
Raman microspectroscopy is a form of vibrational spec
troscopy that harnesses the inelastic scattering of light, 
whereby the difference in wavelength between excitation 
and emission upon interaction with the sample is deter
mined by molecular vibration. This shift in wavelength 
provides information about the molecular bonds pres
ent, and thus the chemical composition of the sample. 
Since the first experimental observation of this scatter
ing by C. V. Raman in 1928 (ref.1), Raman technology  
has been widely adopted in materials science and engi
neering and is seeing growing applications in micro
biology and microbial ecology. Raman microspectroscopy 
represents a potentially game changing technology for  
our understanding of the diversity of metabolites and 
molecular interactions underlying microbial ecology. 
Recent advances now enable in situ interrogation of the 
chemistry of living microorganisms at sub micrometre 
resolution. The technique is non destructive, requires no 
sample preparation and the measurement is simple and 
rapid, on the order of a few seconds per measurement. 
The door is thus open to applications in microbiology 
for spatiotemporal probing of a sample at single cell 
scale (for typical micrometre sized bacteria) or even 
subcellular scale (for larger eukaryotic cells such as 
phytoplankton).

Raman technology is uniquely flexible compared 
with alternative methods with similar functionalities. 
For example, fourier transform infrared (fTIr) spectroscopy 
suffers from strong absorption of infrared wavelengths by 
water, which hinders the use of the system to interrogate 
microbial cells in situ2,3. Nanoscale secondary ion mass 
spectrometry (nanoSIMS) and cryogenic electron micros
copy (cryo EM) complemented with energy dispersive 
X ray spectroscopy (EDS) enable much higher sensitivity 
and spatial resolution than Raman microspectroscopy — 
down to a few tens of nanometres — but require vacuum 
conditions and/or cryogenic temperatures for operation, 
making live cell imaging impossible4–9. Both approaches 
provide information on the elemental (and isotopic, in the 
case of nanoSIMS) composition and structure of a sample 
and not on its molecular composition. For example, the 
amount of 13C compounds in a sample can be measured 
with nanoSIMS, yet their distribution among molecules 
as part of lipids and storage compounds cannot be deter
mined. The ability of Raman systems to interrogate the 
chemistry of individual cells provides microbiologists 
with a means to rapidly investigate the ecophysiology of 
individual live microorganisms, offering, for example, an 
opportunity to uncover the metabolic roles and contri
butions of microorganisms within complex communities 
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and to track metabolic exchange between microbial 
symbionts. For instance, monitoring of carotenoids in 
autotrophic microalgae enables investigation of the photo
physiology under ecologically relevant conditions, such 
as through the diel cycle or under deficiency of inorganic 
nutrients such as nitrogen, phosphorus or silica10–17. 
Measuring 13C transfer from a host to associated microor
ganisms (and vice versa) provides a means to interrogate 
the currency of carbon exchange between the partners18. 
Despite this potential, Raman microspectroscopy is still 
underused in microbiology.

This Primer aims to provide an overview of Raman 
technology and its potential applications for micro
biologists and bioengineers. We describe the funda
mental principle and the advanced technical add ons 
of Raman microspectroscopy. Normal and resonance 
Raman microspectroscopy are the two simplest modes 
of Raman microspectroscopy and are the main focus in 
this Primer, although we also briefly discuss extended 
methods such as surface enhanced Raman spectroscopy 
(SERS), hyper Raman scattering (HRS) and coherent 
Raman spectroscopy/microscopy. We outline criteria to 
optimize experimental parameters and strategies to ana
lyse the multivariate data that Raman microspectroscopy 
provides, to extract accurate chemometric information 
about the sample. We review applications in micro
biology, which is currently maturing from examples 
in laboratory model systems to the analysis of natural 
samples. Given that most microorganisms on Earth are 
still not cultivable, we then provide a roadmap for apply
ing Raman technologies more widely to understand the 
microbial ecology of complex communities in diverse 
real world environments, such as freshwater and oceans, 
soil, air and host associated intestinal microbiomes. 
We discuss the current technical limitations of Raman 
microspectroscopy for investigations of microorganisms 
and ways to minimize and address these limitations. 
Finally, we outline possibilities to reinforce the power 
and capacity of Raman microspectroscopy and to adopt 
the technique in underused fields in microbiology.

Experimentation
Raman working principles
When a molecule encounters incident monochromatic 
light such as that from a coherent laser beam, it emits light  
as a result of elastic scattering — known as Rayleigh 

scattering, where no wavelength shift occurs after the 
interaction — and inelastic scattering — composed of 
Stokes and anti Stokes Raman scattering, where the 
emitted light has longer and shorter wavelengths, respec
tively, than the incident light (fIg. 1a). These elastic and 
inelastic types of scattering are the result of excitation 
of the molecules to virtual states and then a return to 
lower energy states with subsequent light emission 
(fIg. 1c). Normal raman microspectroscopy, the most fun
damental Raman system, usually relies on Stokes Raman 
scattering. The magnitude of the shift in wavelength 
depends on the molecular vibrational state, thus meas
uring the light emitted by a sample after excitation pro
vides a means to identify the molecular bonds present 
and hence the molecular composition of a sample. For 
example, C‒C bonds, the CH2 group and C double bonds 
with C or O induce shifts in wavenumber of 1,127, 1,304 
and 1,665 cm−1, respectively (fIg. 1b). When the wave
length of the incident laser beam matches the electronic 
transitions of a molecule, the generated Raman signals 
are much greater (by a factor of ~103) than those from 
normal Raman microspectroscopy, an effect known as 
resonance raman scattering (fIg. 1c). This is distinct from 
the fluorescence resulting from absorption; fluorescence 
lifetimes (longer than nanoseconds) are much longer 
than in Raman scattering (on the order of picoseconds).

Variant Raman systems
There have been various advances in Raman technol
ogy, particularly technical breakthroughs that address 
the limited sensitivity of normal Raman microspec
troscopy. Technological advances include, for exam
ple, UV and deep UV resonance Raman spectroscopy, 
SERS, HRS and coherent Raman scattering microscopy 
(CRSM). These advances have fostered the adoption 
of Raman approaches in microbiology and below we 
briefly describe the underlying working mechanisms, 
strengths and important features of these technologies. 
There are also many additional variant systems (such 
as tip enhanced Raman spectroscopy19,20 and spatially 
offset Raman spectroscopy21), for which applications in 
microbiology have not yet been demonstrated.

UV and deep- UV resonance Raman spectroscopy.  
A Raman laser with UV or deep UV wavelengths (down 
to 200 nm) provides a means to interrogate known 
metabolites of microorganisms with high sensitivity 
by virtue of resonance Raman scattering, which does 
not occur in the visible or infrared wavelength range22. 
Additionally, the use of a short wavelength laser further 
improves the sensitivity; Raman intensity is inversely 
proportional to the laser wavelength to the power of 
four. Short wavelengths also improve diffraction limited 
resolution — the spatial resolution is proportional to the 
laser wavelength — reinforcing the capability of subcel
lular Raman imaging of small bacterial cells. Despite 
these advantages23–27, careful consideration is required 
before adopting this technique for specific applications 
in which non destructive sampling is essential, as this 
wavelength region has a higher potential risk of laser 
induced photo damage owing to the resonance of the 
excitation laser with important cellular building blocks28.
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Normal Raman 
microspectroscopy
A fundamental form of raman 
microspectroscopy that  
relies on measurement of 
non- resonant, spontaneous 
scattering signals in which one 
out of ~106 incoming photons 
to a sample is scattered.

Wavenumber
A unit of frequency used in 
vibrational spectroscopy, 
defined as the frequency 
divided by the speed of  
the wave and thus equal  
to the number of waves  
within one centimetre.

Resonance Raman 
scattering
raman scattering that arises 
when the wavelength of the 
incident laser beam matches 
the electronic transitions  
of a molecule, which  
generates much more  
intense raman signals than 
normal raman scattering.
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Surface- enhanced Raman spectroscopy. One can obtain 
Raman measurements with greatly improved sensitivity 
and selectivity by virtue of SERS (further details can be 
found in refs29,30), by bringing the microorganism or 
molecule of interest into the vicinity of metallic nano
particle substrates — typically gold or silver with the size 
of a few tens of nanometres.

Several approaches can be considered when apply
ing SERS to the investigation of microorganisms. First, a  
plasmonic nanostructure can be designed and used as 
a SERS substrate. Physical contact or close proximity  
of the SERS substrate with a cell enables measurement of  
the molecular composition of the cell itself or of com
pounds that are secreted from the cell, respectively31,32 
(Box 1). In the past two decades, several types of such 
SERS substrates have become commercially availa
ble, for example, from Horiba Scientific, SERSitive 
and many others. Second, metallic nanoparticles can 
be applied to directly coat the cell surface or infiltrate 
across the bacterial cell envelope33–38. Finally, a SERS tag 
can be employed when aiming to identify cells with spe
cific phenotypes or genotypes39. In one such approach, 

SERS tags consist of a metallic nanoparticle coated by a 
raman reporter and then a layer of polyethylene glycol 
(PEG) or silica, which protects the Raman reporter layer 
from surrounding stresses39. The PEG or silica layer can 
be functionalized with antibodies or aptamers that bind 
to specific microorganisms of interest. In comparison 
with other SERS approaches, the use of SERS tags is not 
limited by the need to achieve extremely close proxim
ity of the nanoparticle surface to a cell of interest, but 
it benefits from an optimized, efficient SERS enhance
ment: the SERS signals arise from the Raman reporter 
engineered to be close to the nanoparticle, not from the 
cell itself.

Hyper- Raman scattering. HRS relies on a nonlinear 
optical process (fIg. 1c; further details can be found in 
ref.40). A mode- locked laser with a near infrared wave
length generates HRS signals at visible wavelengths as if 
the excitation wavelength was half of the de facto excita
tion wavelength — analogous to other two photon 
processes, such as two photon excited fluorescence41. 
The generation of HRS signals depends on different 
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Fig. 1 | Raman spectroscopy working principles. a | Three types of 
scattering signal that are generated as a result of interactions between light 
and a molecule. Rayleigh scattering does not change the wavelength of  
the scattered light, relative to the incident light. For Raman scattering, the 
wavelength of the scattered light is longer (Stokes) or shorter (anti- Stokes) 
than the incident light. b | A processed Raman spectrum of a single 
bacterium (Vibrio alginolyticus). The molecular composition of the cell can 
be identified from the individual peaks at different wavenumbers (indicated 
as Raman shift) that correspond to different molecular bonds. c | Energy 
level diagrams representing the generation of emission signals. Colours of 

the arrows represent the wavelength. For Rayleigh and Raman (Stokes and 
anti- Stokes) scattering, the molecule is excited to a virtual energy state  
and then returns to a lower energy level, accompanied by light scattering. 
In contrast, for resonance Raman scattering and fluorescence emission, the 
molecule undergoes a transition to a higher electronic state, generating  
a much stronger emission signal. Hyper- Raman scattering relies on a 
nonlinear two- photon process. Coherent Raman scattering (CRS, including 
coherent anti- Stokes scattering (CARS) and stimulated Raman scattering 
(SRS)) is another type of nonlinear optical process based on the interaction 
between pump and Stokes lasers.

Raman reporter
A chemical that generates  
a known surface- enhanced 
raman scattering signal.

Mode- locked laser
A laser that produces 
ultrashort pulses on the 
picosecond or femtosecond 
scale.
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selection rules from other Raman scattering based on 
one photon processes, providing complementary 
molecular information about a sample. For instance, 
HRS signals can reveal vibrations of molecules that are 
invisible to other Raman systems. The signal inten
sity in HRS scattering is not high, and so sensitivity is 
boosted by combining HRS with other techniques such 
as SERS (known as surface enhanced hyper Raman 
scattering; SEHRS42–44) or two photon resonance 
with an electronic transition in a molecule (known as  
resonance HRS40).

Coherent Raman scattering microscopy. CRSM provides 
the capability of rapid molecular imaging (on the order of 
~1 s for 200 × 200 pixels) at a selected wavenumber by vir
tue of 1,000 fold higher sensitivity than normal Raman 
scattering (further details can be found in refs45,46).  
It relies on nonlinear optical processes that arise from the 
interaction between two lasers: pump and Stokes lasers 
with frequency ωp and ωS, respectively45–49. Coherent 
anti Stokes scattering (CARS) and stimulated Raman 
scattering (SRS) result from this interaction. Briefly, 
CARS with a frequency 2ωp − ωS is generated when the 
frequency difference between the pump and Stokes laser 
(ωp − ωS) is resonant with a Raman active molecular 
vibration in the sample (fIg. 1c). SRS is a dissipative pro
cess in which the photon energy at a beating frequency 
(ωp − ωS) is transferred from the pump laser photons to 
the Stokes laser photons and then to a molecule in the 
sample, causing vibrational excitation (fIg. 1c).

Coherent Raman scattering occurs at a specific wave
number (at 2ωp − ωS for CARS and ωp or ωS for SRS) 
that can be adjusted by changing the wavelength of  
the pump laser (using a tuneable laser source), while the  
wavelength of the Stokes laser is fixed (usually in  
the infrared region; around 1,045 nm). It is a powerful 
and sensitive tool enabling selective vibrational imaging  
of microorganisms within a spatial region of interest  
with a resolution of ~350 nm, yet, unlike the other 
Raman systems described above, the conditions gen
erating a signal are specific to a specific wavenumber 
and thus the technique does not lend itself to a compre
hensive investigation of the molecular composition of 
a sample across a broad Raman spectral window. Recent 
innovations in the technology are addressing this issue, 
such as multicolour SRS50–52, which can simultaneously 
image several wavenumber regions, and should lead to 
wider applications in microbiology.

