP
(b,pm)

[Tw|N1 = i] =

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]PP
(b,pm)

(N2 = j|N1 = i)

=

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]PP
(b,pm)

(N1 = i,N2 = j)

/
PP
(b,pm)

(N1 = i)

=

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]PP
(b,pm)

(N1 = i,N2 = j)

/
∞∑

j=0

PP
(b,pm)

(N1 = i,N2 = j)

=

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]πP
(b,pm)

(i, j)

/
∞∑

j=0

πP
(b,pm)

(i, j).

The second equality follows in a similar fashion by deconditioning on N2,w = j:

EP
(b,pm)[Tw|N1 = i] =

∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2,w = j]PP

(b,pm)(N2,w = j|N1 = i)

=
∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2,w = j]φP

(b,pm)(i, j)

/
∞∑
j=0

φP
(b,pm)(i, j).

EC.2 Proofs of Results

Here we provide the proofs of the Propositions and Theorems presented in body of the paper.

EC.2.1 Proof of Proposition 1

Proof outline. We first prove the set {MWO,WMO,WOM} forms a set of Pareto generators for

the single-server model in section EC.2.1.1, then we proceed to prove the set {MW,FCFS,WM}

also forms a set of Pareto generators for the two-server model in section EC.2.1.2. Finally, we can

add FCFS into the set of Pareto generators for the two-server model by observing directly from

Eqs. (EC.4)-(EC.6) that aFCFS = θaMW + (1− θ)aWM where the parameter θ = (µ2− λm)/(2µ2−Λ),

from which it follows that FCFS∈P∗.

Proposition 1 In the two-server model, we have

EC.2.1.1 Proof for the single-server model

Preliminaries. To prove the statement, it is sufficient to show that the achievable region O =
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conv{aMWO, aWMO, aWOM}+ cone{(0,1), (1,0)} ⊆R2 is equivalent to the unbounded convex polygon

defined by all pairs aP=(EP[Tw],EP[Tm]) satisfying the following four inequality constraints (equiv-

alently, all such points lying in the intersection of the four half-planes defined by these affine

inequality constraints), which correspond (at equality) to the rays and line segments, which together

make up the boundary of the achievable region, bd(O), as captured by the example illustrated in

Fig. 3a (from leftmost to rightmost):

1. EP[Tw]≥EWOM[Tw]

2. EP[Tm]≥
(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

EWMO[Tm]EWOM[Tw]−EWMO[Tw]EWOM[Tm]

EWOM[Tw]−EWMO[Tw]

3. EP[Tm]≥−λw

λm

EP[Tw] +
Λ

λm

EWMO[T ]

4. EP[Tm]≥EMWO[Tm]

The first and fourth inequalities are readily apparent from the formulation of O given above, with

the second corresponding to the line that runs through both aWOM and aWMO, and the third—which

corresponds to the line running through aWMO and aMWO—following directly from the fact that

for all P ∈ P, we have EP[T ]≥ EMWO[T ], where the overall mean sojourn time is given by EP[T ] =

(λwEP[Tw] +λmEP[Tm])/Λ (see Proposition 2). It can be verified in a straightforward manner that—

consistent with what we observe from Fig. 3a—the line corresponding to the first inequality is

vertical (i.e., parallel to the E[Tm]-axis), those corresponding to the second and third inequalities

are negatively sloped (with the second steeper than the third), while that corresponding to the forth

is horizontal (i.e., parallel to the E[Tw]-axis). Moreover, the first and second lines intersect at aWOM,

the second and third at aWMO, and the last two at aMWO, establishing that O will always qualitatively

resemble that in Fig. 3a, although the locations of—and thus the angles and distances between—

aWOM, aWMO, and aMWO are parameter-dependent. If we can show that these four inequalities define

the achievable region, then we have proved the first claim of the theorem, and the second claim

follows from straightforward observation that the only Pareto allocations are those that in addition

to satisfying all four inequalities, satisfy the second and/or third with equality.

It remains only to prove that the constraints defined by these four inequalities are both necessary

(i.e., for any policy P ∈ P, aP satisfies these four inequalities) and sufficient (i.e., any allocation a

satisfying these four inequalities can be achieved by implementing some feasible policy P ∈ P, or

equivalently for all such a there exists P∈P such that a= aP) in order to establish that an alloca-

tion a∈O. In referring to these four, we use the terms inequality and constraint interchangeably.

Proof for sufficiency. We first address the case where a lies on one of the four lines correspond-

ing to the inequalities that we claim define the achievable region (i.e., if a satisfies one or more

of these inequalities strictly). If a lies on the line corresponding to the first inequality, then we

can achieve allocation a= (EWOM[Tw], rm) for some rm > EWOM[Tm] by implementing a modification
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E[Tw]

E[Tm]

MWO
·WMO

·

WOM
·

·

·

P1

P4

· a

Figure EC.1 Allocations lying in the red triangle can be implemented by considering a probabilistic mixture of

the WOM, WMO, and MWO policies, while allocations within the blue region, such as the example a illustrated

here, all lie on a line that runs parallel to that connecting aWOM and aMWO and intersects the vertical and horizontal

boundaries at a pair of allocations that can be implemented through the policies P1 and P4. Implementing an

appropriate random mixture of these two policies will allow for achieving allocation a.

of WOM where we slow down the rate at which we serve mobiles (but not walk-ins) at Stage 2

from µ2 to some specific µ′2 < µ2 that would cause the mean sojourn time of mobiles to rise

from EWOM[Tm] to rm while keeping that of walk-ins fixed at EWOM[Tw]. Such a value of µ′2 must

exist as the mean sojourn time of walk-ins under such modifications of WOM will continuously

vary over the interval (EWOM[Tm],∞) as we vary the new service rate of walk-ins at Stage 2 over

the interval (λm/(1−λw/µ1−λw/µ2), µ2). If a lies on the line corresponding to the second or third

inequalities, i.e., if a ∈ conv{aWOM, aWMO} ∩ conv{aWMO, aMWO}, then we can achieve this allocation

by implementing 〈WOM,WMO〉(θ) or 〈WMO,MWO〉(θ) for the appropriately chosen θ. Next, see

that if a lies on the line corresponding to the fourth inequality, then a = (rw,EMWO[Tm]) can be

achieved by implementing a modification of MWO analogous to the modification of WMO consid-

ered for a lying on the line corresponding to the second inequality; in this case, we slow down the

service rate of walk-ins—rather than that of mobiles—at Stage 2.]

We now address the remaining case where a satisfies all four inequalities, but does not satisfy any

of them strictly. We consider two sub-cases: first, if a lies in (the interior or boundary) of the triangle

conv{aWOM, aWMO, aMWO} (shaded in red in Fig. EC.1), then we can achieve a by implementing a

policy that randomly uses WOM, WMO, and MWO at the start of each busy period with the

appropriate probabilities. The only case that remains is when a satisfies all of the inequalities and

also lies above and to the right of the line segment connecting WOM and MWO. In this case, as

shown in Fig. EC.1, we can take achieve a by implementing a policy that randomizes between two

specific policies, P1 and P4 with appropriate probabilities. These two policies are chosen so that
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they yield allocations aP1 and aP4 that uniquely satisfy the following: (i) aP1 and aP4 satisfy the

first and fourth inequalities with equality, respectively, (ii) the line segment connecting aP1 and

aP4 is parallel to the line segment connecting aWOM to aMWO, and (iii) a lies on the aforementioned

line segment. Recall from the preceding paragraph that any policy, such as P1 (resp. P4), that

satisfies the first (resp. fourth) inequality with equality can be implemented by modifying WOM

(resp. MWO) through a service rate reduction for mobiles (resp. walk-ins) at Stage 2. Note that in

this case, while we can still implement all of the policies {〈P1,P4〉(θ) : θ ∈ [0,1]}, it may not be the

case that a〈P1,P4〉(θ) = θaP1 + (1− θ)aP4 , as P1 and P4 are not work-conserving. Nevertheless, there

must exist some value of θ ∈ (0,1) for which a = a〈P1,P4〉(θ) (for P1 and P4 chosen appropriately)

because {a〈P1,P4〉(θ) : θ ∈ (0,1)}= {θaP1 + (1− θ)aP4 : θ ∈ (0,1)}. This completes the proof that the

four inequalities provide constraints on allocations a, that are sufficient for establishing that a∈O.

Proof for necessity. We proceed by showing that for any a∈O (or equivalently, for any P∈P),

each of the four constraints must hold. Addressing the first constraint, observe that WOM achieves

the minimum possible mean walk-in sojourn time, as this policy strictly prioritizes walk-ins over

mobiles, while also prioritizing those walk-ins with the least remaining expected service require-

ments (the latter follows from the fact that Ws are prioritized over Os), and hence, the first

constraint must hold. We can address the fourth constraint in a similar manner: MWO achieves

the minimum possible mean mobile sojourn time, so the fourth constraint must also hold. Mean-

while, as alluded to earlier in this proof, the necessity of the third constraint follows directly from

Proposition 2, which establishes that for all P ∈ P, we have EP[T ] ≥ EMWO[T ], where the overall

mean sojourn time is given by EP[T ] = (λwEP[Tw] +λmEP[Tm])/Λ.

We now turn to addressing the only remaining item: the necessity of the second inequality:

EP[Tm]≥
(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

EWMO[Tm]EWOM[Tw]−EWMO[Tw]EWOM[Tm]

EWOM[Tw]−EWMO[Tw]
.

We begin by examining the overall mean work in the system under P, which we denote by EP[W ].

Clearly, each W and M task contributes an average of 1/µ2 work each. Meanwhile, each O task

contributes an average of 1/µ1 work by itself ; if we also account for the W task that must be

served after serving each O task (in order to serve a walk-in in its entirety), we can view each O

currently in the system as contributing an average of 1/µ1 +1/µ2 work to the system. Before using

the observations above to derive the total work in the system, we recall that N1 and N2 denote the

number of customers at Stages 1 (all of which are walk-ins) and 2, respectively; we further let Nw,

N2,w, and Nm denote the number of walk-in customers in the system as a whole, the number of

walk-ins at Stage 2 specifically, and the number of mobile customers (all of whom are at Stage 2),
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respectively, and note that N1 +N2,w =Nw, while Nm +N2,w =N2. We can now decompose EP[W ]

as follows:

EP[W ] =

(
1

µ1

+
1

µ2

)
EP[N1] +

(
1

µ2

)
EP[N2,w] +

(
1

µ2

)
EP[Nm]

=

(
1

µ1

+
1

µ2

)
EP[Nw]−

(
1

µ1

)
EP[N2,w] +

(
1

µ2

)
EP[Nm] (EC.14)

Applying Little’s Law to Eq. (EC.14), and rearranging terms, we have:

EP[Tm] =−
(
ρw
ρm

)
EP[Tw] +

(
1

ρm

)
EP[W ] +

(
1

µ1ρm

)
EP[N2,w], (EC.15)

where ρw ≡ λw(1/µ1 + 1/µ2) and ρm ≡ λm/µ2 are the fractions of the time spent serving walk-ins

and mobiles, respectively (and hence, 1−ρw−ρm is the fraction of time in which the server is idle).

We rewrite Eq. (EC.15) in terms of EWOM[Tw], EWOM[Tm], EWMO[Tw], EWMO[Tm] (all of which are

provided explicitly in Proposition 2), and use the resulting expression to bound EP[Tm] as follows:

EP[Tm] =

(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

(
1

ρm

)
EP[W ] +

(
1

µ1ρm

)
EP[N2,w]

≥
(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

(
1

ρm

)
EWOM[W ] +

(
1

µ1ρm

)
EWOM[N2,w] (EC.16)

=

(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

EWMO[Tm]EWOM[Tw]−EWMO[Tw]EWOM[Tm]

EWOM[Tw]−EWMO[Tw]
. (EC.17)

Hence, EP[Tm] is bounded below by the expression to the right of the equals sign in Eq. (EC.17),

which yields precisely the second constraint, and so it only remains to justify Ineq. (EC.16)

and Eq. (EC.17). We justify Ineq. (EC.16) by showing that minP∈P EP[W ] = EWOM[W ] and

minP∈P EP[N2,w] =EWOM[N2,w]. Moreover, we provide explicit expressions for these two expectations;

Eq. (EC.17) follows from these expressions directly after straightforward (if lengthy) calculations.

We first show that minP∈P EP[W ] = EWOM[W ]. This follows directly from the fact that WOM is

work-conserving; indeed, EP[W ] must attain its minimum value under all work-conserving poli-

cies P ∈ P. We proceed to compute EWOM[W ], noting that this is the same as the time average

work under any work-conserving policy. In fact, we can view EWOM[W ] as the average work in

an ordinary M/G/1 system (under any work-conserving scheduling policy) with two streams of

Poisson arrivals, exactly like those described in the proof of Eq. (EC.2) in Appendix EC.1.1; i.e.,

the first (resp. second) stream corresponds to that of walk-ins (resp. mobiles) in the original set-

ting and has an arrival rate of λw (resp. λm); meanwhile, service requirements are distributed like

Exp(µ1) + Exp(µ2) (resp. Exp(µ2)), and so by standard M/G/1 analysis, we have

EWOM[W ] =

(
λw

(
1

µ2
1

+
1

µ2
2

+
1

µ1µ2

)
+
ρm
µ2

)/
(1− ρw− ρm). (EC.18)
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Finally, we justify minP∈P EP[N2,w] =EWOM[N2,w]. In fact EP[N2,w] is minimized by any policy P∈

P that give Ws priority over all other tasks. Such policies (including WOM), allow only one W

task to be in the system at any given time, as they would not serve an O (allowing it to become

a W) if there is already a W present in the system. Hence, under such policies, N2,w = 1 whenever

there is a W in service and N2,w = 0 otherwise. Since each W spends the minimum average amount

of time possible (i.e., 1/µ2) in service, the claim is justified. Furthermore, Ws arrive to the system

at the same rate at which Os complete service, and since the system is throughput-optimal, we

know that the arrival rate of Ws is λw. Meanwhile, we have already argued that under WOM and

the other W-prioritizing policies, Ws spend an average of 1/µ2 time in the system, and so by

Little’s law, we have EWOM[N2,w] = λw/µ2.

With the explicit computation of EWOM[W ] as given in Eq. (EC.18) and the fact that we

have EWOM[N2,w] = λw/µ2, we can readily verify Eq. (EC.17), which completes the proof.