System configuration
Raman systems for measurements of normal Raman 
scattering can be established on the basis of several essen
tial components: components for bright field imaging to 
search for a region of interest within a sample; a laser 
source to excite molecules within the sample to higher 
vibrational states; optical components, including an 
objective, mirrors, beam splitters and a Rayleigh filter, to 
deliver the laser beam onto the sample and the generated 
Raman signals back to the microspectroscope system, 
as well as to separate the polychromatic Raman signal 
by colour (known as diffraction grating); and a detector 
to measure Raman signals (fIg. 2a). Selection guidelines 
for technical components to optimize Raman measure
ments for specific applications are discussed in Box 2. To 
use variant Raman systems, the system design must be 
adjusted accordingly. As an example, for UV or deep UV 
Raman spectroscopy, the optical components must be 
UV compatible, while HRS requires a mode locked laser 
source for the generation of the two photon process, and 
CRSM needs a two colour laser to create the coherence 
effect and a lock in amplifier to detect SRS signals.

To operate a Raman system, an imaging camera 
(camera 1; fIg. 2a), a motorized xyz stage and transmit
ted illumination (for example, bright field microscopy) 

Box 1 | Underlying mechanisms for SERS

Surface- enhanced Raman spectroscopy (SERS) relies on electromagnetic and  
chemical enhancements, increasing Raman signal intensities by up to 108–1014 orders  
of magnitude29. The former arises from localized surface plasmon resonance (LSPR). 
When metallic nanoparticles are excited by a laser used to generate Raman scattering, 
their electrons perform collective oscillations, inducing a dipole in the individual 
nanoparticles. The field of this induced dipole causes strong enhancement of the 
electromagnetic field of the excitation, thereby intensifying Raman signals generated 
from the molecules in this field232,233. This electromagnetic enhancement peaks at  
the nanoparticle surface and exponentially decays with distance r — proportional  
to r−12 (ref.233). Care should be taken when applying SERS for the interrogation of 
microorganisms because the electromagnetic enhancement effect is confined to the 
proximity of the metallic nanoparticles, leading to potential issues, for example, limited 
reproducibility arising from variation dependent upon the orientation of the sampled 
microorganism with respect to the SERS substrate234. Additionally, the SERS signal  
of microorganisms is strongly influenced by the secretion of compounds such as 
nucleotides or degradation products upon starvation and osmotic stress37,38.

Chemical enhancement of the signal arises from physico- chemical interaction 
between molecules and the metallic nanoparticles. The generated Raman signal is 
intensified when the wavelength of the laser illumination is resonant, for example,  
with the charge transfer states between the metal and the molecules. This effect  
occurs only when there is a very short distance between the metal and molecules.

The laser wavelength providing SERS functionality depends on the metallic 
nanoparticles used. Gold and silver nanoparticles generate SERS effects for 
570–1,230 nm and 400–1,000 nm lasers, respectively235. The size of the metallic 
nanoparticles determines the optimal wavelength that generates maximum SERS 
enhancement. The illustration below show that the electric field intensity can be 
enhanced in the presence of gold nanoparticles with a size of 32 nm (|E|2/|E0|

2,  
where E and E0 are the electric fields in the presence and absence of gold nanoparticles, 
respectively) and that the enhancement of the electric field intensity in the vicinity  
of gold nanoparticles is one to two orders of magnitude greater with the excitation of  
a 1,064 nm laser than with a 580 nm laser.

Reprinted with permission from ref.236, American Chemical Society.

Selection rules
Constraints that govern  
the likelihood of whether 
undergoing particular quantum 
transitions from one state to 
another is allowed or 
forbidden.

Beating frequency
frequency difference between 
two electromagnetic waves 
that interfere constructively 
and destructively.
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xyz stage, an objective and camera 1); a Raman laser to generate Raman signals from the sample (a beam expander is 
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the Raman signal. The components marked with an asterisk (*) require optimization in the choice of hardware and 
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are first used to search for a spot of interest within a 
sample and focus an excitation laser onto this spot. The 
camera is then deactivated by removing a beam split
ter during measurement to maximize the collection of 
generated Raman signals. The transmitted illumination 
is also inactive during this step to avoid interference 
with the measurements. In particular, if a light emitting 
diode (LED) is used for illumination, an anodized opti
cal shutter should be installed to prevent the Raman 
laser from travelling through the sample and generat
ing a signal from the LED unit. It is also important to 
note that the focal plane selected on the basis of visual 
inspection using camera 1 is usually not identical to that 
of the Raman laser owing to chromatic aberration. The 
magnitude of this discrepancy depends on the specifi
cations of the objective. Before measurements of many 
samples are acquired, a depth profiling in the z direction 
is performed to determine the magnitude of the offset 
between the two foci for the particular objective used — 
the position that provides maximum Raman intensities 
can be considered as the focus of the Raman laser. When 
performing measurements, the microscope stage should 

be moved in the z direction by the distance of this offset 
after finding a spot of interest for Raman measurement 
using bright field microscopy.

During measurement, the width of the Raman laser 
beam is expanded using a beam expander to completely 
fill the back aperture of the objective. The laser is deliv
ered onto the sample, and all backscattered light is col
lected by the objective and returned to the spectrograph. 
A Rayleigh filter rejects Rayleigh scattered signals, and 
the Raman signals generated from out of focus in the  
z direction are blocked by a confocal set up. Either 
a notch filter or an edge pass filter can be used as the 
Rayleigh filter. We recommend using an edge pass  
filter — specifically, a long pass or short pass filter for the 
measurement of Stokes or anti Stokes Raman scattering, 
respectively — considering its nearly infinite lifespan. 
Although a notch filter removes only the Rayleigh scat
tering and thus both Stokes and anti Stokes signals can be 
measured, it has a finite lifetime. In practice, an edge pass 
filter often produces wavy backgrounds — a non zero 
baseline that is not flat across the spectrum. Measured 
data should be corrected to separate molecular informa
tion about the sample from these backgrounds53. To this 
end, a calibration halogen lamp that generates a known 
Raman spectrum is used (such as ICS correction using 
the halogen lamp for instruments from Horiba Scientific).

Raman signals then pass through a slit and are colli
mated using a collimating mirror. A diffraction grating 
separates the polychromatic scattered signals according 
to wavelength along the major axis of the charge coupled 
device (CCD) module arrays of a detector — module 
arrays arranged as a rectangle are usually used for the 
Raman detector. Each CCD pixel measures the individ
ual signals at a different range of wavelengths. System 
calibration with respect to the strong Raman peak of a 
commercial silicon wafer at 520.5 cm−1 (ref.54) is recom
mended every 24 h or before every experiment, since 
Raman measurements are influenced by environmental 
conditions such as temperature.

For spatiotemporal interrogation of samples, two 
technical options can be considered: point measurement 
or raster mapping of area or volume. In point measure
ment, Raman signals are acquired from a single point at 
the focus of the Raman laser, such as from a single bacte
rium. Typically, a point measurement with a high power 
objective will have a resolution down to 0.3 µm, depend
ing on laser wavelength. The diffraction limited spa
tial resolution is given by 1.22λ/NA, where λ and NA 
denote the laser wavelength and numerical aperture of 
the objective, respectively. Raster mapping is possible 
through movement of the motorized xyz stage, allowing 
interrogation of a discretized array of points within an 
area or volume. This approach would allow, for example, 
the measurement of a region of a biofilm matrix55,56 or a 
large microbial cell57. To improve the flexibility of area 
or volume measurements, a pair of scanning galvomirrors 
(one for the x axis and the other for the y axis) can be 
implemented in the position of the adjustable mirror 
(fIg. 2b). In comparison with point measurement, rapid 
area scanning provides a means to obtain comprehensive 
chemical information from a sample that is larger than 
the spot size of the Raman laser beam.

Box 2 | Optimization of technical components

Optimization of technical parameters is required to obtain a Raman signal of sufficient 
intensity to allow reliable and precise measurement. Here, we outline six important 
aspects to be considered in the set- up of the hardware and the operation of a Raman 
system. For more detailed information on these, see Supplementary Note 1.

Microscope
Upright or inverted microscopes can be considered depending on the application. 
Hardware for additional functionalities, such as phase contrast or differential 
interference contrast microscopy, is compatible with Raman measurement, yet specific 
optical components for those systems, such as a phase ring at the rear focal plane of an 
objective, could reduce Raman signals.

Confocality
Specifications of the objective and its combination with a confocal set- up within the 
Raman system must be chosen so that the interrogation volume is appropriate for  
the size of the microorganisms of interest. General recommendations are difficult to 
provide; instead, the confocality should be assessed experimentally.

Detector
An appropriate detector must be chosen on the basis of its quantum efficiency. In 
general, front- illuminated charge- coupled device (CCD) detectors provide a good 
price–performance ratio, whereas back- illuminated CCD detectors can be considered 
for measurements requiring higher sensitivity.

Laser
The wavelength of the laser has a considerable impact on the generated Raman signals. 
The shorter the wavelength used, the stronger the generated Raman, but also the 
higher the likelihood of generating fluorescence signals that interfere with 
measurement of the Raman signals. Given this trade- off, 532 nm is recommended  
as a starting point.

Substrate
Raman signals from the substrate holding the sample are usually of comparable or 
higher intensity than those from the sample. Glass slides or coverslips can be used as  
a starting point for measurements of novel samples. If a substrate with less background 
in the spectral region of interest is required, another material such as aluminium, 
calcium fluoride or quartz can be used.

Diffraction grating
A key component in the determination of the spectral resolution of the measured 
Raman spectra. A grating that can measure a phenylalanine peak at 1,007 cm−1,  
the sharpest of the peaks among biologically important compounds, can be considered 
as a default set- up. The higher the grating number, the greater the spectral resolution 
but the lower the diffraction efficiency.

Spectral window
A spectral region of interest.

Diffraction grating
A glass plate etched with  
very close parallel lines that 
produces a spectrum from  
a coherent light beam by 
diffraction and interference  
of light and thus functions  
as a planar prism.

Chromatic aberration
Discrepancy of focus in axial 
and transverse directions 
between rays with different 
wavelengths after a focusing 
lens owing to the discordance 
of their refraction angles.

Galvomirrors
A pair of mirrors, each of which 
is integrated with a rapidly 
moving scanning motor,  
which enables enlargement  
of a laser beam spot to  
a small scanning area.
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Integration with other optical systems
A Raman system can be easily integrated with other opti
cal components, thereby providing a means to enhance 
the reliability and flexibility of Raman measurements 
and to obtain complementary information (fIg. 2b). 
For example, optical tweezers58–60 can be implemented 
to allow precise and reliable Raman measurement of 
small microbial cells by immobilizing a cell within the 
interrogation volume during measurement61. Raman 
microspectroscopy is increasingly being used in com
bination with epifluorescence microscopy. For example, 
fluorescence signals are recorded to identify microor
ganisms of interest within a complex community using 
fluorescence in situ hybridization (FISH) (Box 3) and 
Raman measurements are used to analyse their molec
ular composition62. For measurement of fluorescence 
signals, light of a specific wavelength is directed onto 
the sample through a dichroic mirror, and upon interac
tion with fluorophores within the sample, the generated 
fluorescence signals travel back through an edge pass 
filter to a detector (camera 2). In general, Raman and flu
orescence signals can be measured from the same sample 
using fluorophores that are not excited by the Raman 
laser63 or via photobleaching techniques for fluoro
phores in which the excitation wavelength overlaps 
with that of the Raman laser62. Raman and fluorescence 
measurements must be taken one after another because 
the adjustable mirror needs to be withdrawn from the  
optical path to measure fluorescence signals.

Sample preparation
Samples can be measured in either dry or liquid form. To 
investigate time dependent changes in the ecophysiol
ogy of microorganisms, one can measure samples of dry 
cells taken from the population at different time points, 
but the measurement of dry cells is destructive. To miti
gate the risks of physiological changes of the cells before 
measurement, implementation of chemical fixation and 
inactivation can be considered. Sodium azide or formal
dehyde is recommended over other common fixatives, 

such as glutaraldehyde or ethanol, which could induce 
changes in the overall spectral shape64,65. Storage of sam
ples below –80°C before measurement can be considered 
as another option, but its efficacy has not yet been quan
titatively analysed. Alternatively, the ecophysiology of 
individual cells can be tracked through time by measur
ing the same cells multiple times within a fluidic system 
engineered to enable patterning of individual cells within 
an interrogation chamber based on physical stamping of 
the cells on substrates or external force fields66,67. We rec
ommend the use of dry cells for rapid measurements of 
cells with high sensitivity and cells in liquid for measure
ments of ‘live’ cells with high reproducibility. In general, 
the sensitivity is higher with measurements of dry cells 
owing to the absence of interference by Raman signals 
generated from a liquid medium. Additionally, proce
dures for the preparation and measurement of dry cells 
are straightforward; an example of these procedures can 
be found in ref.68. However, there is cell to cell variation 
in background noise in measurements of dry cells — 
even within the same strain. Thus, to allow quantitative 
comparison, data processing to remove this background 
is required (fIg. 3a).

Cells in liquid phase generate reproducible Raman 
signals by virtue of a consistent level of signals from 
the medium, although sensitivity can wane. Compared 
with measurements of dry cells, those in liquid phase 
combined with a cell sorting platform61,63,69–72 provide 
an easier means to conduct downstream analyses such 
as sequencing or cultivation of taxa of interest. Use of 
a liquid medium provides a cooling effect, which mit
igates the heating effect of the laser, and this cooling 
effect is more pronounced with fluid flow. Dry samples 
will be more susceptible to laser induced photo damage 
and thus require the use of lower laser power. Signs 
of damage include a change in colour to black due to 
combustion, physical disappearance of cells during 
measurement possibly owing to evaporation or cell lysis 
and abnormally high or saturated intensities in cer
tain spectral regions, depending on the wavelength of  
the laser.

When using liquid phase measurements, the choice 
of a non photoluminescent medium is important, as 
signals from the medium could mask cellular signals. 
Samples incubated in photoluminescent media such as 
Luria–Bertani medium should be resuspended in an 
isotonic medium that does not induce osmotic stress 
(for example, 0.2 M glycerol balanced by Milli Q), as 
osmotic stress increases the risk of photo damage61,63 
(fIg. 3b). Additionally, Raman signals from water should 
be considered during analysis61,63. Specifically, an H2O 
symmetrical stretching peak at 1,665 cm−1 interferes with 
measurements of carbohydrate (C=C, C=O) and protein 
(amide I) signals (Supplementary Table 1) and an OH 
peak at 3,400 cm−1 coincides with strong lipid signals at 
2,800–3,300 cm−1 (ref.73).

Stable isotope probing. In microbiology one often seeks 
to quantify metabolic activity, growth and chemical 
transfers from the environment to microbiota or between 
microorganisms. Incubation of a microbiota sample with 
isotopically labelled compounds — known as stable 

Dichroic mirror
An optical component for 
fluorescence microscopy by 
which monochromatic light for 
the excitation of fluorophores 
in a sample is separated from 
generated fluorescence signals.

Box 3 | Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) with 16S or 23S ribosomal RNA- targeted 
oligonucleotide probes enables microbiologists to specifically stain microorganisms of 
interest in complex samples237 and to quantify their abundance and ribosome content 
in environmental and medical samples238. The signal intensity of FISH reflects the 
ribosome content of the cells and is thus dependent on their activity. The detection of 
cells with low ribosome content can be achieved using catalysed reporter deposition 
(CARD)–FISH, which strongly enhances the FISH signal239 but requires the application  
of a more time- consuming protocol.

Several different fluorophores have been used for FISH in microbial communities, 
allowing for the simultaneous detection of multiple taxa with different probes240–242.  
The combination of FISH and Raman microspectroscopy enables researchers to record 
Raman spectra of selected microorganisms of interest in a complex community in  
a targeted manner and has successfully been applied for stable isotope labelling 
experiments70 or for the detection of storage compounds129 in selected taxa. Ideally,  
for FISH–Raman, fluorophores should be selected that are not excited by the applied 
Raman laser, yet bleaching the dyes after their measurement provides an alternative62,81.

It should be kept in mind that the fixation and permeabilization steps as well as the 
hybridization and wash steps of the FISH protocol can cause loss of biomolecules from the  
stained cells and thus decrease the Raman signal of storage compounds or lipids.  
The latter has been shown to slightly reduce the deuterium signal in FISH–Raman 
experiments after stable isotope probing with heavy water71.
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isotope probing (SIP) — coupled to Raman microspec
troscopy can address a broad range of dynamical  
processes on a single cell basis (reviewed in ref.74).

The energy of Raman scattered photons is largely 
controlled by the mass of the atoms involved in the 
molecular vibration. A single additional neutron in an 
isotopically heavy tracer is sufficient to slow a molecular 
vibration and lower the frequency of Raman scattered 
photons from that of a lighter isotopologue. This phe
nomenon is observed as a red shift in the position of 
the peak corresponding to the affected molecular bond. 
Principles behind spectral red shifts and factors affect
ing their magnitude are explored in Supplementary  
Note 2.

Selection of an optimal isotope tracer for an exper
iment is driven primarily by the biological question 
(Box 4). Given that not all atoms in a substrate are neces
sarily assimilated into biomass, chances of reliable detec
tion and quantification are enhanced with substrates that 
have a uniformly labelled tracer. In laboratory SIP exper
iments, media can be engineered such that the tracer is 
a single carbon source (such as [U13C]glucose or [13C]
bicarbonate), a mixture of substrates (such as 13C cel
lular hydrolysates), a limiting nutrient (such as 15NH4

+)  
or a nonspecific tracer of activity (such as D2O, 
H2

18O)62,68,70,75–80. In this case, tracer concentration and 
the fractional isotopic abundance of the medium (fmedium) 
can be controlled. Knowing fmedium and the time resolved 
measurements of fractional isotopic abundance within 
cells (fcell) enables computation of the absolute magnitude 
of the assimilation of the substrate of interest into cell 
biomass, and thereby growth rates of individual cells68. In 
assessing in situ rates in environmental and microbiota 
samples, the tracer ideally would not stimulate growth. 
To be detected by Raman microspectroscopy, however, 
stable isotope substrates usually need to be added at 
non tracer concentrations and as the dominant isotopo
logue of a substrate of interest (for example, 13C tracer 
concentration ≫ in situ 12C analogue concentration). 
Thus, the tracer inflates the native substrate pool size 
and may stimulate activity68. Experimental design and 
interpretation must account for this potential artefact. 
In cases for which fmedium cannot be determined, valu
able information can still be derived on relative activities 

between individual cells from SIP incubations and also 
more generally about the flow of metabolites between 
cells and with the environment.

Results
Raman spectra
A Raman spectrum is a multivariate data set that consists 
of discretized wavenumbers (x axis) and corresponding 
signal intensities (y axis). Wavenumber (cm−1) is the 
commonly used unit to represent the Raman spectral 
shift from the laser excitation energy. The Raman shift 
(in cm−1) is calculated as νΔ λ λ= (1 / − 1 / ) × 10Inc Scat

7, 
where λInc and λScat denote the wavelengths (in nm) of the 
incident and scattered light, respectively, and the value 
107 provides the conversion of the units from nm−1 into 
cm−1. The locations of peaks of interest within a Raman 
spectrum are independent of the wavelength of the 
laser employed. For instance, the peak resulting from 
aromatic ring breathing for the amino acid phenylala
nine is located at 1,002–1,008 cm−1 when a microorgan
ism is measured using either a 488 or 532 nm laser. To 
interrogate the molecular composition of microorgan
isms, a spectral window of 700–3,400 cm−1 is typically 
employed. This covers the biomolecular fingerprints of 
microorganisms (<1,800 cm−1; for example, carbohy
drates, proteins, lipids, nucleic acids and carotenoids)22, 
a raman- silent region (1,800–2,700 cm−1) in most (but 
not all) microorganisms and a carbon–deuterium peak 
(2,040–2,300 cm−1) for SIP as well as CH stretching and 
water peaks (>2,700 cm−1).

Raman data are quasi quantitative. Signal intensity 
at a given wavenumber is linearly proportional to the 
concentration of the compound corresponding to that 
wavenumber; however, signal intensity does not provide 
an absolute value of the concentration of the compound. 
Thus, changes in molecular composition in different 
physiological, metabolic or ecological states can in many 
cases be directly evaluated by comparing intensities of 
the peaks81. To facilitate such comparisons between sam
ples, relative intensities should be used, taking the inten
sity of the signal of interest with respect to a reference 
signal that is invariant with conditions and cell state, as 
absolute intensity values can vary with variation in cell 
size and morphology70, as well as sampled volume, which 
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Fig. 3 | Sample preparation. a | Measurements of dry cells (Vibrio alginolyticus) on an aluminium- coated slide provide 
greater sensitivity over those in liquid owing to the absence of signals by the liquid medium, yet they usually require data 
processing to remove intrinsic backgrounds. b | For measurements of cells in liquid, use of a non- photoluminescent 
medium is important, as shown in the difference in intensity between Luria–Bertani (LB) medium and 0.2 M glycerol.

Isotopologue
A molecule that is structurally 
identical yet differs from 
another by the presence of at 
least one atom that possesses 
a different number of neutrons.

Uniformly labelled tracer
A molecule in which all 
available positions for a given 
element are occupied by an 
isotopically heavy or 
radioactive nuclide, typically 
noted as [U- ne]compound, 
where n = atomic mass, 
e = elemental symbol, 
U = uniformly, followed by 
chemical form.

Fractional isotopic 
abundance
The proportion of atoms in a 
molecular pool populated by 
the heavy isotope — also 
referred to as atom% 
(multiplied by 100).

Biomolecular fingerprint
An indicator in which chemical 
properties of a biomolecule are 
encoded; in vibrational 
spectroscopy, collective 
vibrational frequencies in 
wavenumber of chemical 
bonds within a biomolecule.

Raman- silent
The absence of raman- active 
vibrational modes.
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is sensitive to sample opacity, thickness and focal plane. 
To relate signal intensities to absolute concentrations, 
independent measurements should be used to generate 
a calibration curve68,81,82. Within a spectrum, a molecule 
that corresponds to a strong peak cannot be consid
ered to be more abundant than a molecule that corre
sponds to a weaker peak — a calibration curve must be  
generated for each peak.

To determine the identity of peaks within Raman 
spectra, there are currently two approaches. In one 
approach, published spectra or tables (or a commer
cial data library such as KnowItAll) listing correspond
ences of biomolecules with spectral peaks can be used 
(Supplementary Table 1) — many applications can be 
covered using this approach. Alternatively, molecular 
identity can be established using theoretical calcula
tions. There are a number of commercial (OptiFDTD) 
and open source (GAMESS, ORCA) tools that can esti
mate Raman emission values on the basis of quantum 
mechanics. Although feasible, this has not been widely 
adopted for analyses of biological samples, as many of 
these tools were optimized for pure solids. As Raman 
interrogations of biological samples attract further 

interest, we expect that this approach will become more 
widely adopted. Spectral peaks may not exactly match 
reported or calculated values as the wavelength shift 
can vary somewhat depending on the precise configu
ration of the Raman microspectroscope and the pres
ence of side chains on molecules and intermolecular 
interactions; thus, care should be taken in interpreting 
measured spectra. It is not straightforward to suggest 
acceptable margins; instead a comparison with meas
urement of control samples (lacking in or abundant 
with chemical of interest) or pure chemical of interest 
(commercially available or isolated from the sample) 
could confirm the identity of the peaks of interest.

Data processing
Many Raman peaks are specific for a particular chemical 
moiety; thus, data analysis can often be a simple matter 
of tracking the magnitude of a peak of interest and can 
be carried out on the raw spectra (fIg. 4a) or after a mild 
degree of pre processing (such as de noising only or 
baseline subtraction). Raman spectra are also amenable 
to multivariate statistical analyses and machine learning 
approaches (also reviewed in refs83,84). In the latter, 
accounting for dimensionality and various sources 
of noise requires careful pre processing to ensure 
high quality data for repeatable downstream analyses. 
In particular, for analyses of dry cells, measurements are 
often accompanied by considerable background; thus, 
pre processing is needed to allow quantitative compar
isons. It is essential that algorithms and parameters for 
the pre processing are identical for all data, otherwise 
quantitative comparisons are invalidated. Libraries for 
Raman data processing (particularly pre processing) can 
be found in TABle 1.

De- noising. De noising includes spectral smoothing 
and spike removal to prevent electronic noise or arte
facts (mainly arising from cosmic rays) from dominating 
measured Raman signals (fIg. 4b,c). The most established 
approach to reduce spurious background noise is with 
application of the savitzky–golay filter85,86. A related class 
of noise reduction techniques relies on the fitting of 
wavelet functions at each point in the spectrum, fol
lowed by subsequent soft thresholding87. In contrast to 
Savitzky–Golay, which uses a single polynomial, wave
let de noising potentially provides the ability to conduct 
spectral smoothing and spike removal simultaneously, 
and to reduce noise at multiple levels of magnitude88–90. 
Dependence of its success on the specific choice of 
wavelet and threshold parameters represents a potential 
downside87.

Baseline subtraction. Although not strictly necessary 
for many biological applications, baseline subtraction 
is useful to eliminate large contaminating signals that 
originate from several sources, including the instru
ment, the mounting substrate and the sample itself in the 
form of photoluminescence. The most commonly used 
approaches involve iteratively shrinking the intensities 
of the individual columns of the spectrum via compar
isons with an approximated curve (fIg. 4d,e). A popular 
group of algorithms91,92 rely on the repeated fitting of a 

Box 4 | Tracer selection

In designing a stable isotope probing (SIP) experiment, it is ideal to use tracer substrates 
that are uniformly labelled with one or more of the four small stable isotopes (2H, 13C, 
15N, 18O).

Carbon
Carbon is the most commonly chosen isotope because it comprises about 47–50%  
of cellular mass243. Several vibrational modes produce distinctive Raman peaks for 
different isotopologues that can be used to calculate fractional isotopic abundance 
(fcell = 13C/(13C + 12C)) in a particular moiety or an entire cell. For example, the ring 
breathing modes of purines, pyrimidines and the essential amino acid phenylalanine, 
and vibrational modes emanating from carotenoids of photoautotrophs, are all useful 
reporters of 13C assimilation62,68,75.

Deuterium
Deuterium is a versatile tracer for SIP–Raman experiments. Deuterated tracers (such as 
deuterium- labelled dimethylsulfoniopropionate, DMSP) can be used to track substrate 
assimilation and to unravel biosynthetic pathways62,125,244–246. Alternatively, amending 
the medium with 10–50% (vol/vol) D2O enables identification of all metabolically active 
cells after brief incubation. The clear advantage of the D2O approach is that the 
investigator need not make any supposition about which substrates support microbial 
growth. Furthermore, unlabelled substrates or antagonists of interest can be added 
together with D2O to screen for substrate- induced stimulation or inhibition of growth 
of microbial taxa69. Addition of D2O with concentrations up to 50% (vol/vol) reportedly 
do not strongly inhibit growth of tested bacterial strains70. D2O can have subtle effects 
on microbial growth even at much lower concentrations247–249.

Nitrogen
Use of SIP–Raman to track the movement of nitrogen (15NH4

+, 15NO3
−, 15N2) from 

dissolved pools through individual cellular pools is challenging because N comprises 
only about 14–16% of cellular mass243. Raman shifts caused by 15N replacement can 
overlap with neighbouring Raman bands, and maximal spectral shifts between the 
100% 14N and 100% 15N isotopologues are only 13–17 cm−1 (refs78,80). Surface- enhanced 
Raman spectroscopy (SERS) has been employed to measure 15N2 fixation by cultured 
diazotrophs with improved sensitivity78, yet care should be taken considering the 
potential limitations of SERS for adoption in microbiology.