EC.2.1.2 Proof for the two-server model

We follow the same approach that we used in proving the statement for the single-server model (see

Appendix EC.2.1.1); we opt for less expository precision and shorter justifications in the interest

of brevity. The achievable region O = conv{aMW, aWM} + cone{(0,1), (1,0)} ⊆ R2 (for allocations

in the two-server model) is equivalent the region expressed by the conjunction of the following

inequalities (also referred to as constraints):

1. EP[Tw]≥EWM[Tw]

2. EP[Tm]≥
(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

EMW[Tm]EWM[Tw]−EMW[Tw]EWM[Tm]

EWM[Tw]−EMW[Tw]
3. EP[Tm]≥EMW[Tm]

Note that the allocation of FCFS policy, aFCFS, is located on the line segment generated by aWM

and aMW. Applying an analogous argument to that deployed in Appendix EC.2.1.1, we can deduce

that any allocation satisfying these three constraints can be implemented by a feasible two-server

prioritization policy P∈P. It remains to show that these three constraints are also necessary.

It is straightforward to see the first and the third inequalities are satisfied by any service policy

since WM and MW achieve the minimum possible mean sojourn time for walk-ins or mobiles

respectively. It remains only to prove the second inequality for all P∈P.

For any given set of parameters λw, λm, µ1, and µ2 satisfying Assumption 1(b), it follows from

Burke’s Theorem (see Section 16.3 in Harchol-Balter (2013)) that the departure process at Stage 1

(and hence the arrival rate of walk-ins to Stage 2) is a Poisson process with rate χw = λw. Hence,

we focus on Stage 2, which we view as an M/M/1 system with arrival rate Λ = λw +λm and service
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rate µ2. For any two-server prioritization policy P∈P, we can decompose EP[W2], the mean work

at Stage 2, and apply Little’s Law to obtain the following:

EP[W2] =

(
1

µ2

)
EP[N2,w] +

(
1

µ2

)
EP[Nm]

=

(
λw

µ2

)(
EP[Tw]− 1

µ1−λw

)
+

(
λm

µ2

)
EP[Tm]. (EC.19)

We rearrange terms and write Eq. (EC.19) in terms of EWM[Tw], EWM[Tm], EMW[Tw], EMW[Tm] (all

of which are provided explicitly in Proposition EC. 1 (b)), and use the resulting expression to

bound EP[Tm] as follows:

EP[Tm] =−
(
λw

λm

)
EP[Tw] +

(
µ2

λm

)
EP[W2] +

λw

λm(µ1−λw)
(EC.20)

=

(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

(
µ2

λm

)
EP[W2] +

λw

λm(µ1−λw)

≥
(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

(
µ2

λm

)
EWM[W2] +

λw

λm(µ1−λw)
(EC.21)

=

(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

EMW[Tm]EWM[Tw]−EMW[Tw]EWM[Tm]

EWM[Tw]−EMW[Tw]
. (EC.22)

Hence, EP[Tm] is bounded below by the expression to the right of the equals sign in Eq. (EC.22),

which yields precisely the second constraint, and so it only remains to justify Ineq. (EC.21) and

Eq. (EC.22). We justify Ineq. (EC.21) by showing that minP∈P EP[W2] = EWM[W2]. Moreover, we

provide an explicit expression for EWM[W2], from which we can obtain Eq. (EC.22) directly after

straightforward (if lengthy) calculations.

We first show that minP∈P EP[W2] = EWM[W2]. This follows directly from the fact that WM is

work-conserving; indeed, EP[W2] must attain its minimum value under all work-conserving poli-

cies P ∈ P. Then we proceed to determine EWM[W2]. Once more, we view Stage 2 as an M/M/1

queueing system, but this time we are considering the system under WM; leveraging the fact that

WM is a work-conserving policy, we can apply standard M/M/1 analysis together with Little’s

Law to obtain the following:

EWM[W2] =

(
1

µ2

)
EWM[N2] =

Λ

µ2(µ2−Λ)
. (EC.23)

With the explicit computation of EWM[W2] as given in Eq. (EC.23), we can readily verify

Eq. (EC.22), which completes the proof.

EC.2.2 Proof of Proposition 2

We first prove statement (a). In the single-server model, under MWO, mobiles experience an M/M/1

queue as they have the highest priority, while walk-ins will be preempted by mobile arrivals.

Meanwhile, under WOM, walk-ins experience an M/G/1 queue with the highest priority, while
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mobiles are preempted by walk-in arrivals (to Stage 1). Since customers at Stage 2—which are

(expected to be) closer to service completion than those at Stage 1—receive the highest priority

under both MWO and WMO, the lowest sojourn time is given by EMWO[T ] or equivalently, by

EWMO[T ] (as EMWO[T ] = EWMO[T ]). On the other hand, WOM is suboptimal with respect to the

overall mean response time, because it can give priority to walk-in customers in Stage 1, even when

there are mobile customers in Stage 2—who (are expected to) require less service—present in the

system.

Moreover, we can obtain an exact formula for the lowest overall mean sojourn time by observing

that

EMWO[T ] =EMWO[Tw]
λw

Λ
+EMWO[Tm]

λm

Λ
(EC.24)

and replacing EMWO[Tw] and EMWO[Tm] by their formulas from the allocation given in Eq. (EC.1).

Alternatively, we can obtain an equivalent exact formula for the lowest overall mean sojourn time

by observing that

EWMO[T ] =EWMO[Tw]
λw

Λ
+EWMO[Tm]

λm

Λ
(EC.25)

and replacing EWMO[Tw] and EWMO[Tm] by the their values from the allocation given in Eq. (EC.2).

Finally, we address statement (b). In the two-server model, for any Pareto optimal policy, the

statement directly follows from Eq. (EC.20) after rearranging terms.

EC.2.3 Proof of Proposition 3(a)

Let (b, pm) be an equilibrium and assume by way of contradiction that b >B. If we can show that

EP
(b,pm)[Tw|N1 = b−1]≥ b/µ1 +1/µ2 >T

max
w holds, the proof is complete as we have contradicted the

equilibrium conditions. The first inequality follows from the fact that the assumption on P dictates

that a walk-in that sees N1 = b− 1 upon arrival must wait behind b− 1 other walk-ins at Stage 1,

in addition to their own service at each stage. The second inequality follows from the definition of

B, i.e., B ≡ µ1(T
max
w − 1/µ2), and straightforward arithmetic.

EC.2.4 Proof of Proposition 3(b)

First we address the cases of MWO and MW in the single- and two-server settings, respectively.

In both cases, mobiles have preemptive priority over all others, and so mobiles experience an

M/M/1 system with arrival rate pmλm and service rate µ2. Therefore, EMWO
(b,pm)[Tm] = EMW

(b,pm)[Tm] =

1/(µ2− pmλm), which is clearly increasing in the arrival rate pmλm, and hence in pm.

Next, we examine the case of WOM in the single-server model. We observe that the arrival

process of Ws to Stage 2 is the same as the departure process of Os at Stage 1, and since these

have priority over mobiles and b is fixed, this arrival process does not depend on pmλm. Hence,



ec13

if we examine only mobiles, we note that they experience a queue with Poisson arrivals and an

exponential service process with (exogenous) Markov-modulated service interruptions. In such a

system, the higher the arrival rate, the longer the sojourn time, so the desired result holds.

The case of WM and FCFS in the two-server model is similar to that of WOM in the single-server

model. As in that case, the arrival process of Ws to Stage 2 does not depend on pmλm, which again

allows us to view mobiles as experiencing a queue that is a modified M/M/1 with (exogenous)

Markov-modulated service interruptions. Again, the desired result follows.

Finally, we consider the case of WMO in the single-server model. Unlike the previous cases, the

arrival process of Ws to Stage 2 can depend on pmλm under WMO; so, the same type of argument

that we used for the previous cases does not suffice. Instead, we consider the overall mean sojourn

time, observing that EWMO
(b,pm)[T ] = EMWO

(b,pm)[T ]. This observation follows from the fact that b and pm

are fixed, which ensures that the evolution of (N1,N2)—and hence N = N1 + N2—is the same

under both policies. Naturally, E[N ] is also the same under both policies, as is E[T ] (by Little’s

Law). With this observation in mind, we can break up these overall sojourn times into class-specific

sojourn times, yielding:

χw

X
EWMO

(b,pm)[Tw] +
χm

X
EWMO

(b,pm)[Tm] =
χw

X
EMWO

(b,pm)[Tw] +
χm

X
EMWO

(b,pm)[Tm], (EC.26)

where χw, χm, and χ can depend on one or more of λmpm, λw, µ1, µ2, and b, but do not depend

on the choice of MWO versus WMO (recall that we are not considering an equilibrium, but a fixed

value of b that is the same under both policies). From Eq. (EC.26), we obtain:

EWMO
(b,pm)[Tm] =

χw

χm

(
EMWO

(b,pm)[Tw]−EWMO
(b,pm)[Tw]

)
+EMWO

(b,pm)[Tm]

=
χw

pmλm

(
1

µ2− pmλm

− 1

µ2

)
+

1

µ2− pmλm

=
χw +µ2

µ2(µ2− pmλm)
,

where the difference in the mean sojourn times for walk-ins under the two policies is computed by

considering only the sojourn times in Stage 2 (as those in Stage 1 are identical for both policies):

under MWO the walk-in sojourn time in Stage 2 is distributed like an M/M/1 busy period, while

under WMO it would be a single exponential distributed service time. From the computation above,

together with the fact that χw is constant in pmλm, we conclude that EWMO
(b,pm)[Tm] is increasing in pmλm

as desired.

EC.2.5 Proof of Proposition 4

MWO (Eq. (1))

Mobiles. Since mobiles have preemptive priority over all others under MWO, they will experience

an M/M/1 queue with arrival rate pmλm and service rate µ2. Consequently, we have EMWO
(b,pm)[Tm] =

1/(µ2− pmλm).
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Walk-ins. We first find EMWO
(b,pm)[Tw|N1 = i,N2 = j], and then apply Lemma 1. Under MWO walk-ins

are preempted by mobiles in both stages; therefore, we can think of a walk-in’s sojourn time as

being distributed as a particular kind of busy period. When a walk-in joins the system seeing N1 = i

other customers in Stage 1 and N2 = j customers in Stage 2, the total work in the system—

which is equal to the sojourn time of the newly arrived walk-in under MWO assuming no further

arrivals—consists of i+ 1 independent Stage 1 services and i+ j+ 1 independent Stage 2 services

(as the customers in Stage 1 will all also require service at Stage 2). However, the walk-in will

be preempted by any mobile arrivals, with each contributing its service requirement to the walk-

in’s sojourn time. The aforementioned preemptions occur according to a Poisson process with

rate pmλm. Hence, the standard busy period analysis—together with the fact that all services are

i.i.d. and consume Exp(µk) time at Stage k—yields:

EMWO
(b,pm)[Tw|N1 = i,N2 = j] =

(
i+ 1

µ1

+
i+ j+ 1

µ2

)/(
1− pmλm

µ2

)
=

(i+ 1)(µ1 +µ2) + jµ1

µ1(µ2− pmλm)
. (EC.27)

Applying Lemma 1 to the above, we obtain the sojourn time of walk-ins:

EMWO
(b,pm)[Tw|N1 = i] =

(
∞∑
j=0

EMWO
(b,pm)[Tw|N1 = i,N2 = j]πMWO

(b,pm)(i, j)

)/
∞∑
j=0

πMWO
(b,pm)(i, j)

=

(
∞∑
j=0

(i+ 1)(µ1 +µ2) + jµ1

µ1(µ2− pmλm)
πMWO
(b,pm)(i, j)

)/
∞∑
j=0

πMWO
(b,pm)(i, j)

=

(
(i+ 1) (µ1 +µ2) +µ1

∞∑
j=0

jπMWO
(b,pm)(i, j)

/
∞∑
j=0

πMWO
(b,pm)(i, j)

)/
(µ1 (µ2− pmλm))

=

((
µ2

µ1

+ 1

)
(i+ 1) +

∞∑
j=0

jπMWO
(b,pm)(i, j)

/
∞∑
j=0

πMWO
(b,pm)(i, j)

)
EMWO

(b,pm)[Tm].

WMO (Eq. (2))

Mobiles. We determine the sojourn time of mobiles under WMO, by seeing that a mobile arriv-

ing to a system where N2 = j experiences a sojourn time consisting of j + 1 services, each dis-

tributed Exp(µ2). We note that when a mobile enters the system when Stage 2 is nonempty (i.e.,

when N2 = j ≥ 1), the job currently in service may be a mobile or a walk-in, while all customers

in the Stage 2 queue are mobiles. Which of these is the case, however, is immaterial, however, as

the remaining service requirement of the customer in service is distributed Exp(µ2), regardless of

whether they are an M or W. So in any case, we have EWMO
(b,pm)[Tm|N2 = j] = (j+ 1)/µ2.

Deconditioning on N2 = j, observing that the mobile-sojourn time is independent of N1

under WMO, and applying the PASTA property proves the claimed result for the mobiles in Eq. (2):

EWMO
(b,pm)

[Tm] =

b∑
i=0

∞∑
j=0

EWMO
(b,pm)

[Tm|N1 = i,N2 = j]PWMO
(b,pm)

(N1 = i,N2 = j)

=

b∑
i=0

∞∑
j=0

EWMO
(b,pm)

[Tm|N2 = j]πWMO
(b,pm)

(i, j) =

b∑
i=0

∞∑
j=0

(
j+ 1

µ2

)
πWMO
(b,pm)

(i, j) =
1

µ2

(
1 +

b∑
i=0

∞∑
j=0

jπWMO
(b,pm)

(i, j)

)
.
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Walk-ins. We follow an approach similar to that used to prove the walk-in’s equation in Eq. (1).

Under WMO, walk-ins are preempted by mobiles while they are in Stage 1, but then they receive

priority once they are in Stage 2. Consequently, since walk-ins can complete Stage 1 service only

when Stage 2 is unoccupied (i.e., when N2 = 0), upon completion of Stage 1 service, they move to

Stage 1, where they will be served uninterrupted (as there are no other walk-ins already present

at Stage 1, nor can they be preempted by mobiles). Hence, the time a walk-in spends in Stage 1

is distributed like a busy period (discussed below), while the time spent in Stage 2 is simply

distributed Exp(µ2).

Now recall that under MWO and based on the busy period analysis, we expressed EMWO
(b,pm)[Tw|N1 =

i,N2 = j] by the first equality in Eq. (EC.27).

By contrast under WMO, the initial workload (seen by a walk-in that arrives when N1 = i

and N2 = j) that contributes to possible preemptions by mobiles (from the perspective of this

walk-in) consists of one fewer Stage 2 service, since the walk-in’s own Stage 2 service is “immune”

to interruptions. The arrival rate and service requirement of these interruptions remain unchanged.

Hence, we have:

EWMO
(b,pm)[Tw|N1 = i,N2 = j] =

(
i+ 1

µ1

+
i+ j

µ2

)/(
1− pmλm

µ2

)
+

1

µ2

.

The application of Lemma 1 again resembles that featured in the proof of Eq. (1), and yields

the claimed result for the walk-ins in Eq. (2).

WOM (Eq. (3))

Mobiles. We start by tagging a mobile arrival under WOM. Consider two cases: (i) the tagged

mobile arrives to an empty system with no other mobiles, and (ii) the mobile arrives to a system

with at least one other mobile present in Stage 2. These cases are mutually exclusive and exhaustive

and neither case stipulates anything regarding the presence or absence of walk-ins at either stage

at the arrival time. In case (i), the tagged mobile’s sojourn time is clearly distributed like U +V , as

the mobile will initiate service after a duration of time distributed like U , after which its remaining

sojourn time is distributed like that of a mobile that arrives to an empty system (i.e., like V ). In

case (ii) the tagged mobile begins service precisely when there are no mobiles in the system that

arrived before it and no walk-ins in the system (at either stage); this will necessarily be a point

in time at which the last mobile to arrive before the tagged mobile has just completed service. At

this point, the remaining sojourn time of the tagged mobile is distributed like that of a mobile that

arrives to an empty system, i.e., it is distributed like V .

Now imagine that we view the “service time” of the tagged mobile—and in fact of any mobile—as

the time from when it first enters service until its completion time. That is, we view the service time



ec16

as consisting of the ordinary service time of the mobile in addition to the service time of all walk-ins

(originally Os and later Ws) that interrupt this service time. Note that we cannot think of V as

an ordinary busy period with Poisson arrivals, because walk-ins do not effectively arrive according

to a Poisson arrival process (walk-ins attempting to arrive when N1 = b will balk). Viewed like this,

the system is always “serving” mobiles (if there are any in the system), as the system is either

actually serving a mobile, or “serving” a mobile in the new view by actually serving walk-ins that

are interrupting the service of a mobile. Hence, the system can be viewed as an M/G/1 system

with i.i.d. service requirements distributed like V , however, the first mobile at the start of each

mobile busy period (i.e., mobiles that arrive to a system with no other mobiles) must first wait for a

duration of time distributed like U before service begins. Therefore, this system is an M/G/1/setup

system with arrivals following a Poisson process with rate pmλm, services distributed like V , and

setups distributed like U . It follows from the discussion of such systems in Harchol-Balter (2013)

(Section 27.3; Eq. (27.14)) that we have the claimed result for mobiles in Eq. (3). The calculation

of the moments of U and V are provided in Appendix EC.3.3.

Walk-ins. Consider a walk-in that sees N1 = i Os in Stage 1 and N2,w = j Ws in Stage 2 upon

arrival in the system under WOM; the presence of any Ms in Stage 2 will not concern a walk-in

as walk-ins have preemptive priority over mobiles under WOM. Moreover, recall that j ∈ {0,1} as

there can be at most one W in Stage 2 under WOM (as soon as a walk-in advances to Stage 2, they

receive uninterrupted service in Stage 2 until completion). Since walk-ins cannot be preempted, it

follows that the walk-in’s sojourn time consists of i+ 1 services at each Stage, plus an additional

service at Stage 2 if j = 1, so that

EWOM
(b,pm)[Tw|N1 = i,N2,w = j] =

i+ 1

µ1

+
i+ 1

µ2

+
j

µ2

,

which results in the expression for the walk-ins in Eq. (3) by deconditioning on N2,w = j.

EC.2.6 Proof of Lemma 1

We consider a “tagged” walk-in who arrives to the system seeing N1 = i customers in Stage 1

and N2 = j customers in Stage 2. Now consider the time interval I(i) from when the tagged

customer first arrived to Stage 1 (equivalently, arrived to the system) until they first arrived to

Stage 2 (equivalently, finished service at Stage 1). As our notation suggests, I(i) depends on i.

Observe that Y (i, j) must be the expected Stage 2 workload at the end of I(i). The length of I(i)

is distributed Erlang(i+ 1, µ1).

Now let K(i) (which depends on i) be the random quantity of mobile customers that arrived

during I(i). It follows that Stage 2 would have received i+K + 1 arrivals—including the tagged

customer—during I(i): the i walk-ins who were already present in Stage 1, the aforementioned K(i)

mobiles, and the walk-in that arrived to Stage 2 at the end of I.
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We will determine the distribution of K(i) shortly, but for now let us assume that we are given

that K(i) = k. Given this, let L(i, j, k) (which depends on i, j, and k) be the number of customers

present in Stage 2 at the end of I(i); the tagged customer will find anywhere between 0 and i+j+k

other customers in Stage 2 depending on the number of Stage 2 service completions during I(i);

so, L(i, j, k) ∈ {1,2, . . . , i+ j + k + 1}. Moreover, note that Y (i, j) is the expectation of the sum

of L(i, j, k) independent service requirements, S1, S2, . . ., each of which is distributed Exp(µ2). In

order to compute Y (i, j), we now turn to determining the distribution of L(i, j, k).

Now observe that L(i, j, k) = ` precisely when the Stage 2 occupancy—which starts at j at the

start of I(i)—reaches ` at the end of I(i); i.e., L(i, j, k) = `, when N2 goes from i to j after

exactly i+ j + k+ 1 arrivals. Since a customer is in service in Stage 1 during the entirety of I(i)

(except possibly at the last moment), Stage 2 functions like an M/M/1 queue with an arrival rate

of µ1 +pmλm and a service rate of µ2, and hence a load of ρ= (µ1 +pmλm)/µ2. Therefore, using the

notation P (·, ·, ·; ·) as defined in Def. 1, we have:

P(L(i, j, k) = `) = P

(
j, i+ k+ 1, `;

µ1 + pmλm

µ2

)
.

We now return to determining the distribution of K(i). Note that K(i)∈ {0,1, . . .} is the number

of arrivals during I(i), where the arrivals follow a Poisson process with rate pmλm. Recall that the

length of I(i) is distributed Erlang(i+1, µ1), and note that it is independent of the aforementioned

Poisson process. Consequently, K(i) can also be thought of as the sum of i+ 1 independent copies

of a random variable, X, corresponding to the number of arrivals in a duration of time that is

distributed Exp(µ1). Elementary techniques yield X ∼Geo(pmλm/(µ1 + pmλm)), and hence K(i)∼
NB(i+ 1, pmλm/(µ1 + pmλm)) (where both of these distributions are of the kind where the support

consists of all non-negative integers, including zero). It follows that

P(K(i) = k) =

(
k+ i

k

)(
pmλm

µ1 + pmλm

)k(
1− pmλm

µ1 + pmλm

)i+1

.

Putting everything together, and recalling that S1, S2, . . . are i.i.d. Exp(µ2) random variables

representing (remaining) Stage 2 service requirements, we can prove our claim:

Y (i, j) =E

[
L(i,j,K)∑
m=1

Sm

]
=
∞∑
k=0

E

[
L(i,j,k)∑
m=1

Sm

]
P(K(i) = k) =

∞∑
k=0

E[L(i, j, k)]E[S1]P(K(i) = k)

=
∞∑
k=0

i+j+k+1∑
`=1

`

µ2

P(L(i, j, k) = `)P(K(i) = k)

=
∞∑
k=0

i+j+k+1∑
`=1

`

µ2

P

(
j, i+ k+ 1, `;

µ1 + pmλm

µ2

)
P(K(i) = k)

=

(
1− pmλm

µ1 + pmλm

)i+1 ∞∑
k=0

i+j+k+1∑
`=1

`

µ2

P

(
j, i+ k+ 1, `;

µ1 + pmλm

µ2

)(
k+ i

k

)(
pmλm

µ1 + pmλm

)k
.
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EC.2.7 Proof of Proposition 5

MW (Eq. (5))

Mobiles. As in the case of MWO in the single-server setting—by having preemptive priority over

all others, mobiles experience an M/M/1 queue, and so EMW
(b,pm)[Tm] = 1/(µ2− pmλm) as claimed.

Walk-ins. Under MW, a walk-in seeing N1 = i customers in Stage 1 and N2 = j customers in

Stage 2 upon arrival spends i+1 services in Stage 1 (each distributed Exp(µ1)) before advancing to

Stage 2. The walk-in arrives at Stage 2 and spends an amount of time in Stage 2 that is distributed

like a busy period initiated by Y (i, j) workload (see Lemma 1) and interrupted by mobile arrivals

(with rate pmλm, with each interruption requiring Exp(µ2) service). Hence, we have EMW
(b,pm)[Tw|N1 =

i,N2 = j] = (i+1)/µ1+Y (i, j)/(1−pmλm/µ2), which with a straightforward application of Lemma 1

yields the result for the walk-ins in Eq. (5).

FCFS (Eq. (6))

Mobiles. Mobiles are treated under FCFS in a similar fashion as they were under WMO in the

single-server setting: they are not preempted but have to wait behind any pre-existing Ms or Ws

in Stage 2 when they arrive. Hence, if mobiles arrive seeing N2 = j, their sojourn time will consist

of j + 1 Stage 2 services. Following an approach similar to that in the proof of Eq. (1) from

Proposition 4, which gives EMWO
(b,pm)[Tm], we readily have the claimed result:

EFCFS
(b,pm)[Tm] =

b∑
i=0

∞∑
j=0

j+ 1

µ2

πTS
(b,pm)(i, j) =

1

µ2

(
1 +

b∑
i=0

∞∑
j=0

jπTS
(b,pm)(i, j)

)
.

Walk-ins. Under FCFS, a walk-in seeing Ni = i and N2 = j waits for i+1 services in Stage 1, which

takes on average (i+1)/µ1 time, and then waits for a number of services in Stage 2, which takes on

average Y (i, j) time (see Lemma 1). Hence, we have EFCFS
(b,pm)[Tw|N1 = i,N2 = j] = (i+1)/µ1 +Y (i, j),

and applying Lemma 1 yields the result for the walk-ins in Eq. (6).

WM (Eq. (7))

Mobiles. Consider a tagged mobile arrival that enters a system under WM. Observe that any

mobiles arriving after the tagged mobile have no impact on the sojourn time of the tagged mobile

as they are of lower priority. Hence, we can carry out our analysis while imagining that no further

mobiles arrive after the tagged mobile.

Under the view described above, the tagged mobile completes service precisely when Stage 2

is next empty, as the tagged arrival has the absolute lowest priority among all customers who

will be present in Stage 2 at any point in its sojourn because (i) the tagged mobile is preempted

by all Ws, and (ii) the tagged mobile arrived after all other Ms (given our modified view of the

system). Hence the sojourn time of the tagged mobile is the time to clear Stage 2 of all its contents;

alternatively, it is a busy period initiated by an amount of work equal to j + 1 Stage 2 services
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(including the service of the tagged mobile), where the only other arrivals are walk-ins, given that

there are currently i of them in Stage 1.

The exotic arrival process of Ws through the tandem queue complicates using standard M/G/1

busy period analysis, so we use Markov chain analysis instead. To this end, we observe that it

does not matter how many of the j + 1 Stage 2 services are Ws and how many are Ms, as this

does not affect service times. So, let us think of all of them as being Ws (note that this is clearly

false as we know at least one of the j + 1 Stage 2 customers is the tagged mobile, which is of

course an M and not a W). It follows that EWM
(b,pm)[Tm] coincides with the time to clear a “mobile-

less” system (i.e., one where pm = 0) of all Stage 2 customers given that we start with N1 = i and

N2 =N2,w = j+ 1. In other words, we are interested in the time until we go from stage (i, j+ 1) in

the Markov chain governing (N1,N2,w) (see Fig. 5b) to any state in the initial column, i.e., (k,0)

for some k ∈ {0,1, . . . , b}. Hence, (Tm|N1 = i,N2 = j)∼Z(i, j+ 1), where

Z(i, j)∼ inf{s≥ 0: N2,w(t+ s) = 0|N1(t) = i,N2,w(t) = j}.

A method for approximating the expectation of Z(i, j) with arbitrary accuracy is given in

Appendix EC.3.8.

To complete the proof of the claim we condition on the event that N1 = i and N2 = j. Recall that

although earlier in our argument we chose to treat all Stage 2 customers as Ws, when conditioning,

we condition on the event that (N1 = i,N2 = j) and not on (N1 = i,N2,w = j) because the tagged

mobile arrival is concerned with the total number of Stage 2 customers at the arrival time of the

tagged mobile, as the pre-existing mobiles still have a higher priority. Hence, the probabilities of

the events of interest are given by πMW
(b,pm)(i, j) (equivalently, πTS

(b,pm)(i, j)) rather than φMW
(b,pm)(i, j).

Finally, carrying out the appropriate conditioning step, we can establish the claimed result for

mobiles in Eq. (7).

Walk-ins. Recall that walk-ins can preempt mobiles under WM, so, they need only care about

other walk-ins in the system upon arrival. Consider a tagged walk-in under WM that sees upon

arrival N1 = i Os in Stage 1 and N2,w = j Ws in Stage 2. Let L(i, j) be the number of customers

in Stage 2 (including the tagged walk-in) at the time of the tagged walk-in’s arrival to Stage 2,

given that N1 = i and N2 = j. It then readily follows that the tagged walk-in’s mean sojourn

time is (i+ 1)/µ1 + `/µ2, given that L(i, j) = `. Now we turn our attention to determining the

distribution of L(i, j).