Oxygen
Similar to using D2O, H2

18O can be used as a general tracer of anabolic activity.  
SIP–Raman experiments with a H2

18O tracer combined with 2D correlation analysis 
have been used to track protein synthesis and DNA replication in single cells through  
all bacterial growth phases250.

Savitzky–Golay filter
A filter algorithm that fits a 
polynomial of a known order  
to each point in the spectrum, 
using a sliding window  
of a user- defined width, 
subsequently replacing each 
point with the fitted value at 
the centre of the window.

  9NATURE REVIEWS | METhODS PRiMERS | Article citation ID:            (2021) 1:80 

P r i m e r

0123456789();: 

https://sciencesolutions.wiley.com/knowitall-spectroscopy-software/
https://optiwave.com/optifdtd-overview/
https://www.msg.chem.iastate.edu/gamess/capabilities.html
https://www.orcasoftware.de/tutorials_orca/spec/IR.html#predicting-raman-spectra


polynomial curve to the spectrum, followed by subse
quent clipping of larger peaks until the spectrum falls 
below a threshold value, then subtracting the fitted  
polynomial from the original spectrum.

A related class of iterative fitting approaches is that 
of asymmetrical least squares. This method iteratively 
compares a spectrum with a version of itself that has 

been blurred via a sliding window average, using a least 
squares fit. Each wavenumber is then progressively 
down weighted using separate weights for intensities 
above and below the fitted curve, with a bias against 
peaks remaining above the blurred baseline93. This 
approach is typically computationally faster and sim
pler than polynomial fitting, while producing similar 
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results, and thus may be better suited to studies with a 
large number of spectra93.

Normalization and outlier removal. Normalization 
of individual spectra is of value for any application 
where the intent is to compare samples across different 
experiments, as small differences in instrument set 
up, substrate and sample preparation can greatly affect 
the intensity of the signal. Additionally, normalization 
is useful when the relative intensity of the peaks is of 
interest for comparison between data sets, as opposed 
to the absolute intensity. Although there are many meth
ods for normalizing multivariate data94, a straightfor
ward approach that preserves the characteristic Raman  
spectral shape is vector normalization95.

For analyses of large data sets, algorithms for outlier 
removal provide an efficient means to avoid skewing 
of statistical results. In many cases, such as data influ
enced by fluorescence, outliers may be obvious owing 
to an extremely strong signal and may be discarded on 
the basis of predetermined thresholds. In other cases, 
particularly where a large number of measurements 
are involved, it may be beneficial to implement some 
form of automated outlier removal. Automated meth
ods based on Mahalanobis distance have been used to 
successfully eliminate such outliers from large Raman  
data sets96.

Classification of multivariate data. Raman spectra are 
amenable to a variety of exploratory (unsupervised) 
or directed (supervised) multivariate data analyses. 
The most familiar example of exploratory data analy
sis is principal component analysis (PCA; fIg. 4f). PCA 

can be useful as an exploratory approach in itself or 
for cursory inspection of major differences between 
samples. Similarly, the use of hierarchical cluster
ing or other simple clustering methods can also pro
vide a good initial approximation of divisions within 
the data. Slightly more advanced tools are related 
linear decomposition/blind source separation tech
niques such as non- negative matrix factorization97 and 
independent component analysis98–100 or unsupervised 
learning approaches such as self organizing maps101–103 
(fIg. 4g), each of which has been used in applications of 
Raman microspectroscopy to microbiology.

Supervised approaches can make use of simple classi
fiers104,105 or more advanced techniques, such as artificial 
neural networks or random forest classifiers106,107. These 
approaches are useful when attempting to identify a par
ticular known class of cells, material (such as biofilm) or 
cellular metabolic state. Simple classifiers such as sup
port vector machines (SVMs) and linear discriminant 
analysis (LDA) are very effective at separating Raman 
data. These classifiers represent a good entry point for 
ones seeking to distinguish between one or more types 
of cell or biological material. In its simplest incarnation, 
using a linear kernel, a SVM (fIg. 4h) uses boundary 
points that are selected from known groups of data to 
fit a separating hyperplane between classes of interest. 
In LDA (fIg. 4i), (n − 1) new axes are fitted to maximize 
the difference between (n) known (presumed Gaussian) 
groups of data, while minimizing the variance between 
data within each group. To classify new data points, typi
cally a Bayesian approach108 is used, assigning an identity 
to each point according to the prior probabilities of each 
group along each linear discriminant.

A caveat to all classifier based approaches is that 
they are entirely limited by the training data used. As an 
example, classifiers have proved very successful at differ
entiating between single cells and colonies for a number 
of strains of Staphylococcus106,109 based on Raman spec
tra, but are incapable of making the same distinction for 
samples that contain new strains — those not reflected 
within the training data — and would be prone to false 
positives as prior screening does not ensure that samples 
fall within the currently defined outputs. Thus, training 
data need to be carefully chosen beforehand, with regard 
to the downstream application.

Data interpretation
In this section, we discuss best practice for analys
ing Raman data. In comparison with the previously 
described techniques, where the wide spectral region 
is used as a whole to classify microorganisms or mol
ecules, we focus here on approaches to interpret the 
measured data on the basis of individual peaks. We out
line six methods: identification of biomolecules based 
on normal Raman microspectroscopy; measurement 
of resonance inducing substances; SIP–Raman and 
FISH–Raman for measurement of phenotypes (such 
as metabolic activities and functional roles within the 
community) or identities (using 16S rRNAs) of cells of 
interest, respectively, from within a complex microbial 
community; measurements of biomolecules using SERS 
and SEHRS with increased sensitivity and selectivity; 

Fig. 4 | Raman data processing. a | Raw spectra can be directly used in a number of 
analyses, such as direct measurement of peaks of interest with stable isotope probing 
(SIP). Raman spectra following SIP, where the carbon–deuterium peak, indicated as the 
C–D peak (2,040–2,300 cm−1) and the location shift of the C=C peak (from 1,660 cm−1  
to 1,618 cm−1) indicate metabolic activity and carbon metabolism of microorganisms, 
respectively, during the incubation period. b | Raw data obtained from real Raman 
spectra from high- density cultures of three different bacterial strains (Pseudoalteromonas 
sp. 3D05, Vibrio splendidus 1A01 and Psychromonas sp. 6C06). c,d | High- frequency noise 
is removed from the raw spectra using wavelet de- noising (part c), followed by fitting of 
the baseline (part d; shown here using asymmetrical least squares; dashed lines). e | The 
calculated baseline, arising from the surrounding medium or substrate is subtracted to 
provide an approximation of the pure spectra (representing the cells). f | The simplest 
example of an unsupervised multivariate analysis is principal component analysis (PCA), 
which emphasizes differences between samples by fitting a new set of orthogonal axes 
along the directions of maximum variance in the data set (n = 32 for each species, 
substrate is a glass/PDMS microfluidic device for panels f–i). Dashed lines represent  
95% confidence intervals for each group. g | Self- organizing maps are a slightly more 
advanced unsupervised technique in which a 2D grid of nodes, each representing an 
archetypal data point occupying some volume of the underlying multivariate space,  
is stochastically trained to fit the data set such that closely related nodes group  
together. Here, the circles indicate nodes (n = 16). The colour indicates that the node  
is substantially occupied by one of the corresponding bacterial species or the substrate. 
White nodes represent null spaces and bold lines represent borders separating the  
nodes of each group. h | Support vector machines (SVMs) divide a multivariate space  
into ‘is’ and ‘is not’ volumes for a group of interest. In this example, the hyperplane 
represents the decision boundary of a SVM trained to identify Psychromonas sp. 6C06.  
i | Linear discriminant analysis is a straightforward classification technique. Tight clustering 
of points in the trained space show that the new axes are fitted to simultaneously 
maximize between- group variance while minimizing within- group variance.  
PDMS, polydimethylsiloxane.

Vector normalization
A normalization approach in 
which the intensity at each 
wavenumber is divided by  
the square root of the sum  
of squares of intensities for  
all wavenumbers within a 
spectral window, such that the 
euclidean distance from the 
origin in the multidimensional 
space is equal to 1.

Mahalanobis distance
A measure of the distance 
between a point and the 
centroid of a multivariate 
normal distribution, in units  
of standard deviation.

Non- negative matrix 
factorization
A technique that represents 
each point in a set of mixed 
spectra as a weighted mixture 
of a finite number of conserved 
sub- spectra, with the axes 
being directly interpretable  
as raman sub- spectra.

Independent component 
analysis
A technique that optimizes  
a new set of axes to naively 
capture covariance between 
variables separately for  
each of a finite number of 
independently varying subsets 
of data.
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and chemical imaging in terms of a specific wavenumber  
using CRSM.

Identification of biomolecules. A Raman spectrum of a 
single microbial cell provides a comprehensive biomo
lecular fingerprint (representing, for example, nucleic 
acids, protein, lipids, carbohydrates; Supplementary 
Table 1), reflecting the identity and metabolic physiol
ogy of the cell. Overall spectral shape within a broad 
spectral region (700–3,400 cm−1) can be used to differen
tiate between strains using supervised machine learning 
classifiers106,110,111.

Alternatively, specific peaks can be used to investigate 
cells and their phenotypes of interest within a complex 
microbial community. Here, we illustrate this approach 
using Raman spectra of Bacillus cereus, a member of the 
phylum Firmicutes. When vegetative cells encounter 
harsh environmental conditions such as desiccation or 
lack of nutrients, they create a dormant endospore that 
germinates when favourable conditions return112. The 
formation of the endospore is accompanied by produc
tion of calcium dipicolinic acid (CaDPA) and this can be 
detected in Raman spectra on the basis of corresponding 
peaks at 824, 1,017, 1,395, 1,446 and 1,572 cm−1 (ref.113). 
Endospores can be distinguished from vegetative cells 
on the basis of greater overall intensity in the spectrum 
(fIg. 5a), possibly owing to a denser biomass within the 
endospore. Alternatively, specific Raman peaks can be 
used. For example, the height of the peak at 1,572 cm−1 
becomes greater than the peak at 1,650 cm−1 (correspond
ing to C=C and C=O bonds in diverse biochemicals) for 
the endospore. Additionally, quantifying the height dif
ference between these two peaks enables the process of 
entry to or exit from dormancy of the cell to be marked.

Resonance- inducing substances. When microorgan
isms of interest contain molecules that can generate 
resonance Raman scattering (such as carotenoids, 
cytochrome c, rhodopsins, haem proteins, flavin 

nucleotides and vitamin B12)76,114–119, they can be meas
ured with 1,000 fold higher sensitivity than normal 
Raman microspectroscopy. Here, we use the analysis of 
carotenoid containing microorganisms as an example. 
The carotenoids, common pigments present in photo
autotrophic microorganisms (and some heterotrophs120), 
act as a light harvesting antenna at blue–green wave
lengths and protect light harvesting complexes121. Thus, 
the ability to measure carotenoids provides a means 
to identify the microorganisms that participate in the 
global carbon cycle. Carotenoids become resonant with a 
wide range of excitation wavelengths (from UV to near 
infrared) and three Raman peaks can be used to measure  
them (fIg. 5b): 1,001–1,007, 1,154–1,156 and 1,511–
1,517 cm−1, corresponding to C–CH3 deformation, C–C 
stretching and C=C stretching, respectively. The peak at 
1,511–1,517 cm−1 is the strongest, whereas the peak at 
1,001–1,007 cm−1 is often relatively weak compared with 
the other two (fIg. 5c). Measuring the intensity at 1,511–
1,517 cm−1 enables the identification of carotenoid 
containing cells from heterotrophs, potentially followed 
by sorting of the cells for downstream analysis. The 
position of the peaks varies depending on the type of 
carotenoid (such as fucoxanthin, β carotene or astax
anthin); thus, in conjunction with measurements of  
commercially available pure carotenoids, the identity  
of carotenoids in the cell can be determined. This 
approach is useful for many other Raman experiments. 
Raman measurements of the pure chemicals of inter
est are necessary to confirm identification and calibrate 
quantification. A trade off is that a resonance Raman 
spectrum is dominated by the resonance inducing 
substances, thus optical12 or chemical122 techniques 
bleaching those substances must be considered to detect 
non resonant biomolecules.

SIP–Raman. SIP experiments produce easily interpretable  
Raman spectra, providing an efficient means to quan
tify microbial phenotypes of interest at single cell level.  

Table 1 | Software packages for processing Raman microspectroscopy data in three common programming 
languages

Language Useful libraries Description Licence

MATLAB Raman Processor A graphical user interface (GUI) platform that was designed 
in- house (developed by Lee, Landry & Stocker) for de- noising 
(based on the Savitzky–Golay algorithm) and baseline subtraction 
(based on polynomial fitting)

MathWork; 
libraries released 
here are under 
the MIT licence

Python RamPy Package for Raman data analysis, contains multiple options for 
pre- processing routines and some functions for downstream 
analysis

GPL2

Scipy.signal Implementation of Savitzky–Golay filtering and other signal 
processing routines

BSD

peakutils Functions for peak finding MIT

pywt Library for wavelet transformations MIT

chemospec Comprehensive package for chemometric data analysis, 
contains many options for pre- processing (baseline subtraction, 
smoothing) as well as advanced functions for downstream 
analysis

GPL3

R hyperspec Family of packages for hyperspectral imaging data with a focus on 
biological applications; also contains several parsers for common 
Raman data formats

GPL3
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For example, growing photoautotrophic microorgan
isms in [13C]bicarbonate for several hours and then 
measuring the red shift of Raman signals from carote
noids allows quantification of cell growth rates and pho
tophysiology (such as photosynthetic efficiency) with 
high sensitivity66,68. The three carotenoid peaks are wid
ened first to lower wavenumbers with an increase in the 
level of 13C labelling and then shifted to lower wavenum
bers (fIg. 5d). For instance, the peak at 1,156 cm−1 (C–C 
stretching) moves to 1,133 cm−1 and then 1,110 cm−1 with 
the change from 12C–12C to 13C–12C and 13C–13C. The 
approach for quantification is described in ref.68. After 
bleaching the dominant carotenoid signals, other non 
resonant biomolecular signals can be revealed. We focus 
on the interpretation of red shifts in phenylalanine peaks 
as a measure of carbon metabolism. Four sets of paired 
isotopomers of 13C labelled phenylalanine77 (0, 2, 4 and  
6 out of 6 12C within the aromatic ring are substituted by 
13C) produce peaks at 1,002–1,006, 988–989, 976–977 
and 962–966 cm−1, respectively (fIg. 5e). For quantitative 
data analysis, a peak fitting approach can be applied 
using a Voigt probability distribution profile. Assuming 
that the 13C fractional abundance in the phenyl ring is 
representative of all cellular pools, then cellular frac
tional abundance (fcell) can be calculated as fcell = (I966 + 0.
67I977 + 0.33I988)/(I966 + I977 + I988 + I1,002), where I represents 
Raman intensity at a wavenumber and weighting factors 
0.67 (2/3) and 0.33 (1/3) correspond to the number of 
13C atoms per isotopologue.

Limits of detection in SIP–Raman experiments 
vary between isotopes, tracer substrates and detection 
mode. For example, an fcell of 0.10 (10 atom%) has been 
suggested as the limit of detection for bacteria labelled 
with either 13C or 15N substrates when analysed using 
normal Raman microspectroscopy74. Detection by res
onance Raman scattering has been shown to lower limits 
of detection to an fcell of 0.03 (3 atom%) for 13C assimi
lated by photoautotrophs68. For comparison, nanoSIMS 
offers a significantly lower limit of detection (fcell = 0.001; 
0.1 atom%) for assimilated 13C (ref.123), but at signifi
cantly higher costs and lengthier analysis times as well 
as sacrificing the ability to perform measurements of  
live cells.

SIP experiments based on deuterium labelling is 
another versatile approach to investigate the general 
metabolic activities of microorganisms of interest from 
within a complex microbial community. Measurement 
of fcell in this case is even simpler, involving calculat
ing the ratio of integrated intensities under the C–Dx 
(2,040–2,300 cm−1) and C–Hx (2,800–3,100 cm−1) peak 
regions69,70,78,124–126 (fIg. 4a).

FISH–Raman. FISH with rRNA targeted oligonucleo
tide probes (Box 3) can be used to identify cells of interest 
within a complex microbial community, and subsequent 
Raman measurements can quantify functional proper
ties of those cells62. Here, we use the example of naph
thalene degraders (Acidovorax spp. and Pseudomonas 
spp.) in groundwater biofilms127. For FISH, probes for 
Acidovorax spp., Pseudomonas spp. and all bacterial cells 
can be labelled using cyanine 3 (Cy3; excitation/emission 
at 550/570 nm; red emission), fluorescein isothiocyanate 

(FITC; 495/518 nm; green emission) and cyanine 5 (Cy5; 
650/670 nm; purple emission), respectively, to allow them 
to be differentiated in imaging using fluorescence micros
copy (fIg. 5f). Following bleaching of fluorescence to avoid 
interference with Raman measurement using a 532 nm 
laser, the level of naphthalene degradation by each group 
of cells can be quantified using SIP–Raman (after sup
plementing the medium with [13C]naphthalene), by  
calculating the intensity ratio fcell = I967/I1,003 (fIg. 5g,h).

This FISH–Raman technique has been applied in 
many other systems, for example, in investigations of 
polyphosphate accumulating organisms (PAOs) in 
wastewater treatment plants81,128 and of the composition 
of storage compounds in marine microbial consortia 
that mediate anaerobic oxidation of methane129.

SERS and SEHRS. Interpretation of SERS spectra 
requires one to take into account the fact that metallic 
nanoparticles used for SERS interact with molecules in 
a sample, which may create discrepancies in the number, 
location and relative intensities of Raman peaks between 
normal Raman and SERS signals130. For example, ade
nine has a strong Raman peak at 734 cm−1 in SERS meas
urement131, whereas this peak can be found at 721 cm−1 
in normal Raman spectra132,133. Unlike in normal Raman 
spectra, when charge, pH or concentration of an analyte 
molecule changes, variation in the relative intensities of 
spectral bands or the absence of vibrations of specific 
functional groups occurs owing to the strong depend
ence of the SERS enhancement on these parameters. 
Thus, care should be taken when generating a calibration 
curve that is used to relate signal intensities to absolute 
concentrations of the chemical134.

SEHRS can complement SERS data. The generation 
of SEHRS signals is governed by different selection rules; 
thus, SEHRS can reveal peaks that are relatively weak 
or not visible in SERS spectra. For example, adenine 
peaks at 564, 920, 1,141, 1,372 and 1,464 cm−1 become 
intensified and peaks at 1,600 and 1,653 cm−1, which are 
infrared active, become visible in SEHRS (fIg. 5i).

CRSM. CRSM imaging provides selective molecular 
information using an imaging modality that is sim
ilar to optical microscopy imaging. To illustrate the 
approach, we use two SRS images of deuterium labelled 
Pseudomonas aeruginosa cells in blood (fIg. 5j), visualized 
using protein (C–H; 2,915 cm−1) and carbon–deuterium 
(C–D; 2,168 cm−1) peaks. A 1,045 nm Stokes laser is used, 
and the pump laser is set at 801 and 852 nm, generating 
SRS signals at (1/801–1/1,045) × 107 = 2,915 cm−1 and 
(1/852–1/1,045) × 107 = 2,168 cm−1, respectively. The SRS 
image based on the C–D peak identifies the deuterium 
labelled P. aeruginosa cells, whereas the blood cells are 
also visualized in the image for the protein.

Applications
Cellular metabolism and interactions
Cellular metabolism. Measurement of storage com
pounds (such as lipids, polyhydroxyalkanoates, poly
phosphate and glycogen) within microorganisms is a 
very common application of Raman microspectroscopy 
in microbiology81,129,135–144. For example, this approach 

Isotopomers
Isotopomers of a compound 
have the same number of each 
isotope, but their positions 
differ.

Voigt probability 
distribution profile
A convolution of gaussian  
and lorentzian probability 
distributions that is widely 
used in peak- fitting routines  
to describe the symmetry of 
peaks in raman spectroscopy.
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has been used to better understand mechanisms of 
enhanced biological phosphorus removal in waste
water treatment plants81,137,138 and the ecophysiology 
of uncultivated, subsurface living ammonia oxidizing 
archaea139,140 as well as consortia that mediate the 
anaerobic oxidation of methane129.

Measurement of a wide variety of functional bio
molecules (such as carotenoids and cytochromes that 
participate in photosynthesis, photoprotection and 
electron transfer within microorganisms; reviewed in 
ref.145) and their states is another common use of Raman 
microspectroscopy. For instance, cytochrome c and its 
oxidation state can be measured with high sensitivity by 
leveraging resonance Raman scattering. This has been 
used to understand the metabolism of cable bacteria,  
a unique group of multicellular, filamentous bacteria that 
inhabit sediments at the anoxic–oxic boundary146. Raman 
measurements have revealed that they have evolved a 
unique lifestyle by which they perform sulfide oxidation 
and oxygen reduction at each end of their centimetre long 
filaments in the anoxic and oxic zones, respectively, based 
on the transport of electrons over this long distance147.

The Raman spectrum of a cell reflects its physiolog
ical state. For example, measurement of [13C]phenyla
lanine uptake by extracellular Chlamydia revealed that 
extracellular elementary bodies are in fact metabolically 
active and synthesize proteins when they are transmitted 
between hosts. This overturned an old dogma by which 
they were believed to be in a spore like dormant state148.

Raman microspectroscopy has also been used 
for measurements of the germination of dormant 
endospores in situ149. Time resolved Raman measure
ments of individual endospore forming Firmicutes (in 
particular, Bacillus thuringiensis) have been achieved by 
trapping cells using optical tweezers. Upon suspending 
the endospore powder in fresh, nutrient rich medium, 
cells germinated after 30 min of lag phase and rapidly 
released CaDPA into the surrounding medium (fIg. 5a). 
Single cell Raman measurements revealed cell to cell 
heterogeneity in time to germination, which may be an 
important strategy at the population level that promotes 
survival when favourable conditions are transient.

Host–microorganism, cell–cell and cell–environment 
interactions. In addition to the investigation of cellu
lar metabolism, Raman measurements allow tracking 
of host–microorganism and intercellular interactions, 
providing insights into the functioning of these systems. 
One example is the symbiosis between the flatworm 
Paracatenula and its alphaproteobacterial endosymbi
ont, ‘Candidatus Riegeria’57,150. It was long unclear how 
Paracatenula, a host that lacks a mouth and a digestive 
system, obtains energy. Raman imaging of ‘Ca. Riegeria’ 
revealed a large quantity of sulfur inclusions within 
the cell biomass, and metagenomics suggested that it 
gains energy via sulfur oxidation, fuelling the bacte
ria and their host57. Subsequent work using Raman 
microspectroscopy showed that ‘Ca. Riegeria’ also har
bours polyhydroxyalkanoates and carbohydrates that are 
transferred to the host via extracellular vesicles, serving 
as a primary energy storage in the host150.

Raman imaging provides a powerful and non  
invasive means to understand spatiotemporal and 
metabolic interactions within complex microbial com
munities that determine community function and mac
roscale processes in nature. For example, degradation of 
hyphae of the fungus Mucor fragilis by the soil bacterium 
Bacillus subtilis has been investigated using SIP–Raman 
(in conjunction with fluorescence imaging) based on 
13C and deuterium labelling, imaged within a microflu
idic device containing a transparent soil microcosm151. 
Both planktonic cells and fungus attached cells were 
metabolically active when the system was hydrated, 
whereas fungus attached cells were more active under 
a dry down–rewetting cycle, underlining the important 
role of fungi for the survival of bacteria under fluctuating  
environmental conditions.

Raman imaging of the structure, chemical compo
sition and development of the biofilm matrix provides 
another good example152. Spectra can also be used to dif
ferentiate between colocalized cells of the same species 
in multi species consortia153–155. For instance, measure
ments of the spatial distribution of carotenoid containing 
bacteria within a pink multi species biofilm (commonly 

Fig. 5 | Raman data interpretation. a | Raman spectra of a Bacillus cereus endospore  
and vegetative cell. The peaks at 824, 1,017 , 1,395, 1,446 and 1,572 cm−1 correspond to 
calcium dipicolinic acid (CaDPA), which accumulates in the endospore. b | Resonance 
Raman spectra of a non- photosynthetic bacterium (red), Synechocystis sp. PCC 6803 
(blue) and pure β- carotene (orange). The three peaks at 1,001–1,007 , 1,154–1,156 and 
1,511–1,517 cm−1 correspond to carotenoids. c | Comparison of Raman spectra from  
a carotenoid- containing Symbiodinium CCMP421 microalga (red) and a carotenoid-  
lacking Vibrio alginolyticus bacterial cell (blue). The high level of background in the 
Symbiodinium spectrum corresponds to fluorescence signals that accompany the resonance 
Raman scattering. d,e | Stable isotope probing (SIP)–Raman spectral analyses of isotopic 
signatures of photoautotrophs grown on [13C]bicarbonate. d | Resonance Raman spectra 
of single Synechococcus sp. cells from cultures grown on natural 13C abundance (1.1% 13C) 
(i) and from a culture in 54% 13C medium after 3 (ii), 6 (iii), 12 (iv) and 24 (v) days of growth. 
Vertical lines indicate major peak positions in the 1.1% 13C culture. e | Curve- fitting 
analysis of isotopic signatures of an Emiliania huxleyi cell (Prymnesiophyceae) with a 
calculated 65 ± 7% 13C content. Raman spectral region around the four isotopologue 
peaks for the phenylalanine ring breathing mode (red trace, measured using a 633 nm 
laser after chemiphotobleaching to suppress autofluorescence). After baseline 
correction and normalization, the contribution of each isotopologue was determined  
by curve deconvolution and peak fitting (blue trace) to yield the lower spectrum122.  
In the molecular structures, the red dots represent 13C substitutions in the phenyl ring77. 
f–h | FISH–Raman for microorganisms in groundwater. f | FISH images of bacterial  
cells hybridized with EUB338 (purple) and specific probes for Acidovorax sp. (cyanine 
3- labelled probe, red) and Pseudomonas sp. (fluorescein isothiocyanate probe, green). 
Scale bar: 10 µm. g | Several bands of Raman spectra of individual bacteria shifted as  
they integrated [13C]naphthalene upon incubation in minimal medium supplemented by 
[13C]naphthalene as the sole carbon source (red), in contrast to medium supplemented 
with [12C]naphthalene (blue). h | Correlation between [13C]naphthalene content and red 
shift of the bacteria (I967/I1,003). i | Surface- enhanced Raman spectroscopy (SERS) and 
surface- enhanced hyper- Raman scattering (SEHRS) spectra of adenine (50 µM) obtained 
using nanoaggregates from hydroxylamine- reduced silver nanoparticles. SERS enabled 
the measurement with high sensitivity and SEHRS revealed additional peaks that are  
not visible in SERS or normal Raman scattering. j | Stimulated Raman scattering images 
of deuterium- labelled Pseudomonas aeruginosa cells among (unlabelled) blood cells. 
Images with respect to the C–D (2,168 cm−1) and C–H (2,915 cm−1; representing mainly 
proteins) peaks represent P. aeruginosa only and both types of cell, respectively. Scale  
bar: 5 µm. cps, counts per second. Panel b adapted from ref.76, Springer Nature Limited. 
Panel c adapted from ref.61, Springer Nature Limited. Panel d adapted from ref.68, CC BY 4.0  
(https://creativecommons.org/licenses/by/4.0/). Panels f–h reprinted with permission 
from ref.127, American Society for Microbiology. Panel i adapted with permission from 
ref.131, American Chemical Society. Panel j adapted from ref.135, CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/).
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found in household environments) revealed mutually 
exclusive distributions of different strains156. The pink 
biofilm is a potential pathogenic reservoir for immu
nocompromised patients, and Raman imaging could 
provide an efficient means to characterize this resistant 
matrix in situ.