The distribution of L(i, j) is analogous to the distribution of L(i, j, k) from the proof of Lemma 1

(see Appendix EC.2.6), with the key difference that we ignore mobile arrivals entirely (that

is, K(i) = k= 0 and we can view pm = 0 when determining the arrival rate to Stage 2). That is, we
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view the queue of Ws in Stage 2 as an M/M/1 system with arrival rate µ1—as Stage 1 is occupied

during the entirety of the tagged walk-in’s sojourn there—and service rate µ2 so that Stage 2 is

under a load of ρ= µ1/µ2. It follows that L(i, j) = ` precisely with the probability that an M/M/1

system with load ρ= µ1/µ2 starting with j customers will have ` customers after i+ 1 additional

arrivals (as arrival i + 1 is the tagged walk-in), so that P(L(i, j) = `) = P (j, i + 1, `, µ1/µ2) (see

Def. 1). Therefore, it follows that:

EWM
(b,pm)[Tw|N1 = i,N2,w = j] =

i+ 1

µ1

+
E[L(i, j)]

µ2

=
i+ 1

µ1

+

i+j+1∑
`=1

(
`

µ2

)
P

(
j, i+ 1, `,

µ1

µ2

)
.

Now recall that the probability of an arrival finding N1 = i and N2,w = j is given by φWM
(b,pm)(i, j);

so, by deconditioning on N2,w = j (in a fashion similar to Lemma 1), we have the claimed result

for walk-ins in Eq. (7).

EC.3 Computational details

We provide details for calculating various quantities of interest.

EC.3.1 The Limiting Probabilities πMWO
(b,pm)(i, j) and πWMO

(b,pm)(i, j) and their Associated Series

Recall that (N1,N2) is governed by the same CTMC under both MWO and WMO (see Fig. 4a),

which has finitely many phases (rows) and infinitely many levels (columns). We notice that phase

transitions are unidirectional throughout the infinite repeating portion of the chain (but bidirec-

tional in the initial non-repeating portion). We use π(b,pm)(i, j) to denote the limiting probabilities

under both MWO and WMO, and we let ~πj = (π(b,pm)(0, j), . . . , π(b,pm)(b, j)), j ≥ 0. We define the

five square matrices F0,F,L0,L, and B∈R(b+1)×(b+1) such that (using zero-based indexing so that

the upper left element of any matrix M is denoted by M(0,0)) for the repeated portion of the

Markov chain, F(`, k), L(`, k), and B(`, k) “generally” correspond to the transition rates from

states (`, j−1), (`, j), and (`, j+1), respectively, to state (k, j) for any `, k ∈ {0,1, . . . , b} and j ≥ 1.

The only exceptions to this correspondence are the diagonal entries of L, which are equal to the

negative of the sum of the outflow rates from any state (`, j). Meanwhile, the matrices F0 and L0

play the similar role as F and L (respectively) for the initial non-repeating portion of the chain.

We now write the balance equations as matrix equations as follows:
~0 = ~π0 ·L0 +~π1 ·B
~0 = ~π0 ·F0 +~π1 ·L +~π2 ·B
~0 = ~πj ·F +~πj+1 ·L +~πj+2 ·B j = 1,2, · · ·

, (EC.28)

where

F0 =


pmλm
µ1 pmλm

. . .
. . .
µ1 pmλm

µ1 pmλm

 , F =


pmλm

pmλm

. . .
pmλm

pmλm

 ,
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L0 =


−γ0 λw

−γ1 λw

. . .
. . .
−γb−1 λw−γb

 , L =


−ξ0 λw
−ξ1 λw

. . .
. . .
−ξb−1 λw

−ξb

 , B =


µ2

µ2

. . .
µ2

µ2

 ,

γi =


pmλm +λw i= 0

µ1 + pmλm +λw 1≤ i≤ b− 1

µ1 + pmλm i= b

, ξi =

{
pmλm +λw +µ2 0≤ i≤ b− 1

pmλm +µ2 i= b
. (EC.29)

We aim to find a matrix R ∈ R(b+1)×(b+1) such that ~πj = ~π1R
j−1 ∀j ≥ 1. Following the standard

theory of matrix analytic methods, this matrix satisfies the following matrix-quadratic equation,

which we proceed to solve in R:

F + RL + R2B = 0, (EC.30)

where 0 is the (b+ 1)× (b+ 1) square zero matrix.

We let R(i, j) denote the (i, j)-th element of R,∀i, j ∈ {0,1, . . . , b} and observe that R is an

upper triangular matrix (as all phase-transitions in the infinite repeating portion of the CTMC

of interest are unidirectional). Consequently, R(i, j) = 0, whenever 0≤ j < i≤ b. By rewriting the

matrix-quadratic Eq. (EC.30) into the corresponding system of component-wise (scalar) quadratic

equations, we observe that for all i ∈ {0,1, . . . , b}, the i-th diagonal element of R, R(i, i), is the

(lesser) solution to a the single (scalar) quadratic equation µ2R(i, i)2 − ξiR(i, i) + pmλm = 0 (we

discard the greater solution as it exceeds 1). Hence, R(i, i) =
(
ξi−

√
ξ2i − 4pmλmµ2

)/
2µ2 . We note

that all elements of the diagonal of R are actually the same except for the last, R(b, b).

After determining all the elements on the diagonal of R, let ei denote the i-th unit vector. We can

compute each value of the super-diagonal of R by solving the following system of linear equations:{
λwR(i, j− 1)− ξjR(i, j) +µ2(e

T
i R2ej) = 0 1≤ j ≤ b− 1

λwR(i, j− 1)− (pmλm +µ2)R(i, j) +µ2(e
T
i R2ej) = 0 j = b

.

As long as the values of this super-diagonal are determined, we can compute the “super-diagonal” of

this super-diagonal following the same procedure; finally, all other elements of R can be determined

recursively in closed form.

Example of finding the closed form solution of R when b= 2. We first solve the diagonal

element of the matrix R, which gives us R(i, i) =
(
ξi−

√
ξ2i − 4pmλmµ2

)/
2µ2 , for i= 0,1,2. Note

that R(0,0) = R(1,1) and R(2,2) can be further simplified as R(2,2) = pmλm/µ2. Then using

the linear equations described above, we solve the super-diagonal elements (R(0,1) and R(1,2)),
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finally, we derive R(0,2) in the closed form as well. We summarize the closed form solution of each

element of the matrix R in this specific case as follows:


R(0,0) =

(
ξ0−
√
ξ20−4pmλmµ2

)
2µ2

R(1,1) =

(
ξ1−
√
ξ21−4pmλmµ2

)
2µ2

R(2,2) = pmλm/µ2



R(0,1) =
λw

(
ξ1−
√
ξ21−4pmλmµ2

)
2µ2
√
ξ21−4pmλmµ2

R(1,2) =
λw

(
ξ1−
√
ξ21−4pmλmµ2

)
2µ22−µ2

(
ξ1−
√
ξ21−4pmλmµ2

)
R(0,2) =

2λ2w

(
ξ1−
√
ξ21−4pmλmµ2

)
√
ξ21−4pmλmµ2

(
2µ2−ξ1+

√
ξ21−4pmλmµ2

)2


R(1,0) = 0

R(2,0) = 0

R(2,1) = 0

where

ξi =

{
pmλm +λw +µ2 ∀i∈ {0,1}
pmλm +µ2 i= 2

.

Finally, from the first two equations in Eq. (EC.28) we have that

[ ~π0 ~π1]
[
L0 F0
B0 L + RB

]
=~0,

which we can combine with the normalizing equation (i.e. the sum of all the limiting probabilities

is equal to one) to find the initial limiting probabilities ~π0 and ~π1 (see Eq. 21.5 in Harchol-Balter

2013). Hence, the limiting probabilities πMWO
(b,pm)(i, j) and πWMO

(b,pm)(i, j) are all determined and their

associated series such as
∑∞

j=0 π
MWO
(b,pm)(i, j) and

∑∞
j=0 jπ

WMO
(b,pm)(i, j) can all be computed as follows (for

any policy P∈ {MWO,WMO}):

∞∑
j=0

πP
(b,pm)(i, j) =

(
~πP
0 +

∞∑
j=1

~πP
1Rj−1

)
ei =

(
~πP
0 +

∞∑
j=0

~πP
1Rj

)
ei =

(
~πP
0 +~πP

1 (I−R)
−1
)
ei,

∞∑
j=0

jπP
(b,pm)(i, j) = ~πP

1

∞∑
j=1

jRj−1ei = ~πP
1

d

dR

(
∞∑
j=0

Rj

)
ei = ~πP

1 (I−R)
−2
ei.

EC.3.2 The Limiting Probabilities φWOM
(b,pm)(i, j)

The quantities φWOM
(b,pm)(i, j), i ∈ {0,1, . . . , b} and j ∈ {0,1}, are the limiting probabilities of a finite

state CTMC (see Fig. 4b), so we can find them by solving the balance equations below (where for

simplicity we use the notation φi,j ≡ φWOM
(b,pm)(i, j)):

λwφ0,0 = µ2φ0,1

(λw +µ1)φi,0 = λwφi−1,0 +µ2φi,1 ∀i∈ {1,2, . . . , b− 1}
µ1φb,0 = λwφb−1,0 +µ2φb,1
(λw +µ2)φ0,1 = µ1φ1,0

(λw +µ2)φi,1 = λwφi−1,1 +µ1φi+1,0 ∀i∈ {1,2, . . . , b− 1}
µ2φb,1 = λwφb−1,1
b∑
i=0

(φi,0 +φi,1) = 1

. (EC.31)
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EC.3.3 The Laplace Transforms and Moments of U and V

In this section we give a procedure for determining the Laplace transforms of U and V in closed

form. We denote the transforms by Ũ(s) ≡ EWOM
(b,pm) [e−sU ] and Ṽ (s) ≡ EWOM

(b,pm) [e−sV ] (all transforms

in this appendix implicitly depend on the strategy profile (b, pm), but we omit the reference to

strategy profile in our notation in the interest of brevity). One can determine the first and second

moments of U and V from the Laplace transforms readily from standard formulas (given at the

end of this section). Alternatively, similar techniques used for computing the Laplace transforms

can be used to compute the first moments directly, and subsequently, the second moments as well.

Finding Ũ(s). Recall that U is the time until a mobile arrival that enters a mobile-less system (i.e.,

a system that has no mobiles)—but a steady-state number of walk-ins in each stage conditioned on

the fact that there are no mobiles in the system—will ultimately leave the system. It follows that U

depends on the system state at the time of the mobile’s arrival. There are 2(b+ 1) such states, as

the number of Os in the system, N1 ∈ {0,1, . . . , b}, while the number of Ws in the system, N2,w ∈

{0,1}. Therefore, we can define random variables Ui,j ∼ (U |N1 = i,N2,w = j ). If we can find the

probability that N1 = i and N2,w = j at the time of a mobile’s arrival to a mobile-less system, and

the distribution of Ũi,j(s) for all (i, j)∈ {0,1, . . . , b}×{0,1}, then we can determine Ũ(s) by taking

a standard mixture of transforms.

We first address the probability that N1 = i and N2 =N2,w = j at the time of a mobile’s arrival

to a mobile-less system. We can determine such probabilities as the limiting probabilities—which

we denote by ψWOM
(b,pm)(i, j)—of a CTMC. Consider the stochastic process that governs (N1,N2,w)

during the union of all time intervals (epochs) in which the system is mobile-less. As soon as a

mobile would enter the system, we immediately “jump ahead” in time until the first moment in

which the system is again memory-less; so the time intervals in question are closed on the left (i.e.,

at their lower bound in time) and open at the right (i.e., at their upper bound in time). That is,

if a mobile would arrive, we instead transition directly to state (0,0), as the next time that the

system is again mobile-less, there would not be any walk-ins of any kind in the system (as all walk-

ins have preemptive priority over mobiles under WOM). Since mobiles arrive with rate pmλm, the

stochastic process governing (N1,N2,w) during mobile-less epochs is a CTMC, which corresponds

to the one depicted in Fig. 4b with the key difference that there is an additional transition (or

increased transition rate) from each non-(0,0) state to state (0,0) with rate (or increase in rate

equal to) pmλm; mobiles cannot of course arrive when we are in state (0,0) as well, but in that

case we would be back at (0,0) at the start of the next mobile-less time epoch; so no transition is

necessary as CTMCs do not have “self-loops” by standard convention.

The limiting probability distribution of the CTMC corresponds to ψWOM
(b,pm)(i, j), as mobile arrivals

are governed by a Poisson process that is independent of the state of this chain, and so the likelihood
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of a mobile arriving to a mobile-less system in a state where N1 = i and N2,w = j is given by the

corresponding limiting probability of this CTMC. These limiting probabilities can be computed

by solving a system of linear equations that greatly resemble those corresponding to the system of

linear equations that we solve to obtain φWOM
(b,pm)(i, j) probabilities (Eqs. (EC.31) in Appendix EC.3.2)

with several differences: (i) The variable symbols contain a ψ rather than a φ, and more crucially in

that (ii) the balance equations take into account the outgoing rate from each non-(0,0) state (i, j)

equal to pmλmψ
WOM
(b,pm)(i, j), and (iii) there is an increased incoming rate to state (0,0) equal to

the some of all those rates; taking the normalization equation into account, this increase is equal

to pmλm

(
1−ψWOM

(b,pm)(0,0)
)

. Hence, we can obtain the limiting probabilities of interest by solving

the system equations below (where for simplicity we use the notation ψi,j ≡ψWOM
(b,pm)(i, j)):



λwψ0,0 = µ2ψ0,1 + pmλm (1−ψ0,0)

(λw +µ1 + pmλm)ψi,0 = λwψi−1,0 +µ2ψi,1 ∀i∈ {1,2, . . . , b− 1}
(µ1 + pmλm)ψb,0 = λwψb−1,0 +µ2ψb,1
(λw +µ2 + pmλm)ψ0,1 = µ1ψ1,0

(λw +µ2 + pmλm)ψi,1 = λwψi−1,1 +µ1ψi+1,0 ∀i∈ {1,2, . . . , b− 1}
(µ2 + pmλm)ψb,1 = λwψb−1,1
b∑
i=0

(ψi,0 +ψi,1) = 1

. (EC.32)

Next, we turn to the task of finding Ũi,j(s), which we shall also present as the solution to a linear

system of equations (with symbolic coefficients). First, see that U0,0 = 0, as if a mobile arrives to

an empty system, it immediately goes into service. In all other cases, Ui,j corresponds to the time

it takes for a system currently in a state where N1 = i and N2,w = j to be empty of all its walk-ins,

without regard for any mobile arrivals (since any mobile arrivals will have lower priority than the

original mobile arrival). That is, Ui,j is distributed like the time it takes to enter state (0,0) of the

Markov chain depicted in Fig. 4b, given that we initially start in state (i, j). Note that this is the

original Markov chain and not the modified one with additional transitions to state (0,0) that we

described earlier in our procedure for finding ψWOM
(b,pm)(i, j).