Technical advances now enable visualizition of the 
chemical structure of biofilms with higher spatial resolu
tion and throughput than previously possible. Chemical 
imaging of calcium alginate fibres (a model system for 
the biofilm matrix) with resolution of 20–50 nm has 
been achieved using tip enhanced Raman spectroscopy 
(TERS)130, and CRSM has allowed high speed imaging 
(~7 s per frame of 256 × 256 pixels) of biosynthesis of 
phenazines, which promote antibiotic tolerance, within 
a P. aeruginosa biofilm157.

Linking microbial functions to genes
Integrating Raman microspectroscopy and a cell sorting 
method is a powerful approach to link the phenotypes 
of microorganisms with their genotypes (Box 5). In this 
approach, Raman microspectroscopy is used to identify 
cells of interest with a specific phenotype (such as metab
olism or function) within a complex community, often 
in conjunction with SIP, and a chip based device such 
as a microfluidic device is used to situate cells within 

the Raman interrogation volume during measurement 
and subsequently sort them on the basis of their spectra. 
The collected cells can be sequenced and the recovered 
genomes used to link the identities and genetic make ups 
of the sorted cells to their phenotypes. Samples can be 
kept in liquid media throughout this analysis process 
and thus the cells of interest remain viable, enabling 
downstream cultivation for further ecological evaluation 
(reviewed in refs158–160).

The first application of Raman based cell sort
ing combined with single cell genomics revealed the 
identity and gene content of uncultivated phototro
phic bacteria from the ocean, part of what is known 
as microbial dark matter116. Marine microorganisms 
were probed by Raman microspectroscopy for the 
presence of carotenoid containing chlorophyll or rho
dopsin complexes, and target cells were sorted using 
Raman activated cell ejection (RACE; Box 5). Despite 
the low number of sorted cells (27 cells) and low genome 
coverage (4.17–19.29%), this method enabled the iden
tification of novel carotenoid containing bacteria, as 
well as novel functional genes involved in carotenoid 
and isoprenoid biosynthesis116. In another study, RACE 
was used to identify microorganisms that contribute to 
carbon fixation in the oceans117. Seawater samples from 
the sunlit ocean were spiked with isotopically labelled 
[13C]bicarbonate and cells were ejected on the basis of 
resonant Raman bands corresponding to carotenoids 
that displayed 13C induced shifts (fIg. 5d). By sequencing 
groups of approximately 30 ejected cells that were sorted 
and pooled together, complete genomes and pathways 
for carotene synthesis were identified and reconstructed, 
and evidence for photosynthetic and anaplerotic CO2 
fixation was recovered in two previously unknown 
Synechococcus sp. and Pelagibacter sp.117 (fIg. 6a). In 
recent development of Raman activated gravity driven 
encapsulation and sequencing (RAGE–Seq; Box 5), 
high quality single cell genomes (>93% genome cover
age) could be retrieved using between a few and a hun
dred cells that were sorted from clinical (urogenital tract 
infection) and soil microbiome samples71,161.

Raman based cell sorting has also been employed 
to study host associated microbial communities and to  
identify microorganisms of interest for therapeutic 
applications63,69,70 (fIg. 6b). To this end, D2O was used as 
a tracer to follow metabolically active cells from mouse 
gut communities that were stimulated by supplemen
tation with host derived compounds, such as mucin 
or mucin derived mucosal sugars (Box 4; fIg. 4a). Two 
different Raman activated cell sorting (RACS) methods 
(Box 5) were then used to detect and sort D labelled cells 
based on the presence of the specific C–D Raman peak. 
In the first approach, cells were manually sorted, and the 
collected cells were lysed and identified by 16S rRNA 
gene targeted sequencing70. With the recent develop
ment of high throughput RACS, it became possible to 
sort hundreds of cells of interest in a fully automated 
manner and to retrieve near complete genomes of func
tionally active microorganisms, for example, from gut 
communities63,69. This revealed the identity of foragers 
of mucin and mucosal sugars, such as Akkermansia, 
Allobaculum, Bacteroides, Barnesiella, Clostridiales and 

Box 5 | RACE, RACS and RADS

Raman- based cell sorting systems consist of hardware for Raman measurement  
of individual microorganisms and for sorting cells of interest based on mechanical,  
optical, electrical or magnetic force (reviewed in refs145,251). The system configuration 
determines two key features: sorting throughput and the type of microorganisms that 
the system can handle. Here, we outline three designs: Raman- activated cell ejection 
(RACE), Raman- activated cell sorting (RACS) and Raman- activated droplet sorting 
(RADS).

RACE
Microorganisms are immobilized on a slide and cells of interest are identified on  
the basis of Raman measurements. The slide is inverted and transferred to a laser 
microdissection system so that cells of interest can be ejected towards a collection chip 
below252. The device has been engineered such that the sample is loaded at the bottom 
surface of the slide, so that identification and ejection of cells of interest can be 
performed without moving the slide117. RACE enables sorting of ~200–300 cells per day 
without limitations on the type of microorganism for sorting.

RACS
Integration of optical tweezers into a fluidic system provides a means to immobilize 
cells within the Raman interrogation volume during measurement, boosting the 
precision of Raman measurement, and then translocate those cells for collection. 
Raman and optical tweezers were operated manually within a glass capillary in which 
one end was filled with a sample and then cells of interest were translocated to buffer 
medium at the other end70. In a new version, an automated fluidic system is integrated, 
increasing sorting throughput from 1–2 cells per hour to up to 500 cells per hour and 
reducing the need for human intervention61,63,69.

RADS
Encapsulating single cells of interest within individual droplets allows spatial isolation 
of those cells, facilitating a pipeline for single- cell genomics253. Cells of interest are 
searched and identified in still fluid based on Raman measurement, individually 
encapsulated and sorted, and then used for genomics. This process is known as 
Raman- activated gravity- driven encapsulation and sequencing (RAGE–Seq)71. 
Encapsulation of individual cells also facilitates rapid dielectrophoretic sorting of the 
single- cell droplets in conjunction with a fluidic device72. The former approach71 is 
applicable for sorting of diverse types of microorganism (with throughput of 2 cells per 
minute), whereas the latter72 has been demonstrated using relatively large cells  
(10 μm fungi and throughput of 40–120 cells per minute).
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Parabacteroides69,70. These results were used to assem
ble a probiotic mixture with potential to counteract the 
gut pathogen Clostridioides difficile through depletion 
of these sugars69 (fIg. 6b). This example underscores the 
value of RACS to identify microorganisms that perform 
key functions within complex communities such as 
those in the gut and how this information can be used 
to manipulate community functions.

Recent technological advances, such as the develop
ment of droplet based sorters, have drastically increased 
the throughput of Raman based cell sorting, making it 
an attractive tool for biotechnological applications72,162,163. 
Rapid screening and selection of microbial cell factories 
that efficiently produce compounds of interest is now 
performed using Raman activated droplet sorting72,163 
(RADS; Box 5; fIg. 6c). This approach has enabled sort
ing of cells of the alga Haematococcus pluvialis able to 
produce large amounts of the commercially relevant 
antioxidant carotenoid astaxanthin, with a throughput 
of 260 cells per minute and >98% sorting accuracy163. 
A modified version of this platform (known as pDEP–
RADS) allowed the rapid screening (120 cells per minute; 
unlike RADS, this does not rely on measurements of res
onance Raman scattering generated from carotenoids) 
of cells of the yeast Saccharomyces cerevisiae accumulat
ing microalgal triacylglycerols, which are regarded as a 

potential renewable alternative to fossil fuels. The further 
screening of a S. cerevisiae library expressing microalgal 
diacylglycerol acyltransferases followed by sequencing of 
sorted cells led to identification of previously unknown 
enzymes able to produce the monounsaturated fatty acid 
(MUFA) rich triacylglycerols72 (fIg. 6c). Raman based 
sorting can thus streamline the selection of desirable 
microbial cell factories and, for example, contribute to 
achieving the high productivity required for microalgal 
biofuels to become economically feasible.

Multiplexed identification of microorganisms
Raman microspectroscopy has great potential in appli
cations requiring the classification of a large number of 
taxa, phenotypes or pathotypes based on chemical finger
printing. We outline two approaches: a label free method 
(largely relying on machine learning) and barcoding  
of individual microorganisms using SERS tags.

A label- free approach. Innovations in machine learning 
(in particular, supervised approaches) for the analysis 
of multivariate data make this a useful means to classify 
taxa, phenotypes or pathotypes on the basis of detection 
of small variations in their Raman spectra. Most biomol
ecules that are measurable using Raman microspectros
copy are shared among taxa and thus the overall Raman 
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Fig. 6 | Applications of Raman-based cell sorting to link ecological roles of microorganisms to their genomic 
identities. a | Marine microbial cells displaying resonant carotenoid Raman bands (or 13C- induced shifts in carotenoid 
bands due to incorporation of [13C]bicarbonate) were sorted and their genomes amplified and sequenced. This led to the 
identification of novel organisms involved in carbon fixation in the ocean, as well as novel genes for carotene synthesis116,117. 
b | Mouse gut bacteria that are metabolically active when supplemented with mucin or mucosal sugars were labelled 
using D2O and sorted based on the carbon–deuterium (C–D) peak (2,040–2,300 cm−1) using optical tweezers, enabling  
the identification of a consortium of mucosal sugar utilizers able to counteract the pathogen Clostridioides difficile63,69,70.  
c | Microalgal or yeast cells accumulating large amounts of commercially attractive compounds such as the carotenoid 
astaxanthin or triacylglycerols were sorted based on characteristic Raman peaks, after encapsulation into individual 
droplets72,163. This allowed rapid screening and retrieval of microbial cell factories hyper- producing compounds of interest, 
as well as to the identification of novel genes encoding key enzymes in their synthesis72. RACE, Raman- activated cell 
ejection; RADS, Raman- activated droplet sorting.
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spectra are usually very similar with respect to the loca
tions and number of peaks106,164. Classification is rarely 
possible by eye based on the spectral shape165; thus, soft
ware tools with high discriminant ability are required. 
Supervised classifiers enable the detection of these small 
variations and have been used to identify pathogens166–170, 
to differentiate between pathogenic and non pathogenic 
Escherichia coli strains171, to discriminate between 
antibiotic resistant E. coli strains172,173 and to differentiate 
between species in situ within biofilm communities97,174.

Two aspects must be considered in the use of super
vised classifiers. First, Raman spectra are greatly affected 
by the physiology of the microorganisms within a strain, 
such as heterogeneity in the metabolism (for example, 
respiration versus fermentation), growth state and bio
chemistry (such as the ratio of proteins to DNA)164,175,176. 
Second, the measurements are influenced by the biotic 
and abiotic surroundings. For instance, measurements of 
the same strain in urine, ascites, blood and soil are not 
identical. To take these aspects into account, we make 
the following recommendations: standardize conditions 
during sample preparation, including medium, culture 
time, pH, CO2 concentration and diel cycle; establish a 
training database containing strains identical to those 
that will be used in real measurements and cross validate 
it using an independent test data set; and where neces
sary, isolate cells of interest from peripheral biotic and 
abiotic neighbours to minimize artefacts177.

Barcoding using SERS tags. Use of a SERS tag that is 
conjugated with an antibody or aptamer enables selec
tive attachment of the tag to the targeted strain. Based 
on adoption of the technique in biomedical imaging (for 
example, in vivo imaging of tumour cells178), applications 
are expanding to biomedical microbiology, in particu
lar, for the detection of pathogens using immunoassay 
platforms — devices that rely on an antigen–antibody 
reaction179,180. For example, Staphylococcus aureus and 
E. coli O157:H7, pathogens that cause clinical diseases 
(such as skin and respiratory infections) and foodborne 
poisoning, have been detected in liquid samples using 
this approach (fIg. 7), and with enhanced sensitivity 
by using device designs that enable spatial enrich
ment of the tagged cells based on dielectrophoresis or 
magnetophoresis181–186.

In comparison with other technologies providing 
similar functionality (such as cultivation based diag
nosis methods, PCR and MALDI TOF mass spectrom
etry187), SERS tags provide a rapid (on the order of a 
few minutes) and cultivation free means for the multi
plexed detection of microorganisms of interest. The  
use of SERS tags that are synthesized using different 
chemicals for the Raman reporter layer and then con
jugated with different antibodies or aptamers enables 
targeted binding of these tags to different strains and 
thereby multiplexed detection. In comparison with the 
fluorescence based tags that are commonly used, SERS 
peaks have an at least ten times narrower bandwidth, 
and, thus, the number of resolvable tags is increased 
accordingly. Despite this advantage, the technology 
has not yet reached its full potential for multiplexing. 
SERS tags are potentially applicable in microbiology as 

an alternative to fluorescence based tags, for example, 
in genome inferred antibody engineering — known as 
reverse genomics188. However, care should be taken in 
applying SERS tags for measurement of intracellular 
compounds of some microorganisms as their relatively 
large size (typically a few tens of nanometres) makes it 
difficult for them to penetrate cell walls or membranes.

Reproducibility and data deposition
There is currently no central, actively maintained repos
itory for Raman spectra of biological and organic com
pounds. To accompany this Primer, we are in the process 
of establishing a web based portal for the deposition of 
biological Raman data in a collaborative effort with the 
European Molecular Biology Laboratory (EMBL) as part 
of the BioStudies initiative — novel data sets can be sub
mitted via the BioRaman template in the BioStudies data 
submission tool. This platform will provide a means to 
accumulate Raman data from diverse communities in 
microbiology and other fields of biology, and give full 
open access to these data, along with the metadata nec
essary to facilitate reproducibility. We hope this portal 
will provide an integrated and interactive resource sim
ilar to other established repositories for biological data, 
enabling community access to data and the measure
ment procedures to plan future research, and thereby 
stimulating wider adoption of Raman technology in  
microbiology and biology as a whole.

Minimum reporting standards
Details of the spectra and their acquisition, including 
wavelength and power of the laser, laser exposure time, 
the number of accumulations (for example, three, if a 
measured spectrum was averaged over three independ
ent measurements), spectral resolution, specifications of 
the objective, the Raman system used and measurement 
type (for example, normal Raman, resonance Raman or 
SERS) are necessary. Other aspects of data treatment, as 
well as details concerning sample preparation and mount
ing are also crucial. As a starting point, we have deposited 
five examples of Raman data (formatted on the basis of 
this minimum reporting standard) in the repository (also 
included in Supplementary Data 1): bacterial pure cultures 
of E. coli (measurements of three samples in liquid: 13C and  
deuterium labelled, 13C labelled and not labelled)  
and Vibrio alginolyticus (measurements of two dry sam
ples: deuterium labelled and not labelled; data used in  
fIgs 1b; 3a); a xenic microalga culture of Chaetoceros affinis 
(measurements of two samples in liquid: 13C labelled and 
not labelled); a SRS image of deuterium labelled P. aerugi-
nosa cells in blood (data used in fIg. 5j135); and a spectrum  
of the pure compound polyhydroxybutyrate.

Limitations and optimizations
Sensitivity
Normal Raman scattering has an inherently low quan
tum efficiency. To illustrate, laser irradiated samples 
scatter most photons elastically by Rayleigh scatter
ing with no frequency shift (fIg. 1a,c). Only about 1 in 
106 of the laser’s photons produces a Raman scattered 
photon with frequency shifts. Therefore, optimiza
tion of the instrument and sample preparation are 
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essential to capture these relatively rare scattering events. 
Recommendations for optimization and alternative 
methods for signal amplification are presented above 
and in Supplementary Note 1. Efficient and reproducible 
spectral processing is just as crucial.

Specificity
Raman microspectroscopy is an incredibly powerful 
tool that provides structural fingerprints to identify 
many specific molecules in compositionally simple 

samples such as pure or nearly pure liquids, crystals 
or gases. However, microorganisms are anything but 
compositionally simple and thus the Raman spectra of 
cells often reveal little more than the presence of general 
classes of biomolecules. A subset of specific compounds 
can routinely be identified from a single cell spectrum, 
for example, phenylalanine, adenine and thymine. 
When present in relatively high concentrations, storage 
products189, such as polyhydroxyalkanoates, polysac
charides, polyphosphates, sulfur inclusions and fatty 
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a | Illustrations of the conventional method whereby samples from different fluids are spread on blood agar plates and 
cultured before quantification of the number of colony- forming units (CFU). b | Quantification of the pathogen for 20 min 
using surface- enhanced Raman spectroscopy (SERS) tags (silver nanoparticles encoded with 4- mercaptobenzoic acid 
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acids, can also be easily identified from cellular Raman 
spectra12,189,190. If highly abundant, their spectral features 
may mask fingerprints of other cellular constituents of 
interest, thereby complicating spectral interpretation. 
Recognition of many specific molecules within a cell is 
beyond the reach of Raman microspectroscopy, because 
many different compounds share the same chemical 
bond types and consequently share a vibrational mode. 
In addition, different bonds within the complex cel
lular matrix can have overlapping vibrational energy 
distributions, resulting in broad hybrid peaks that are 
challenging to disentangle. Therefore, careful selection 
of diagnostic molecules and experimental conditions is 
essential to ensure meaningful and reproducible results, 
as amply demonstrated in studies described above.

Fluorescence
When present, laser induced fluorescence produced by 
cellular chromophores can overwhelm normal Raman 
emissions, because fluorescence quantum efficiencies 
exceed those of normal Raman scattering by orders 
of magnitude. Thus, Raman spectral features can be 
masked by broad and intense fluorescence emissions 
over the entire Raman spectral range (see ref.122). This 
issue can be resolved by multiple approaches, some 
of which require specific instrumentation or multi
ple lasers. Most fluorescence avoidance or compensa
tion methods capitalize on differences in the optical 
behaviours of Raman and fluorescence excitation and  
emission radiation and are reviewed elsewhere122,191.

To address this issue using a standard confocal 
Raman microspectrophotometer, fluorescence can 
be suppressed at a single spot or cell by exposure to a 
focused laser beam for a few minutes before spectral 
acqui si tion62. However, using this approach for sur
veys of multiple targets in a single sample can lead to 
unacceptably long data acquisition times. Prolonged 
data acquisition increases the likelihood of both sample 
degradation and instrumental instabilities while ham
pering data throughput and increasing analytical costs. 
Preparatory protocols (for example, chemiphotobleach
ing122,192,193) that irreversibly suppress fluorescence in an 
entire biological sample can accelerate data acquisition.

Outlook
In this Primer, we outline approaches in contemporary 
Raman microspectroscopy, from fundamental and 
advanced technical configurations, experimental con
siderations for successful measurement of samples, to 
methodology for the handling and analysis of Raman 
data. We also provide an overview of the scope of poten
tial applications in microbiology and microbial ecology, 
such as interrogation of microbial metabolites, the bio
chemical currency of interactions between coexisting 
partners and identification of microorganisms perform
ing functions of interest. We anticipate that, by providing 
microbiologists with chemometric information at a scale 
relevant to microorganisms, Raman microspectroscopy 
will become a breakthrough technology, opening a  
myriad of avenues of study that will deepen our under
standing of the physiology and ecology of the micro
organisms that populate the complex microbial tree of life.  

With a growing community of microbiologists applying 
these approaches to their work, we predict that Raman 
microspectroscopy may soon become the tool of choice 
for certain aspects of microbiology.

There is of course significant room for further 
improvements. We here outline three directions that 
hold promise in the near future.

Increasing sensitivity
There are further opportunities to leverage recent inno
vations in Raman technology and apply them as a way to 
interrogate cell ecophysiology and metabolic exchange 
between symbionts. The ability to perform label free, 
non destructive and in situ measurements of samples 
is a unique and extremely valuable feature of Raman 
microspectroscopy over alternative techniques such as 
nanoSIMS4–7, cryo EM8,9 and fluorescence based meth
ods194–197. Raman measurements suffer from a lack of 
sensitivity that stems directly from the nature of Raman 
scattering. To overcome this limitation, measurement of 
dry samples has been used to enhance sensitivity, but 
with the loss of functionality from live cell measure
ments. Advances in sensitivity resulting from improved 
detectors and resolution from the super resolution 
concept198–200 hold promise to enable investigation of 
extremely dilute bio analytes.

State of the art Raman systems can also contribute 
to resolving this issue. For example, time gated Raman 
spectroscopy201 holds great potential, particularly for 
investigations of photoautotrophic microorganisms 
and heterotrophs that contain resonance inducing 
pigments, such as carotenoids. In the presence of 
resonance inducing substances, measurements of other 
cellular components are typically masked by fluorescence 
signals that often accompany the resonance Raman 
scattering (fIg. 5c). Use of laser wavelengths that do not 
induce resonance is not always possible, and bleaching 
techniques such as hydrogen peroxide122 sacrifice the 
ability to perform live cell interrogations. Time gated 
Raman microspectroscopy, by taking advantage of the 
time difference in the generation of Raman and fluores
cence signals202,203, enables simultaneous measurements 
of resonance inducing substances via the accompany
ing fluorescence, as well as other non resonant cellu
lar compounds, providing comprehensive molecular  
information for any type of microorganism.

Intelligent Raman
In many fields, artificial intelligence is proving to be 
a game changer for handling data204. This is also true 
in Raman microspectroscopy. Machine learning can 
provide an efficient means to detect slight variation in 
spectral shape in series of time resolved measurements 
or between measurements of different species106,205–210. 
Machine learning can also improve the precision and 
sensitivity of conventional convolution/deconvolution 
methods to identify individual microorganisms or 
chemicals within a spectrum in which multiple cells  
or compounds are simultaneously measured106,205–210.

Comprehensive measurements of molecular com
position of samples and identification of unknown bio
chemical compounds may eventually become feasible. 

Chromophore
A region of a molecule where 
the energy difference between 
two molecular orbitals is within 
the visible spectrum, thus 
determining the colour of the 
molecule.
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For example, there have been a few case studies in which 
machine learning platforms have been trained using 
Raman spectra of diverse types of pathogenic bacteria 
and were then able to successfully assign newly meas
ured data to closely related groups106,211,212. By contrast, 
Raman microspectroscopy has rarely been applied in 
microbiology for naive identification or measurement 
of unknown biochemical compounds. A likely reason 
might be a lack of comparative data for biological Raman 
measurements, and may be partly due to limited sen
sitivity. In this regard, a central data repository should 
develop into a comprehensive database, laying the foun
dations for improvement of identification techniques for 
diverse applications.

Adoption in unexploited fields
The greatest strength of Raman microspectroscopy lies 
not in any specific aspect of the technology itself, but in 
its versatile and robust nature. Bacteria live in a world  
in which chemical signals have a predominant role in 
their ecology, and any approach that allows microbiol
ogists to probe this world in a dynamic fashion has enor
mous implications. There is huge potential for adoption 
of Raman microspectroscopy in underexploited areas of  
environmental microbiology. For instance, biomineral
ization is a prime field for widespread adoption, as 
crystalline solids are often sources of strong Raman scat
tering. Within this field, Raman has been used to profile 
several mineralization processes213–215 with consequences 
for nano and biotechnology. Electro microbiology, an 
emerging field, has already applied Raman microspec
troscopy in a unique and beautiful way to confirm the 
ability of cable bacteria to couple the oxidation of sulfide 
to the reduction of oxygen over long distances147 and we 
expect more studies to follow. The study of environmen
tal microplastics is also especially well suited to Raman 
microspectroscopic analyses216, and cross disciplinary 
research that addresses the role of microorganisms in the 
degradation of microplastics in the environment should 
see further adoption217,218.

Although much microbiological research is currently 
limited to the laboratory, in the near future Raman 
microspectroscopy could help establish coherent links 
between in situ field monitoring and more closely con
trolled laboratory studies. Raman field samplers have 
already been successfully deployed in diverse — and 
sometimes quite extreme — environments of micro
bial relevance. Automated Raman profilers have been 

integrated into advanced oceanographic sampling 
equipment, such as remotely operated vehicles219 and 
deployed to hydrothermal vents220. Raman profilers are 
now standard equipment on unmanned space probes, 
with the technology currently integrated into the 
European Space Agency’s Rosalind Franklin and NASA’s 
Perseverance Mars rovers22,221–225. These devices are being 
deployed with the express intent of looking for signatures 
of past or present biological life in the form of cellular 
biomass22, large carbon deposits or high enantiomeric 
and isotopic ratios in possible biogenic compounds, 
as one justification for their inclusion221. Use of these 
types of sensor in environmental monitoring applica
tions is likely to greatly accelerate the widespread adop
tion of Raman microspectroscopy by environmental  
microbiologists.

Additional biotechnological applications are already 
emerging in the booming field of synthetic biology. As 
many synthetic biology approaches now rely, to some 
degree, on directed evolution226,227, rapid screening of 
new cell lines for production of natural products or 
enhanced enzymatic activity is increasingly impor
tant228. Much of this screening is currently being per
formed using labour intensive methods such as mass 
spectrometry. Owing to its easy integration with other 
laboratory approaches, in particular droplet microflu
idics229–231, Raman microspectroscopy provides distinct 
advantages in methodology and cost.

Conclusion
Despite its long and established history in the physical 
sciences, it is possible that the age of utility for Raman 
microspectroscopy is only just beginning. The contin
uing boom in new omics technologies has given us the 
tools to map or identify nearly any latent feature poten
tially effecting microbially controlled processes but there 
remains a dearth of techniques that allow us to investi
gate the actualization of these processes without destruc
tive sampling or violent disruption of the sample. Raman 
microspectroscopy is unique not only in its broad utility 
as a tool for investigating chemical aspects of microbial 
metabolism, it stands (nearly) alone in its ability to do 
so in situ. From this standpoint alone, we predict that 
Raman microspectroscopy should see widespread adop
tion in the near future, particularly as technical aspects 
of the approach improve.
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Glossary 

Fourier transform infrared (FTIR) spectroscopy 

The other prominent method of vibrational spectroscopy, whereby absorption of light by a 

sample is used to identify the molecular composition of the sample. 

Normal Raman microspectroscopy 

A fundamental form of Raman microspectroscopy that relies on measurement of non-resonant, 

spontaneous scattering signals in which one out of ~106 incoming photons to a sample is 

scattered. 

Wavenumber 

A unit of frequency used in vibrational spectroscopy, defined as the frequency divided by the 

speed of the wave and thus equal to the number of waves within one centimetre. 

Resonance Raman scattering 

Raman scattering that arises when the wavelength of the incident laser beam matches the 

electronic transitions of a molecule, which generates much more intense Raman signals than 

normal Raman scattering. 

Raman reporter 

A chemical that generates a known surface-enhanced Raman scattering signal. 

Mode-locked laser 

A laser that produces ultrashort pulses on the picosecond or femtosecond scale. 

Selection rules 

Constraints that govern the likelihood of whether undergoing particular quantum transitions from 

one state to another is allowed or forbidden. 