Now that we can interpret the Ui,j random variables as the hitting times of a finite state Markov

chain, it is straightforward to write a system of linear equations for the transforms of interest using

first-step analysis. Recall that the Laplace transform of an exponential random variable with rate κ

is κ/(κ+ s) and that the minimum of two exponential random variables Exp(η) and Exp(κ) is
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distributed as Exp(κ+ η). Then, we have:



Ũ0,0(s) = 1

Ũi,0(s) =
λw +µ1

s+λw +µ1

(
λw

λw +µ1

Ũi+1,0(s) +
µ1

λw +µ1

Ũi−1,1(s)

)
∀i∈ {1,2, . . . , b− 1}

Ũb,0(s) =
µ1

s+µ1

Ũb−1,1(s)

Ũi,1(s) =
λw +µ2

s+λw +µ2

(
λw

λw +µ2

Ũi+1,1(s) +
µ2

λw +µ2

Ũi,0(s)

)
∀i∈ {0,1, . . . , b− 1}

Ũb,1(s) =
µ2

s+µ2

Ũb,0(s)

. (EC.33)

Solving the above system of equations will yield all of the Ũi,j(s) in closed form. Together with

the ψWOM
(b,pm)(i, j) values, we can determine Ũ(s) by taking the appropriate weighted sum:

Ũ(s) =
b∑
i=0

Ũi,0(s)ψ
WOM
(b,pm)(i,0) + Ũi,1(s)ψ

WOM
(b,pm)(i,1). (EC.34)

Finding Ṽ (s). Recall that V ∼ (Tm|N1 = 0,N2 = 0) under WOM. Once service begins on a mobile,

we know that there are currently no walk-ins in the system. One of two events will happen, either

(i) a walk-in will arrive to Stage 1 interrupting the service of the mobile until there are again no

walk-ins in the system, or (ii) the mobile will be served before any walk-ins arrive. Under case (i),

the process that interrupts the mobile will be distributed like U1,0, and once the mobile resumes

service its expected remaining service time is again distributed like an independent copy of V (due

to the memoryless property). Formalizing the first-step analysis described above, we have:

Ṽ (s) =
λw +µ2

s+λw +µ2

(
λw

λw +µ2

Ũ1,0(s)Ṽ (s) +
µ2

λw +µ2

)
=⇒ Ṽ (s) =

µ2

s+λw

(
1− Ũ1,0(s)

)
+µ2

. (EC.35)

Finally, the moments of U and V can be obtained by using the standard technique which gives the

first and second moments of a random variable X—with well defined Laplace transform X̃(s)—to

be lim
s→0+

X ′(s) =−E[X] and lim
s→0+

X ′′(s) =E
[
X2
]
, respectively.

A computationally efficient technique for finding the first and second moments of U

and V . Rather than compute Ũ(s) and Ṽ (s), if we are only interested in the first and second

moments of of U and V (which is the case for finding the sojourn times of interest in this paper),

we can use the standard technique for finding moments from transforms (described above) to each
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equation in the system (EC.33) directly, yielding a new system (where we use the shorthand E[Ui,j]

for EWOM
(b,pm)[Ui,j]:

E[U0,0] = 1

E[Ui,0] =
1 +λwE[Ui+1,0] +µ1E[Ui−1,1]

λw +µ1

∀i∈ {1,2, . . . , b− 1}

E[Ub,0] =
1

µ1

+E[Ub−1,1]

E[Ui,1] =
1 +λwE[Ui+1,1] +µ2E[Ui,0]

λw +µ2

∀i∈ {0,1, . . . , b− 1}

E[Ub,1] =
1

µ2

+E[Ub,0]

E
[
U 2

0,0

]
= 1

E
[
U 2
i,0

]
=

2 + 2λwE[Ui+1,0] + 2µ1E[Ui−1,1]

(λw +µ1)2
+
λwE

[
U 2
i+1,0

]
+µ1E

[
U 2
i−1,1

]
λw +µ1

∀i∈ {1,2, . . . , b− 1}

E
[
U 2
b,0

]
=

2 + 2µ1E[Ub−1,1]

µ1
2

+E
[
U 2
b−1,1

]
E
[
U 2
i,1

]
=

2 + 2λwE[Ui+1,1] + 2µ2E[Ui,0]

(λw +µ2)2
+
λwE

[
U 2
i+1,1

]
+µ2E

[
U 2
i,0

]
λw +µ2

∀i∈ {0,1, . . . , b− 1}

E
[
U 2
b,1

]
=

2 + 2µ2E[Ub,0]

µ2
2

+E
[
U 2
b,0

]

.

(EC.36)

After solving this system, we can find the first and second moments via standard conditioning:

EWOM
(b,pm)[U

n] =
b∑
i=0

EWOM
(b,pm)[U

n
i,0]ψ

WOM
(b,pm)(i,0) +EWOM

(b,pm)[U
n
i,1]ψ

WOM
(b,pm)(i,1),

where we are interested in the cases where n∈ {1,2}. Similar methods yield:

EWOM
(b,pm)[V ] =

1 +λwE[U1,0]

µ2

, EWOM
(b,pm)

[
V 2
]

=
2(1 +λwE[U1,0])

2
+λwµ2E

[
U 2

1,0

]
µ2

2
. (EC.37)

EC.3.4 Approximating the Limiting Probabilities πTS
(b,pm)(i, j) and an Associated Series

To determine the limiting probabilities of the CTMC of Fig. 5a, πTS
(b,pm)(i, j), we first observe that

the chain has finitely many phases (rows) and infinitely many levels (columns). Moreover, phase

transitions are bidirectional throughout the infinite portion of the chain, that is, we can transition

to a higher row and a lower row from any phase. Such chains do not often lend themselves to exact

analysis; so, we opt to approximate the probabilities via numerical matrix analytic methods.

We first define the three square matrices F,L, and B∈R(b+1)×(b+1) such that (using zero-based

numbering so that the upper left element of any matrix M is denoted by M(0,0)) F(`, k), L(`, k),

and B(`, k) “generally” correspond to the transition rates from states (`, j − 1), (`, j), and (`, j +

1), respectively, to state (k, j) for any `, k ∈ {0,1, . . . , b} and j ≥ 1. The only exceptions to this

correspondence are the entries L(`, k) when `= k. In these cases, L(`, k) = L(`, `) is equal to the
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negative of the sum of the outflow rates from state (`, j). Thus, for the CTMC of Fig. 5a, B and

F has the same structures as B and F0 in Eq. (EC.29), respectively, and L follows:

L =


−ν0 λw

−ν1 λw

. . .
. . .
−νb−1 λw−νb

 , where νi =


pmλm +λw +µ2 i= 0

µ1 + pmλm +λw +µ2 1≤ i≤ b− 1

µ1 + pmλm +µ2 i= b

. (EC.38)

We would like to express the limiting probabilities of interest in terms of a square matrix R ∈

R(b+1)×(b+1) that satisfies Eq. (EC.30). In general, we cannot find R in closed form, so we resort

to a procedure where we iteratively calculate Rn+1 =−(R2
nB + F)L−1 (here Rn denotes the n-th

iteration of R) until ||Rn+1 −Rn||< ε (here we define the metric || · || to be the maximum of all

the elements in the matrix), for any arbitrary given ε. The associated series can be computed in

the similar way as in Appendix EC.3.1.

EC.3.5 The Transient Probabilities P (u, v,w;ρ)

Individual probabilities of the form P (u, v,w;ρ) can be computed exactly in a recursive fashion

from the following relations due to Kaczynski et al. (2012):

P (u,u,u+ v;ρ) =

(
ρ

ρ+ 1

)v
u≥ 1, v≥ 1

P (0, v, v) =

(
ρ

ρ+ 1

)v−1
v≥ 1

P (u,1,w;ρ) =
ρ

(ρ+ 1)u−w+2
2≤w≤ u

P (u, v,w;ρ) =
ρ

ρ+ 1

u+v−1∑
j=w−1

(
1

ρ+ 1

)j−w+1

P (u, v− 1, j;ρ) v≥ 2 and 2≤w≤ u+ v− 1

.

In the interest of computational efficiency, it is advisable to use a “memoization” approach when

computing a set of probabilities.

EC.3.6 Approximating Y (i, j) and an Associated Series

We cannot determine Y (i, j) in closed form so we rely on truncation. Truncating the first summation

(by summing from k= 0 to K instead of k= 0 to ∞) in the expression giving Y (i, j) (i.e., Eq. (4))

at K and denoting the result by YK(i, j) given by

YK(i, j)≡
(

1− pmλm

µ1 + pmλm

)i+1 K∑
k=0

i+j+k+1∑
`=1

`

µ2

P

(
j, i+ k+ 1, `;

µ1 + pmλm

µ2

)(
k+ i

k

)(
pmλm

µ1 + pmλm

)k
,

it follows that YK(i, j)→ Y (i, j) as K→∞, and so Y (i, j)≈ YK(i, j) for sufficiently large K values.

Based on our exploration of different parameters, it appears that |YK+1(i, j)−YK(i, j)| is negligible

for values of K on the order of 20, suggesting that the approximation is adequate when K is on

that order.
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Similarly, we approximate the following series involving Y (i, j) via “double truncation” for suf-

ficiently large J and K values (where it may or may not be appropriate to set J =K based on the

parameters). We have:

∞∑
j=0

Y (i, j)πTS
(b,pm)(i, j)≈

J∑
j=0

YK(i, j)πTS
(b,pm)(i, j).

Of course, since we generally do not know πTS
(b,pm)(i, j) exactly, we compute the above approxi-

mation in terms of the approximated (rather than exact) πTS
(b,pm)(i, j) values.

EC.3.7 Approximating the Limiting Probabilities φWM
(b,pm)(i, j) and an Associated Series

We can approximate the limiting probabilities of the CTMC shown in Fig. 5b, φWM
(b,pm)(i, j), by using

the same approach we used to determine the πTS
(b,pm)(i, j) values (see Appendix EC.3.4), with the

only difference that we set pm = 0 everywhere (regardless of the actual value of pm, which φWM
(b,pm)(i, j)

does not depend on) as the Fig. 5b chain is a special case of the Fig. 5a chain where pm = 0. As

a result, we start with a modified F matrix with zero entries for its main diagonal. We follow the

rest of the procedure in the exact same way. The limiting probabilities yielded by this procedure

will be (an approximation of) φWM
(b,pm)(i, j), and the series computed will be (an approximation of)∑∞

j=0 jφ
WM
(b,pm)(i, j).

EC.3.8 Approximating EWM
(b,pm)[Z(i, j)] and an Associated Series

First observe that Z(i, j) corresponds to the “hitting time” associated with reaching a state of the

form (k,0) (for any value of k ∈ {0,1, . . . , b}) starting at an initial state (i, j) in the CTMC shown

in Fig. 5b. Now, assume that we are in some state (`,m) where m≥ 1, and consider the first time

we reach (k,m− 1) for any k ∈ {0,1, . . . , b} (i.e., the first time N2,w drops from its initial value of

m). Let τ` be the expected “hitting time” (duration) associated with this trip from (`,m) to some

(k,m− 1), and for any specific value of k ∈ {0,1, . . . , b}, let p`→k be the probability with which

we specifically end up in (k,m− 1) at the conclusion of this trip (i.e., we reach (k,m− 1) before

reaching (k′,m− 1) for any k′ 6= k). As our notation suggests, these quantities are well-defined for

any m≥ 1, and do not otherwise depend on the particular value of m (i.e., the initial level or N2,w

value is irrelevant); this fact is easily confirmed by considering the repeating nature of the CTMC

of Fig. 5b

With the τ` and p`→k quantities, we can determine EWM
(b,pm)[Z(i, j)] via first-step analysis. First,

note from the definition of Z(i, j) and τ` that we readily have EWM
(b,pm)[Z(i,1)] = τi, ∀i∈ {0,1, . . . , b}.

Meanwhile, when examining Z(i, j) for any value of j > 1, we string together trips that drop the
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phase number (N2,w) by one while taking into account the distribution over the level (N1) that we

are in at the conclusion of each phase drop. Hence, we have the following relations:
EWM

(b,pm)[Z(i,1)] = τi 0≤ i≤ b,

EWM
(b,pm)[Z(i, j)] = τi +

b∑
k=0

(pi→k)EWM
(b,pm)[Z(i, j− 1)] 0≤ i≤ b, 1≤ j

. (EC.39)

We can solve for any EWM
(b,pm)[Z(i,1)] values in closed form in terms of the τ` and p`→k values; a

“memoization” approach is advisable. We note that this can become cumbersome for large values

of j. So from a computational efficiency perspective, it is preferable to have numerical values for

τ` and p`→k. We now address how to derive these values.

We proceed by deriving a system of equations relating the τ` values to one another in terms of

the p`→m values via a straightforward application of the first step analysis:

τ0 =
1

λw +µ2

+
λw

λw +µ2

τ1

τ` =
1

λw +µ1 +µ2

+
λw

λw +µ1 +µ2

τ`+1 +
µ1

λw +µ1 +µ2

(
τ`−1 +

b∑
k=0

(
p(`−1)→k

)
τk

)
1≤ `≤ b− 1

τb =
1

µ1 +µ2

+
µ1

µ1 +µ2

(
τb−1 +

b∑
k=0

(
p(b−1)→k

)
τk

) .

(EC.40)

It turns out that Eq. (EC.40) is a finite system of equations that are linear in the τ` values, which

we can easily solve for in closed form, this time in terms of the p`→k probabilities. Unfortunately, the

p`→k probabilities cannot generally be determined in closed-form in terms of elementary functions,

as writing a system of equations relating these values to one another will involve nonlinear terms

and solving the system will require solving higher ordered polynomials (the order of which can be

arbitrary high based on the value of b). Therefore, we resort to approximating the p`→k probabilities

numerically.

In order to approximate the p`→k probabilities numerically, we invoke the notion of the G matrix

from the literature on matrix analytic methods (for a comprehensive discussion of the G matrix,

see the chapter 6 of the standard textbook (Latouche and Ramaswami (1999)). The G matrix

associated with a quasi-birth–death process (such as those depicted in Fig. 5) is a square matrix

with a number of rows and columns equal to the number of phases and levels of the chain in

question such that (using zero-based numbering so that we start with row 0) the entry in row ` and

column k of G corresponds precisely to p`→k as we have defined it above. That is, p`→k = G(`, k),

so it remains to approximate G. There are a variety of ways to carry out the task in the literature,

but for the purpose of our discussion the most straightforward (although not necessarily most

efficient) approach is likely to use the relation:

G =−F−1
(
R−1F−L

)
, (EC.41)



ec30

where F and L are matrices associated with the Markov chain of interest and R is the rate matrix.

F and L are given in Eq. (EC.38) for the more general CTMC of Fig. 5a; we need only modify F

for the CTMC of Fig. 5b by replacing the its main diagonal entries with zeroes. Approximating G

turns out to be straightforward once we identify F, L, and B and use them to approximate the R

matrix (on this, see Appendices EC.3.4 and EC.3.7).

Finally, putting everything together and proceeding in roughly reverse order of the presentation

of our discussion in this section, we can find the EWM
(b,pm)[Z(i, j)] as follows:

1. Identify F, B, and L, as given in Eq. (EC.38), with the modification that the main diagonal

of F should be replaced with zeros.

2. Use F, B, and L to compute R following the procedure given in Appendix EC.3.4.

3. Use Eq. (EC.41) to compute G.

4. Solve the linear system Eq. (EC.40) to obtain all of the τ` values based on G (recall that

p`→k = G(`, k)).

5. Use the recursive relations given in Eq. (EC.39), to compute any of the EWM
(b,pm)[Z(i, j)] of

interest (say ∀i∈ {0,1, . . . , b} and j ∈ {1,2, . . . , J} for some J).

We note that Step 2 is the only step that is not based on one or more exact relations, i.e., it

introduces an approximation, resulting in an inexact value for R. Consequently, all calculations

based directly or indirectly on R—namely, G, the τ` values, and the EWM
(b,pm)[Z(i, j)] values—will

also all be approximations. We also note that EWM
(b,pm)[Z(i, j)] is actually constant in pm as mobile

arrivals do not affect this quantity.

Finally, in the absence of better alternatives, the following series (which depends on the index i)

can be approximated by truncation:

∞∑
j=0

πTS
(b,pm)(i, j)E(b,pm)[Z(i, j+ 1)]≈

J∑
j=0

πTS
(b,pm)(i, j)E(b,pm)[Z(i, j+ 1)],

for sufficiently large J (where the right-hand side converges to the left-hand side as J →∞). We

also note that as we generally do not know πTS
(b,pm)(i, j) exactly, we compute the approximation for

this series in terms of the approximated (rather than exact) πTS
(b,pm)(i, j) values.

EC.4 Mixed walk-in strategies and heterogeneous patience levels

In this section we relax the assumption that indifferent walk-ins will always join, by allowing

walk-ins to pursue a mixed strategy. This generalization will be essential in addressing the case of

walk-ins with heterogeneous patience levels. In this section, we address both the single- and two-

server settings, but we will primarily focus on the former, where we provide a systematic method

for determining such equilibria, although in some problem instances we can only find approximate

equilibria under WMO.
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EC.4.1 Mixed Walk-In Strategies

Throughout §5, we assume that the strategy (behavior) employed by walk-ins is described by a

single integer value, b. Specifically, in that section, we assume that if a walk-in observes N1 = i < b

other walk-ins in Stage 1 upon arrival, they will join, and otherwise, they will balk. We now consider

a more general mixed strategy on the part of walk-ins, where for each non-negative integer i,

we denote by pi, the fraction (probability) of walk-in customers who opt to join given that they

observe N1 = i other walk-ins in Stage 1 upon arrival. Letting b≡ arg mini∈Z≥0
pi = 0, we once again

have b as a threshold on N1 at which no walk-ins join. A pure walk-in strategy described by b

corresponds precisely to the mixed walk-in strategy where p0 = p1 = · · ·= pb−1 = 1 and pb = 0; i.e.,

the strategy b corresponds to a pw that is a vector of length b, with each entry is equal to 1. It

follows that the space of walk-in strategies is formally given by

S ≡
∞⋃
b=0

b−1∏
i=0

(0,1],

where
∏

denotes the generalized Cartesian product. Note that pw is the “empty vector” (which

we can denote by ∅) when b = 0. We could equivalently consider strategies coming from the

space
∏∞
i=0[0,1], which would include “redundant” strategies as whenever pi = 0, the values of pk

where k > i are inconsequential.

We use (pw, pm) to denote the strategy profile describing the behavior of both walk-ins and

mobiles, where the interpretation of pm remains unchanged (i.e., pm is the fraction of mobile arrivals

who join). Note that the strategy profile (pw, pm) implies a value for b as well (i.e., b is the number

of entries in the vector pw). In this setting, given a policy P, an equilibrium is a joint-strategy,

(p∗w, p
∗
m), which satisfies

EP
(p∗w,p∗m)[Tw|N1 = i]≤ Tmax

w ∀i∈ {0,1, . . . , b∗− 1} s.t. pi = 1

EP
(p∗w,p∗m)[Tw|N1 = i] = Tmax

w ∀i∈ {0,1, . . . , b∗− 1} s.t. pi < 1

EP
(p∗w,p∗m)[Tw|N1 = b∗]≥ Tmax

w

arg max{pm ∈ [0,1] : EP
(p∗w,pm)[Tm]≤ Tmax

m }= p∗m,

where b∗ is the number of entries in p∗w. Meanwhile, we also have a slightly revised formula for

social welfare in this setting:

SWP
(pw,pm) =

1

Λ

(
λw

b−1∑
i=0

pi
(
Tmax
w −EP

(pw,pm)[Tw|N1 = i]
)
PP
(pw,pm)(N1 = i) + pmλm

(
Tmax
m −EP

(b,pm)[Tm]
))

.
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EC.4.2 General Approach for Finding Equilibria with Mixed Walk-in Strategies

We proceed to discuss how we can find equilibria under mixed walk-in strategies in the single-server

model, taking EP
(pw,pm)[Tw|N1 = i] and EP

(pw,pm)[Tm] as given; the computation of these sojourn times

is deferred to Appendix EC.4.6. There are challenges associated with determining equilibria in the

two-server setting, so we avoid that case.

A key distinguishing feature of equilibria determination in this setting as compared with the

setting of pure walk-in strategies (where the walk-in behavior depends on an integer value, b),

is that we can no longer examine a finite number of cases b ∈ {0,1, . . . ,B}. In fact the space of

mixed walk-in strategies, S, is unaccountably large, spanning a union of hypercubes of different

dimensionalities.

In an effort to make the equilibria determination problem tractable, we use a different approach

depending on the policy under consideration. We make a couple of observations. First, under MWO,

we note that mobiles have priority over all walk-ins. As a result, EMWO
(pw,pm)[Tm] does not depend on

pw, so we can determine p∗m first (via the final equilibrium constraint) and then, given this value of

p∗m, we find those vectors p∗w ∈ S that satisfy the equilibrium constraints for walk-ins. Second, under

WOM, we have the opposite situation: walk-ins have priority over mobiles and so EWOM
(pw,pm)[Tw|N1 = i]

does not depend on pm. This allows us to determine p∗w based on the equilibrium constraints for

walk-ins, and then, given this vector for p∗w, we find the value of pm ∈ [0,1] that satisfies the final

equilibrium constraint (i.e., we find the “best response” of mobiles to the strategies adopted by

the walk-ins). Such straightforward situations do not necessarily arise in the case of WMO, and so

we differ discussion equilibria determination under WMO to Appendix EC.4.5.

EC.4.3 Finding p∗m in the setting with mixed walk-in strategies

We now directly address the method for finding equilibria, (p∗w, p
∗
m). We first discuss the method of

determining p∗m under MWO and WOM, noting that this is the first step we use in finding equilibria

for MWO, but the second step (following the determination of p∗w, as this value is required) for

WOM. For P∈ {MWO,WOM}, we must simply compute p∗m = arg max
pm∈[0,1]

{EP
(p∗w,pm)[Tm]≤ Tmax

m }, taking

p∗w to be as already found (using the method discussed below) under WOM and taking the choice

of p∗w to be inconsequential for MWO (as EMWO
(pw,pm)[Tm] is constant in pw). Under both policies, if it is

neither the case that p∗m = 0 or p∗m = 1 (both of which can be readily checked), then p∗m is the unique

value of pm satisfying EP
(pw,pm)[Tm] = Tmax

m , which can either be determined exactly, if possible,

or approximated with arbitrary precision using a bisection search, as EP
(pw,pm)[Tm] is continuous

and monotone in pm (we assert continuity without proof, while monotonicity follows from a slight

modification of the proof of Proposition 3, which establishes the monotonicity of EP
(b,pm)[Tm]).
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EC.4.4 Finding p∗w in the setting with mixed-walk in strategies

We now address the determination of p∗w, noting that this is the second step when p∗m is required, as

is the case under MWO (and sometimes under WMO, see Appendix EC.4.5), and the first step oth-

erwise (i.e., under WOM). We use the notation x_y (resp. x_y) to denote the concatenation of the

vector x and the scalar y (resp. the vector y); e.g., if x = (1,1/2), y= 1/3, and y = (1/3,1/4),then

x_y= (1,1/2,1/3), while x_y= (1,1/2,1/3,1/4). This notation allows us to present the following

crucial result, which plays a key role in determination of p∗w:

Proposition EC.1 For any policy P in the one-server setting, any pw ∈ S with at least i entries,

and any q∈ [0,1]k, we have

EP
(pw,pm)[Tw|N1 = i] =E(p_

w q,pm)[Tw|N1 = i].

That is, the response time of a walk-in seeing i customers in the system upon arrival does not

depend on the strategies of those walk-ins who observe at least i+ 1 customers upon arrival.

Proof. This observation follows readily from examining the relevant Markov chains (i.e., those

depicted in Fig. 4), by noting that once one leaves state (N1,N2) = (i, j), to enter phase i+ 1,

the next time one will enter phase i will always be in state (N1,N2) = (i,1) (and analogously

for (N1,N2,w) in the WOM case), from which it follows that the limiting distribution of N2 and N2,w

conditioned on N1 = i is the same under both pw and p_w q; i.e., πP
(b,pm)(i, j)

/∑∞
j=0 π

P
(b,pm)(i, j) and

φP
(b,pm)(i, j)

/∑∞
j=0 π

P
(b,pm)(i, j) do not change if we replace pw with p_w q, which is sufficient to yield

the desired claim (see Proposition 4). �

Proposition EC.1 does not hold in the two-server model (as phase transitions are bidirectional),

hence analysis is not tractable in that setting; nonetheless, an adaptation of this technique was able

to give approximate equilibria that were used in generating Fig. 7 for the two-server model. With

this proposition in mind, we provide the following “algorithm sketch” for determining at least one

equilibrium strategy, p∗w:

1. Set i← 0 and pw←∅, where ∅ represents the empty vector. Then, continue on to Step 2.

2. If EP
(pw,p∗m)[Tw|N1 = i]≥ Tmax

w , then report that (p∗w, p
∗
m) is an equilibrium where p∗w = pw and

end the algorithm. Otherwise, continue to Step 3.

3. If EP
(p_

w 1,p∗m)[Tw|N1 = i]≤ Tmax
w , set i← i+ 1 and pw← p_w 1; then, return to Step 2. Otherwise,

continue to Step 4

4. Consider the following function, g, of p ∈ [0,1]: g(p)≡ EP
(p_

w p,p∗m)[Tw|N1 = i]− Tmax
w . Based on

the results of Steps 2 and 3, the fact that we have reached this step indicates that g(0)< 1

and g(0)> 1. So, by the continuity of g (which we state without proof), we know that g has

at least one root. Find such a root—or approximate one to arbitrary accuracy via a bisection

search—and call it p∗. Now set i← i+ 1 and pw← p_w p
∗. Then, return to Step 2.
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Note that this algorithm will terminate in finite time (as long as the lengths of bisection searches

are limited) as i increments by one through each loop of the algorithm, and the algorithm will

terminate without i exceeding B. Further, note that this algorithm will find only one equilibrium

value of pw. We know of no method for systematically and exhaustively finding all such equilibria

(although we have observed that multiple may exist as step 4 may have more than one solution),

although one can “search” for additional equilibria in an exploratory manner by developing variants

of this algorithm that permute (with appropriate modifications) Steps 2, 3, and 4 and introduce

some degree of randomization in initializing the bisection search.

We note that the mixed equilibria discussed in our results (see §6) are all of the

form (1,1, . . . ,1, p). We conjecture that equilibria of this form (allowing for p= 0, yielding a non-

mixed threshold strategy) always exist. In obtaining the results presented in §6, we attempt to find

equilibria with mixed walk-in strategies whenever we fail to find any equilibria with a pure walk-in

strategy. In all such cases, we have observed that there exists some b ∈ Z≥0 such that b+ 1 is a

best-response for a walk-in when all other walk-ins are employing threshold b and vice versa. In

such cases, we set pw← (1,1, . . . ,1) with length b and set i← b and start running through the above

algorithm at Step 4; in all cases, we observe that the algorithm next terminates when reaching

step 2, yielding an equilibrium walk-in strategy of the form (1,1, . . . ,1, p).

EC.4.5 Determining equilibria with mixed walk-in strategies under WMO

The case of determining equilibria with mixed walk-in strategies under WMO is more challenging

as compared to finding such equilibria under the other two single-server policies. This is because

in the case of WMO, we must determine p∗w and p∗m jointly, since walk-in strategies affect the “best

response” of mobiles, and vice-versa. The following proposition highlights a restricted case, where

we can circumvent this problem:

Proposition EC.2 If Tmax
m ≥ 1/(µ2 − λm) + 1/µ2, then under any equilibrium (p∗w, p

∗
m), we must

have p∗m = 1 under WMO.

Proof. We first observe that we can view the subsystem of mobiles at Stage 2 under WMO as

behaving like an M/M/1 with setup. Mobiles arrive according to a Poisson process with rate pmλm.

Once the system begins serving mobiles, it will continue serving mobiles (who have exponential

service requirements) without interruption, at rate µ2. However, when a mobile arrives to this

system, they may not immediately begin service. Specifically, immediate service does not begin if

a W is already present at Stage 2, in which case they will be in service. Say that whenever a mobile

arrives into the system with no other mobiles, the event where the mobile cannot go into service

immediately occurs with probability q (note that successive events are not necessarily independent,
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and q depends on pw). When such an event occurs, we can view the time to serve this walk-in as a

setup time that is distributed Exp(µ2), after which time we can serve mobiles until the completion

of the mobile busy period without any interruptions. It is easy to see that mobile sojourn times

are upper-bounded by the special case where we always have setups, i.e., q = 1. In this case, the

mobiles experience an M/M/1 with exponentially distributed setup times with an arrival rate pmλm

and both service and setup rates equal to µ2, which is known to have a mean sojourn time equal

to that of the corresponding M/M/1 plus the mean setup time (see Harchol-Balter 2013, Section

27.3). Therefore, we have the upper bound EWMO
(pw,pm)[Tm]≤ 1/(µ2− pmλm) + 1/µ2, which guarantees

pm = 1 is a best response to any pw ∈ S, so long a Tmax
m ≥ 1/(µ2−λm) + 1/µ2, which establishes the

claim. �

Proposition EC.2 tells us that by restricting attention to settings where Tmax
m ≥ 1/(µ2−λm)+1/µ2

(under WMO), we know that p∗m = 1, and can thus proceed to determining p∗w in accordance with

the method presented in Appendix EC.4.4. This condition is satisfied by 1232 out of (86.76%) the

1420 problem instances in our pruned full-factorial experiment. Of the remaining 188 instances,

we find an equilibrium with a pure walk-in strategy in an additional 131 instances, leaving 54

remaining cases.

We now sketch an iterative technique for approximating equilibria with mixed walk-in strategies

when Tmax
m < 1/(µ2−λm) + 1/µ2 and no pure strategy equilibria are found to exist:

1. Set pw←∅ and pm← 1 (or better initial “guesses” if available based on the failed process of

attempting to determine pure strategy equilibria). Continue on to Step 2.

2. Apply the method presented in Appendix EC.4.4 (without overwriting pw←∅ in Step 1 of

that algorithm and taking p∗m to be the current value of pm), updating pw based on the value

of p∗w returned (note that this need not be an equilibrium strategy; instead it is merely the

best response to the current value of pm). Note the change (in terms of an appropriate metric,

e.g., the infinity-norm after adding zeros to the tail of a shorter vector where appropriate)

in pw as a result of this entire step and call it ∆w, then continue to Step 3.

3. Apply the method presented in Appendix EC.4.3 to find an updated value of pm that is a best

response to the current pw. Note the change in pm as a result of this step and call it ∆m, then

continue to Step 4.

4. If max(∆w,∆m) falls below a desired precision threshold, then terminate the algorithm here

and report (pw, pm) as an approximate equilibrium. Otherwise, return to Step 2.

While we cannot prove that this technique is guaranteed to converge, it yielded adequate results

in the aforementioned 54 cases where other methods did not suffice. A similar technique can be

used to find mixed equilibria in the two-server setting.
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EC.4.6 Sojourn Time Computation Under Mixed Walk-in Strategies

We now turn to the question of how to compute the sojourn times of interest under strategy profiles

of the form (pw, pm) in both the single- and two-server settings. One can show without difficulty that

EP
(pw,pm)[Tw|N1 = i] and EP

(pw,pm)[Tm] follow the same forms given for EP
(b,pm)[Tw|N1 = i] and EP

(b,pm)[Tm]

(respectively), as given in Propositions 4 and 5. More precisely, under all policies of interest,

P, the aforementioned propositions continue to hold when all instances of the operator EP
(b,pm)—

and all implicit references to the operator PP
(b,pm)—in their statements are replaced with E(pw,pm)

and P(pw,pm), respectively. Such “implicit references” to PP
(b,pm) appear in the limiting probabilities

πP
(b,pm)(i, j) and φP

(b,pm)(i, j), where reference to the strategy profile has been suppressed in the

interest of brevity.

In order to compute EP
(pw,pm)[Tw|N1 = i] and EP

(pw,pm)[Tm] for all policies of interest (exactly in the

single-server setting and approximately in the two-server setting), we must compute the following

under the strategy profile (pw, pm): (i) the first and second moments of U and V under WOM,

(ii) the mean value of Z(i, j) under WM, and (iii) the limiting probabilities πMWO
(b,pm)(i, j) (equiva-

lently, πWMO
(b,pm)(i, j)), φ

WOM
(b,pm)(i, j), π

TS
(b,pm)(i, j), and φWM

(b,pm)(i, j) (and where appropriate, one or more

series associated with these limiting probabilities). The determination of these quantities under

the strategy profile (pw, pm) requires only a minor modification of the methods given throughout

Appendix EC.3 for determination of their analogues under the strategy profile (b, pm). These mod-

ifications result by observing that the only consequence of generalizing from strategy profiles of

the form (b, pm) to those of the form (pw, pm) on all quantities of interest is an alteration of the

Markov chains governing (N1,N2) and (N1,N2,w). This is also why the aforementioned adaptation

of Propositions 4 and 5 to the setting with mixed walk-in strategies is possible.

Specifically, all four chains of interest under the strategy profile (pw, pm) are identical to their

counterparts under (b, pm) (these are illustrated in Figs. 4 and 5) with one crucial change: the tran-

sition rate from phase (row) i to phase (row) i+ 1 should be piλw rather than λw, ∀i∈ {0,1, . . . , b}.

As a result, we can obtain the values of interest using the following modifications of the methods

presented throughout Appendix EC.3, all of which essentially require replacing each instance of λw

by piλw for the appropriately chosen value of i:

1. The limiting probabilities πMWO
(pw,pm)(i, j) and πWMO

(pw,pm)(i, j) are equal to one another (as were

their analogues, πMWO
(b,pm)(i, j) and πWMO

(b,pm)(i, j)). These quantities, together with their associated

series, can be computed exactly via the same method given in Appendix EC.3.1 for comput-
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ing πMWO
(b,pm)(i, j) and πWMO

(b,pm)(i, j), by using the following revised matrices L0 and L and values

γ0, γ1, . . . , γb and ξ0, ξ1, . . . , ξb, in place of those given in display (EC.29):

L0 =


−γ0 p0λw

−γ1 p1λw

. . .
. . .
−γb−1 pb−1λw−γb

 ,L =


−ξ0 p0λw

−ξ1 p1λw

. . .
. . .
−ξb−1 pb−1λw

−ξb

 ,

γi =


pmλm + p0λw i= 0

µ1 + pmλm + piλw 1≤ i≤ b− 1

µ1 + pmλm i= b

, ξi =

{
pmλm + piλw +µ2 0≤ i≤ b− 1

pmλm +µ2 i= b
.

Note that the statement “all elements of the diagonal of R are actually the same except for

the last, R(b, b),” no longer holds, but this holds no consequences for the method in general.

2. The limiting probabilities φWOM
(pw,pm)(i, j) can be computed exactly via the same method given in

Appendix EC.3.2 for computing the limiting probabilities φWOM
(b,pm)(i, j), by using the following

revised system of equations in place of system (EC.31):

p0λwφ0,0 = µ2φ0,1

(piλw +µ1)φi,0 = pi−1λwφi−1,0 +µ2φi,1 ∀i∈ {1,2, . . . , b− 1}
µ1φb,0 = pb−1λwφb−1,0 +µ2φb,1
(p0λw +µ2)φ0,1 = µ1φ1,0,

(piλw +µ2)φi,1 = pi−1λwφi−1,1 +µ1φi+1,0 ∀i∈ {1,2, . . . , b− 1}
µ2φb,1 = pb−1λwφb−1,1
b∑
i=0

(φi,0 +φi,1) = 1

.

3. The transforms of U and V under the strategy profile (pw, pm)—from which one can find the

quantities of interest EWOM
(pw,pm)[U ], EWOM

(pw,pm)[U
2], EWOM

(pw,pm)[V ], and EWOM
(pw,pm)[V

2]—can be computed

exactly via the same method given in Appendix EC.3.3, by making the following modifications:

(a) System (EC.32) should be revised as follows:

p0λwψ0,0 = µ2ψ0,1 + pmλm (1−ψ0,0)

(piλw +µ1 + pmλm)ψi,0 = pi−1λwψi−1,0 +µ2ψi,1, ∀i∈ {1,2, . . . , b− 1}
(µ1 + pmλm)ψb,0 = pb−1λwψb−1,0 +µ2ψb,1,

(p0λw +µ2 + pmλm)ψ0,1 = µ1ψ1,0,

(piλw +µ2 + pmλm)ψi,1 = pi−1λwψi−1,1 +µ1ψi+1,0, ∀i∈ {1,2, . . . , b− 1},
(µ2 + pmλm)ψb,1 = pb−1λwψb−1,1,
b∑
i=0

(ψi,0 +ψi,1) = 1.
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(b) System (EC.33) should be revised as follows:

Ũ0,0(s) = 1,

Ũi,0(s) =
piλw +µ1

s+ piλw +µ1

(
piλw

piλw +µ1

Ũi+1,0(s) +
µ1

piλw +µ1

Ũi−1,1(s)

)
, ∀i∈ {1,2, . . . , b− 1},

Ũb,0(s) =
µ1

s+µ1

Ũb−1,1(s),

Ũi,1(s) =
piλw +µ2

s+ piλw +µ2

(
piλw

piλw +µ2

Ũi+1,1(s) +
µ2

piλw +µ2

Ũi,0

)
, ∀i∈ {0,1, . . . , b− 1},

Ũb,1(s) =
µ2

s+µ2

Ũb,0(s).

(EC.42)

(c) Eq. (EC.35) should be revised as follows:

Ṽ (s) =
p0λw +µ2

s+ p0λw +µ2

(
p0λw

p0λw +µ2

Ũ1,0(s)Ṽ (s) +
µ2

p0λw +µ2

)
(EC.43)

=⇒ Ṽ (s) =
µ2

s+ p0λw

(
1− Ũ1,0(s)

)
+µ2

.

If one opts to use the more efficient method discussed at the end of Appendix EC.3.3,

system (EC.36) and display (EC.37), should be revised to be consistent with system (EC.42)

and display (EC.43), respectively.

4. The limiting probabilities πTS
(pw,pm)(i, j) and φWM

(pw,pm)(i, j) and their associated series can be

approximated via the methods given in Appendices EC.3.4 and EC.3.7 for computing the

limiting probabilities πTS
(b,pm)(i, j) and φWM

(b,pm)(i, j), respectively, by using the following revised

matrix L and values ν0, ν1, . . . , νb, in place of those given in display (EC.38):

L =


−ν0 p0λw

−ν1 p1λw

. . .
. . .
−νb−1 pb−1λw−νb

 , νi =


pmλm + p0λw +µ2 i= 0

µ1 + pmλm + piλw +µ2 1≤ i≤ b− 1

µ1 + pmλm +µ2 i= b

.

5. The quantity EWM
(pw,pm)[Z(i, j)] can be approximated via the methods given in Appendix EC.3.8

by using the following revised system of equations in place of system (EC.40):

τ0 =
1 + p0λwτ1
p0λw +µ2

τ` =
1 + p`λwτ`+1

p`λw +µ1 +µ2

+
µ1

p`λw +µ1 +µ2

(
τ`−1 +

b∑
k=0

(
p(`−1)→k

)
τk

)
1≤ `≤ b− 1

τb =
1

µ1 +µ2

+
µ1

µ1 +µ2

(
τb−1 +

b∑
k=0

(
p(b−1)→k

)
τk

)
.
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EC.4.7 Heterogeneous Patience Levels in the Single-Server Setting

We turn our attention to the case where patience levels are heterogeneous (due to heterogeneity

in Rw and Rm, while Cw = Cm = 1) and consider the case where for each walk-in (resp. mobile),

Rw = Tmax
w (resp., Rm = Tmax

m ) is a random variable that is independently drawn from a bounded

continuous distribution with c.d.f. Fw (resp., Fm). For the discussion that follows, it will be helpful to

recall that a bounded distribution with c.d.f. F has lower and upper bounds that can be expressed

by F−1(0) and F−1(1), respectively.

The theory developed in Appendix EC.4.1 makes it quite simple to address this extension, which

also explains why we again necessarily restrict attention to the single-server setting. This is because

we again have action profiles of the form (pw, pm) with pw ∈ S, although there is additional meaning

carried in this action profile that was absent in the case of constant (homogeneous) patience

levels: specifically, pi (where pi is determined by pw = (p0, p1, . . . , pb−1)) denotes that a walk-in with

patience level Tmax
w will join when N1 = i if and only if Tmax

w is at or above the (1− pi) quantile

(of the patience level distribution for all walk-ins), i.e., Tmax
w ≥ F−1w (1− pi). Similarly, pm denotes

that a mobiles with patience level Tmax
m will join if and only if Tmax

m is at or above the (1− pm)

quantile (of the patience level distribution for all mobiles), i.e., Tmax
w ≥ F−1m (1− pm). Of course,

as a consequence of these interpretations, the original meanings of pi and pm still hold true as

well: an arbitrary walk-in joins at N1 = i with probability pi, while an arbitrary mobile joins with

probability pm.

In light of the above, in this setting (p∗w, p
∗
m) is an equilibrium if it satisfies the following revised

equilibrium conditions:

EP
(p∗w,p∗m)[Tw|N1 = i] = F−1w (1− pi) ∀i∈ {0,1, . . . , b∗− 1}

EP
(p∗w,p∗m)[Tw|N1 = b∗]≥ F−1w (1)

arg max{pm ∈ [0,1] : EP
(p∗w,pm)[Tm]≤ F−1m (1− pm)}= p∗m, (EC.44)

where b∗ is again the number of entries in p∗w. Meanwhile, social welfare takes on the following

form under heterogeneous patience levels:

SWP
(pw,pm) =

1

Λ

(
λw

b−1∑
i=0

pi
(
Tmax
w (i)−EP

(pw,pm)[Tw|N1 = i]
)
PP
(pw,pm)(N1 = i) + pmλm

(
Tmax
m −EP

(b,pm)[Tm]
))

,

where Tmax
w (i) is the average patience level of walk-ins who join when N1 = i and Tmax

m is the

average patience level of mobiles who join. Specifically, these quantities are given by

Tmax
w (i) =

1

pi

∫ F−1
w (1)

F−1
w (1−pi)

t dFw(t) and Tmax
m =

1

pm

∫ F−1
m (1)

F−1
m (1−pm)

t dFm(t).

The method described in Appendix EC.4.2 can then be modified in order to find one or more

equilibria in this setting. This modification is straightforward as one needs only change equations
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Figure EC.2 Single-server with heterogeneous customers: Λ = 0.05, µ1 = 0.16, µ2 = 0.08,

Tmax
w ∼TrN(62.5,10,60,65), Tmax

m ∼TrN(70,8,60,80); TrN(µ,σ,LB,UB) is a truncated Normal

distribution with mean µ, std. dev. σ, and lower and upper bounds LB and UB.

being solved and the inequalities being checked on the basis of the new equilibrium conditions given

in display (EC.44). Note that the assumption Tmax
m ≥ 1/(µ2 − λm) + 1/µ2 that facilities tractable

analysis becomes F−1m (0)≥ 1/(µ2−λm) + 1/µ2 in this setting.

Applying this method to the case where patience thresholds follow a truncated normal distribu-

tion, we find results that are in line with those presented in the body of the paper in the setting

where customers have homogeneous patience level (see Fig. EC.2); i.e., we observe a region of

adoption rates, α, where all three policies underperform the no-app benchmark with respect to

throughput.
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Table EC.1 Non-degenerate parameter combinations (specified by “×”)

µ2 = 1.5 µ2 = 2 µ2 = 2.5 µ2 = 3
µ1/µ2 µ1/µ2 µ1/µ2 µ1/µ2

Tmax
m

Tmax
w
Tmax
m

.25 .5 1 2 4 .25 .5 1 2 4 .25 .5 1 2 4 .25 .5 1 2 4

0.5
80%
100% ×
125% × × × ×

1
80% × × × × × × ×
100% × × × × × × × × ×
125% × × × × × × × × × × × × ×

2
80% × × × × × × × × × × × × × × ×
100% × × × × × × × × × × × × × × × ×
125% × × × × × × × × × × × × × × × × × ×

4
80% × × × × × × × × × × × × × × × × × × ×
100% × × × × × × × × × × × × × × × × × × × ×
125% × × × × × × × × × × × × × × × × × × × ×

Table EC.2 Summary statistics for % throughput loss

Average Std. dev. Min 1st quartile Median 3rd quartile Max
12.41% 10.95% 0.00% 2.60% 10.62% 19.85% 40.27%

EC.5 Experiments

In Table EC.1, we specify the non-degenerate parameter combinations using the “×” symbol. Each

cell in Table EC.1 includes 10 experiments (values of α). Our discussions in §6 of the paper, which

are based on the tables provided in this section, are all based on the non-degenerate parameter

combinations.

Table EC.2 presents the descriptive statistics for the percentage of throughput loss due to intro-

duction of a mobile-ordering application in experiments in which opting not to offer an app out-

performs the three omni-channel prioritization policies in the single-server setting (MWO,WMO,

and WOM) with respect to throughput. The percentage of throughput loss is calculated as:

% throughput loss =
No-app throughput−Maximum throughput of omni-channel policies

No-app throughput
× 100.

Table EC.3 provides the number and percentage of cases in which each policy is optimal with

respect to throughput (with ties broken in favor of highest social welfare, whenever possible), at

all fixed levels of the five parameters µ2, µ1/µ2, α, Tmax
m , and Tmax

w /Tmax
m .
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Table EC.3 Effect of parameters on the optimal policy

µ2 µ1/µ2
1.5 2 2.5 3 0.25 0.5 1 2 4

No app 40 24 17 15 1 6 14 24 51
14.8% 7.1% 4.4% 3.6% 0.7% 2.5% 4.7% 6.7% 13.4%

MWO 2 2 0 0 0 1 0 0 3
0.7% 0.6% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.79%

WMO 26 19 9 9 8 13 12 17 13
9.6% 5.6% 2.3% 2.1% 5.7% 5.4% 4.0% 4.7% 3.4%

WOM 59 178 285 345 60 113 186 240 268
21.9% 52.4% 73.1% 82.1% 42.9% 47.1% 62.0% 66.7% 70.5%

MWO&WMO 143 117 79 51 71 107 88 79 45
(Tie) 53.0% 34.4% 20.3% 12.1% 50.7% 44.6% 29.3% 21.9% 11.8%
# of instances 270 340 390 420 140 240 300 360 380

α
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

No app 10 13 15 14 12 9 8 7 5 3
7.0% 9.2% 10.6% 9.9% 8.5% 6.3% 5.6% 4.9% 3.5% 2.1%

MWO 0 2 0 0 1 0 1 0 0 0
0.0% 1.4% 0.0% 0.0% 0.7% 0.0% 0.7% 0.0% 0.0% 0.0%

WMO 2 7 6 11 12 8 11 6 0 0
1.4% 4.9% 4.2% 7.8% 8.5% 5.6% 7.8% 4.2% 0.0% 0.0%

WOM 57 62 64 69 80 88 98 108 120 121
40.1% 43.7% 45.1% 48.6% 56.3% 62.0% 69.0% 76.1% 84.5% 85.2%

MWO&WMO 73 58 57 48 37 37 24 21 17 18
(Tie) 51.4% 40.9% 40.1% 33.8% 26.1% 26.1% 16.9% 14.8% 12.0% 12.7%
# of instances 142 142 142 142 142 142 142 142 142 142

Tmax
m Tmax

w /Tmax
m

0.5 1 2 4 0.8 1 1.25
No app 24 41 18 13 22 22 52

48.0% 14.1% 3.7% 2.2% 5.4% 4.8% 9.5%
MWO 0 1 1 2 0 0 4

0.0% 0.3% 0.2% 0.3% 0.0% 0.0% 0.7%
WMO 5 17 18 23 10 22 31

10.0% 5.9% 3.7% 3.9% 2.4% 4.8% 5.6%
WOM 2 168 314 383 312 295 260

4.0% 57.9% 64.1% 64.9% 76.1% 64.1% 47.3%
MWO&WMO 19 63 139 169 66 121 203
(Tie) 38.0% 21.7% 28.4% 28.6% 16.1% 26.3% 36.9%
# of instances 50 290 490 590 410 460 550
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EC.6 Notation Table

Table EC.4: Notation

α , Adoption rate; α≡ λm/Λ
aP , Allocation (class-specific mean sojourn time pair)

under service policy P; a≡ (EP[Tw],EP[Tm])
aP
∗

, An arbitrary Pareto optimal allocation;
more precisely, the allocation under (an arbitrary Pareto optimal policy) P∗

b , Buffer size at Stage 1; queue length of Stage 1 at which all walk-ins balk
b∗ , Equilibrium threshold for walk-ins
B , Strict upper bound on the buffer size at Stage 1
B , Repeated backward transition matrix used in matrix-analytic methods
bd(O) , Boundary of the achievable region
C , Cost per unit time spent waiting in the system
χw, χm , Throughput rate for walk-in(χw) and mobile (χm) customers
∆w, ∆m , Change in pw (∆w) and pm (∆m) in one step of the algorithm for

determining equilibria with mixed walk-in strategies under WMO
ei , i-th unit vector
E , Total net change of throughput due to information uncertainty
Ew, Em , Net change of throughput due to individual walk-in (Ew) and mobile (Em)

information uncertainty
EP , Expectation operator under policy P
EP

(b,pm) , Expectation operator under strategy profile (b, pm) and policy P

EP
(pw,pm) , Expectation operator under strategy profile (pw, pm) and policy P

EP[T ] , Overall mean response time; EP[T ]≡ (λwEP[Tw] +λmEP[Tm])/Λ
EP[W ] , Mean value of overall work in the system
EP[W2] , Mean value of overall work in Stage 2
EP[Ww], EP[Wm] , Mean values of the work due to walk-ins (EP[Ww])

and work due to mobiles (EP[Wm]) in the system
F0, F , Initial (F0) and repeated (F) forward transition matrices

used in matrix-analytic methods
fb(·) , Mobiles’ mean sojourn time as a function of pm with index b; fb(·)≡EP

(b,·)[Tm]

Fw, Fm , CDF of patience levels for walk-ins (Fw) and mobiles (Fm)
G , G-matrix used in matrix-analytic methods; G(`, k)≡ p`→k
γi , an auxiliary value defined by

pmλm +λw, if i= 0; µ1 + pmλm +λw, if 1≤ i≤ b− 1; µ1 + pmλm, if i= b
I , Identity matrix
I(i) , Time interval corresponding to a tagged walk-in’s sojourn at Stage 1

until they arrive to Stage 2
K(i) , Random quantity of mobile customers that arrived during I(i)
L0, L , Initial (L0) and repeated (L) local transition matrices

used in matrix-analytic methods
Λ , Total arrival rate for all customers; Λ≡ λw +λm

λw, λm , Arrival rates of walk-in (λw) and mobile (λm) customers
L(i, j) , Number of customers in Stage 2 (including the tagged walk-in) at time of

the tagged walk-in’s arrival to Stage 2, given that N1 = i and N2 = j
L(i, j, k) , Number of customers present in Stage 2 at the end of I(i),

given that K(i) = k and initially N2 = j
M , Mobile task at Stage 2
Mρ(t) , Number of customers in an M/M/1 system under load ρ∈ (0,∞) at time t
µ1 , Service rate at Stage 1
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µ2 , Service rate at Stage 2
N1, N2 , Number of customers in Stage 1 (N1) and Stage 2 (N2)
N2,w , Number of walk-ins at Stage 2 (i.e., number of W tasks)
Nw, Nm , Number of walk-ins (Nw) and mobiles (Nm)
νi , an auxiliary value defined by pmλm +λw +µ2, if i= 0;

µ1 + pmλm +λw +µ2, if 1≤ i≤ b− 1; µ1 + pmλm +µ2, if i= b
O , Achievable region of allocations; O≡ {tP ∈R2

+ : P∈P}
O∗ , Pareto frontier; O∗ ≡ (O\Vi)∩bd(O), for i∈ {1,2}
O , Walk-in task at Stage 1
P , Arbitrary service policy
P∗ , Arbitrary Pareto optimal policy
〈P1,P2〉(θ) , Random mixture of policies P1 (w.p. θ) and P2 (w.p. 1− θ)
P , Policy space: the set of all possible policies
P∗ , Pareto space; P∗ ≡ {P∗| 6 ∃P∈P : tP � tP∗}
PP
(b,pm) , Probability operator under strategy profile (b, pm) and policy P

φP
(b,pm)(i, j) , Limiting probability associated with state (i, j) in the (N1,N2,w) CTMC

under strategy profile (b, pm) and policy P; φP
(b,pm)(i, j)≡ PP

(b,pm)(N1 = i,N2,w = j)

πP
(b,pm)(i, j) , Limiting probability associated with state (i, j) in the (N1,N2) CTMC

under strategy profile (b, pm) and policy P; πP
(b,pm)(i, j)≡ PP

(b,pm)(N1 = i,N2 = j)

πTS
(b,pm)(i, j) , Two-server limiting probability πP

(b,pm)(i, j) under P∈ {WM,FCFS,MW}
~πj , Vector of limiting probabilities when for N1 = i∈ {0, . . . , b} when N2 = j
π(b,pm)(i, j) , Limiting probabilities under both MWO and WMO

p`→k , Probability that we specifically end up in state (k,m− 1)
before reaching state (k′,m− 1) for any k′ 6= k from state (l,m) under WM

pm , Mobiles’ joining probability
p∗m , Mobiles’ joining probability under equilibrium
ψWOM

(b,pm)(i, j) , Steady-state probability that a mobile arriving to a mobile-less system
under WOM sees (N1 = i,N2,w = j); ψWOM

(b,pm)(i, j) = PWOM
(b,pm)(N1 = i,N2 =N2,w = j)

P (u, v,w;ρ) , P (Mρ(tv) =w|Mρ(0) = u), probability that the system occupancy of
an M/M/1 system under load ρ> 0 transitions from u to w
after exactly v further arrivals

pw , Walk-ins’ mixed joining strategy which is a vector of length b
p∗w , Walk-ins’ mixed joining strategy under equilibrium
R , Benefit obtained by walk-ins from receiving service
R , Rate matrix (R-matrix) used in matrix-analytic methods
ρ , Load in an M/M/1 system
ρw, ρm , fractions of the time spent serving walk-ins (ρw) and mobiles (ρm)
S , Generalized walk-in strategy space; S ≡

⋃∞
b=0

∏b−1
i=0 (0,1]

SWP
(b,pm) , Social welfare under policy P under strategy profile (b, pm)

SWP
(pw,pm) , Revised social welfare formula when walk-ins applying mixed strategies

τ` , Expected “hitting time” associated with the trip from state (`,m) where
m≥ 1, until the first time we reach state (k,m− 1) for any k ∈ {0,1, . . . , b}

tn , Time of the n-th Poisson arrival to an M/M/1 system since time 0
Tw, Tm , Sojourn time of a walk-in (Tw) or mobile (Tm) customer
Tmax
w , Tmax

m , Patience level for walk-in (Tmax
w ) and mobile (Tmax

m ) customers
Tmax
w (i) , Average patience level of walk-in customers who join when N1 = i
Tmax
m , Average patience level of mobiles who join
U , Waiting time of a mobile who arrives when there are no other mobiles
Ũ(s) , The Laplace transform of the random variable U ; Ũ(s)≡EWOM

(b,pm) [e−sU ]
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Ui,j , The time it takes for a system currently in a state (N1,N2,w) = (i, j)
to be empty of all its walk-ins, without regard for any mobile arrivals;
Ui,j ∼ (U |N1 = i,N2,w = j )

Ũi,j(s) , Laplace transform of Ui,j; Ũi,j(s)≡EWOM
(b,pm) [e−sUi,j ]

V , Sojourn time of a mobile who enters an empty system; V ∼ (Tm|N1 =N2 = 0)
Ṽ (s) , Laplace transform of V ; Ṽ (s)≡EWOM

(b,pm) [e−sV ]

W , Walk-in task at Stage 2
W , The work in the system
ξi , An auxiliary value defined by

pmλm +λw +µ2, if 0≤ i≤ b− 1; pmλm +µ2, if i= b
X , Total throughput
Y (i, j) , Expected workload that a walk-in will encounter at Stage 2 once it

arrives there given that N1 = i and N2 = j when it arrived to Stage 1
YK(i, j) , Truncation of the first summation (by summing from k= 0 to K

instead of k= 0 to ∞) in the expression of Y (i, j)
Z(i, j) , Time it takes to reach a state where N2,w = 0 from state (N1,N2,w) = (i, j)

under WM, given (b, pm);
Z(i, j)∼ inf{s≥ 0: N2,w(t+ s) = 0|N1(t) = i,N2,w(t) = j}, ∀t≥ 0

� , Dominance relation on allocations
_ , Vector concatenation operator