Beating frequency 

Frequency difference between two electromagnetic waves that interfere constructively and 

destructively. 

Spectral window 

A spectral region of interest. 

Diffraction grating 

A glass plate etched with very close parallel lines that produces a spectrum from a coherent light 

beam by diffraction and interference of light and thus functions as a planar prism. 

Chromatic aberration 

Discrepancy of focus in axial and transverse directions between rays with different wavelengths 

after a focusing lens owing to the discordance of their refraction angles. 

Galvomirrors 

A pair of mirrors, each of which is integrated with a rapidly moving scanning motor, which 

enables enlargement of a laser beam spot to a small scanning area. 



Dichroic mirror 

An optical component for fluorescence microscopy by which monochromatic light for the 

excitation of fluorophores in a sample is separated from generated fluorescence signals. 

Isotopologue 

A molecule that is structurally identical yet differs from another by the presence of at least one 

atom that possesses a different number of neutrons. 

Uniformly labelled tracer 

A molecule in which all available positions for a given element are occupied by an isotopically 

heavy or radioactive nuclide, typically noted as [U-nE]compound, where n = atomic mass, 

E = elemental symbol, U = uniformly, followed by chemical form. 

Fractional isotopic abundance 

The proportion of atoms in a molecular pool populated by the heavy isotope — also referred to 

as atom% (multiplied by 100). 

Biomolecular fingerprint 

An indicator in which chemical properties of a biomolecule are encoded; in vibrational 

spectroscopy, collective vibrational frequencies in wavenumber of chemical bonds within a 

biomolecule. 

Raman-silent 

The absence of Raman-active vibrational modes. 

Savitzky–Golay filter 

A filter algorithm that fits a polynomial of a known order to each point in the spectrum, using a 

sliding window of a user-defined width, subsequently replacing each point with the fitted value 

at the centre of the window. 

Vector normalization 

A normalization approach in which the intensity at each wavenumber is divided by the square 

root of the sum of squares of intensities for all wavenumbers within a spectral window, such that 

the Euclidean distance from the origin in the multidimensional space is equal to 1. 

Mahalanobis distance 

A measure of the distance between a point and the centroid of a multivariate normal distribution, 

in units of standard deviation. 

Non-negative matrix factorization 

A technique that represents each point in a set of mixed spectra as a weighted mixture of a finite 

number of conserved sub-spectra, with the axes being directly interpretable as Raman sub-

spectra. 

Independent component analysis 

A technique that optimizes a new set of axes to naively capture covariance between variables 

separately for each of a finite number of independently varying subsets of data. 



Isotopomers 

Isotopomers of a compound have the same number of each isotope, but their positions differ. 

Voigt probability distribution profile 

A convolution of Gaussian and Lorentzian probability distributions that is widely used in peak-

fitting routines to describe the symmetry of peaks in Raman spectroscopy. 

Chromophore 

A region of a molecule where the energy difference between two molecular orbitals is within the 

visible spectrum, thus determining the colour of the molecule. 
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Supplementary Notes 
 
Supplementary Note 1: Optimization of technical components 
 
Microscope 
An upright or inverted microscope system can be employed. An upright system brings advantages for 
measurements of samples in still fluid setups or dry samples on substrates due to easy microscope 
access for the user. In contrast, an inverted system is practical for measurements in fluidic devices 
(e.g., microfluidics) because it leaves space for flexible handling of the setup from above, for 
example, for the arrangement of tubing or access for tweezers (Supplementary Fig. 1a). 
 
Phase contrast or differential interference contrast (DIC) microscopy is compatible with Raman 
measurement, yet specific optical components for those setups such as phase rings or polarizers 
could reduce Raman signals, in comparison to the setup for bright-field microscopy. For example, in 
our experience (Lee, pers. obs.), a ~30% reduction in Raman signal intensity can arise due to the 
presence of a phase ring, for samples measured using a 532-nm Raman laser and a 60×, 0.95 NA 
objective.  
 
For long-term time-series measurements of samples, it is possible to use commercial hardware focus 
modules that enable an interrogation area to be maintained in focus in the z-direction (e.g., perfect 
focus system (PFS) and TruFocus from Nikon and Olympus, respectively; CRISP from ASI may be 
more suitable for customized systems). As these modules depend on infrared light sources, a module 
that does not interfere with Raman measurement must be chosen. For instance, a unit that uses an 
870-nm LED is not compatible with Raman measurement using a 785-nm laser. Alternatively, it is 
possible to selectively deactivate the autofocus during measurement. 
 
Confocality 
The Raman interrogation volume (i.e., confocal volume) is determined by the combination of the 
specifications of the objective (in particular, its magnification and numerical aperture) and the 
confocal setup1 – here, we focus on a confocal pinhole (Supplementary Fig. 1b). Adjusting the 
Raman interrogation volume does not linearly change the generated Raman intensities from a 
sample, as lasers that are commonly used have a Gaussian-shaped intensity profile (i.e., TEM00). 
Thus, reduction of the size of the laser spot generally results in a disproportionate concentration of 
the laser power and a stronger signal generated from the beam centre axis. However, there is a trade-
off with the risk of laser-induced photophoretic damage to the microbial cell, as this depends on the 
laser power density (i.e., watts per unit area), rather than the laser power itself. 
 
In general, the higher the power of the objective and the smaller the opening of the confocal pinhole, 
the greater the axial (z-directional) confocality (i.e., signals that arrive at the detector mostly come 
from the focus plane). In contrast, the dimensions of the Raman interrogation volume in lateral 
directions (x–y plane), directly correlate with the size of the laser spot, which mainly depends on the 
specifications of the objective. The higher the numerical aperture of the objective, the tighter the 
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confinement of the laser beam. The spot size of a laser beam focused using an objective is given by d 
= 1.22λ / NA, where λ is the wavelength of the laser and NA is the numerical aperture of the 
objective. For example, when a 532-nm laser is focused using a 60×, 1.2 NA objective, a laser spot 
with a diameter of 541 nm is expected when in focus. Spatial resolution is limited to the radius of the 
laser beam spot (i.e., 0.61λ / NA). 
 
Calculating the interrogation volume is not straightforward, as it is also affected by the optical 
configuration of the microspectrometer and the wavelength of the excitation laser, although for a 
given experimental setup, the Raman interrogation volume can be empirically evaluated. The focus 
of the Raman laser can be identified using a depth profiling in the z-direction (it does not simply 
correspond to the focus of the bright-field imaging, as described in main text; see ‘Experimentation – 
System configuration’). To choose an appropriate axial confocality, a sample is measured using a 
range of pinhole openings (e.g., 50–300 µm), and the opening for which the Raman signals of 
interest are maximised over those from the surroundings (e.g., glass substrate; see below ‘Substrate’) 
can be used for real measurements of the sample. To determine the lateral resolution, line scanning is 
used, by scanning across the edge of a material that generates high Raman intensity (e.g., a 
rectangular piece of silicon wafer). The lateral resolution can be defined by the distance at which the 
Raman intensity of the silicon wafer (at wavenumber 520.5 cm-1) changes from 10% to 90% of the 
maximum2 – in practice, the resulting value is comparable to that calculated theoretically. 
 
Laser 
The selection of laser wavelength and power has considerable impact on the success of Raman 
measurements. The generated Raman intensity is inversely proportional to λ4 (where λ is the 
wavelength of the laser), thus a laser with a shorter wavelength brings advantages for measurement. 
However, this is accompanied by a greater likelihood of a fluorescence background, and also a 
greater risk of laser-induced photophoretic damage due to the stronger absorption of shorter 
wavelength light by biological samples3–7. 
 
To measure Raman spectra of biological samples, a laser with one of four wavelengths (blue at 488 
nm; green at 532 nm; red at 660 nm; near-infrared at 785 nm) is most commonly used, and a laser 
with a longer wavelength (e.g., 785 nm or infrared at 1,064 nm) is used for optical trapping to 
minimize photophoretic damage3,4 (Supplementary Fig. 1c). The 785-nm laser can be used for both 
Raman measurements and optical trapping8. As the laser exposure for Raman measurement is 
typically short, UV wavelengths (e.g., 350 nm) have also been used for analyses of living bacterial 
cells9, although in this case, all optical components must be compatible with the use of UV 
wavelengths. Deep UV (~248 nm) excitation sources are also coming into use – they are well suited 
to interrogate specific known metabolites of microorganisms that generate resonance effects with 
these short wavelengths10–13. General guidelines for the selection of a laser are not easy to provide, 
but a 532-nm laser, an intermediate wavelength within the visible range that can potentially provide a 
good compromise between Raman and fluorescence background intensities, can be considered a 
versatile starting point.  
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The presence of resonance-inducing biomolecules within microorganisms must be taken into 
account. For instance, cytochrome c can be measured with the resonance effect using a 532-nm laser. 
Carotenoids, ubiquitous pigments in photoautotrophs14 (e.g., microalgae, cyanobacteria) and some 
non-photoautotrophs15, can be measured using resonance over a broad range of wavelengths (from 
350 nm to 785 nm). However, to measure other compounds in these organisms, these resonance 
effects should be avoided as they dominate other cellular signals – the intensity of resonance Raman 
scattering is typically 1,000-fold greater than that of normal Raman scattering. To this end, three 
techniques can be employed: (i) use of laser wavelengths that do not induce the resonance effect 
(e.g., a 785-nm laser for measurements of cytochrome c-containing microbes); (ii) bleaching of those 
compounds using a laser before measurements16; and (iii) bleaching using chemicals such as 
hydrogen peroxide (H2O2)17. 
 
Detector 
An appropriate detector must be chosen on the basis of its quantum efficiency (Supplementary Fig. 
1d). In general, front-illuminated charge-coupled device (CCD) detectors are widely used because of 
their good price–performance ratio. Back-illuminated CCD detectors can measure samples with a 
higher sensitivity (quantum efficiency), but are generally expensive. If ultraviolet (UV) wavelengths 
are the spectral region of interest, a UV-coated detector can be used. Similarly, for measurements 
using Raman lasers with long wavelengths (e.g., 785 nm), back-illuminated deep-depletion CCD 
detectors provide an improved quantum efficiency in the near-infrared (NIR) region.  
 
The spectral resolution of a Raman system is determined by the pixel size of the detector, in 
conjunction with the density of grooves in the grating (a key component in determining the spectral 
resolution; see below ‘Diffraction grating’), the focal length (FIG. 2a), the wavelength of the Raman 
laser, and the size of the slit (FIG. 2a). A higher spectral resolution can be obtained with a smaller 
pixel size, a higher density of grooves, a longer wavelength, and a narrower size of the slit. In 
general, current detectors have pixel size between 13 µm × 13 µm and 26 µm × 26 µm. As in light 
microscopy, binning (combining the signal of adjacent pixels) can be used to improve the sensitivity 
of measurements, although this is achieved at the expense of spectral resolution. 
 
Substrate 
Even for confocal Raman microspectroscopy, in practice, Raman signals from the substrate holding 
the sample are of similar intensity to those from the sample, as the substrates are often better Raman 
scatterers than biological samples. Most relevant peaks for biological samples are located in the 700–
3,400 cm-1 range, and the majority of substrates scatter in the lower part of this same range 
(Supplementary Fig. 1e). This interference becomes greater relative to the signal of interest for 
measurements of minute samples like microbes, and thus the choice of an appropriate substrate is 
particularly important. 
 
Glass slides or coverslips can be used as a starting point for measurements of novel samples and, if a 
substrate with less background is needed, other materials can be considered. Alternatives include 
aluminium-coated slides for measurements of dry cells (reflecting generated signals back to the 
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Raman system; a silver- or gold-coated slide can also be used, enabling measurement of surface-
enhanced Raman scattering) or CaF2 or quartz slides for measurements of cells within a medium. 
The choice of laser wavelength enters into this decision, as the background signal from a particular 
substrate depends strongly on the laser wavelength. In addition, the intensity of the background can 
vary according to the manufacturer of the substrate, even for supposedly identical material 
(Supplementary Fig. 1e). 
 
Diffraction grating  
A grating, dividing the Raman signal according to wavelength (Supplementary Fig. 1f), is a key 
component in the determination of the spectral resolution of the measured Raman spectra. Ruled and 
holographic gratings are commonly used and we here focus on the use of a ruled grating because this 
can provide a higher efficiency, diffracting a greater proportion of light in the required direction. 
 
The specifications of a ruled grating concern the number of grooves within a unit length (grooves per 
mm; 1/L in Supplementary Fig. 1f) and the blaze angle. Gratings with 300–2,400 grooves/mm are 
commonly used, and this parameter determines the spectral resolution. The lower the number of 
grooves, the lower the spectral resolution, but also the higher the throughput of the signals diffracted. 
For applications in microbiology and microbial ecology, very high spectral resolution is not 
necessary because the Raman peaks of interest are typically not sharp, unlike those of measurements 
in materials science. In general, a grating yielding a spectral resolution of c. 1.5 cm-1 is sufficient, 
thereby allowing the phenylalanine peak at 1,002–1,006 cm-1, the sharpest of the peaks among 
biologically important compounds, to be differentiated from its nearest neighbour within a spectrum. 
As an additional consideration, the use of a grating with a lower spectral resolution enables more 
rapid measurement (due to the higher signal throughput). The blaze angle of the grating should be 
optimized with respect to the wavelength of the Raman laser, because it affects the efficiency of the 
grating. For instance, for Raman measurements using a 532-nm laser, a grating that is blazed around 
532 nm (e.g., 500 nm) should be used to maximize the sensitivity (Supplementary Fig. 1f). 
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Supplementary Fig. 1 | Optimization of technical components. a | Microscope: in general, an upright system 
can be considered for measurement of dry cells, and an inverted system for samples in liquid phase. b | 
Objective and confocal pinhole: the higher the power and numerical aperture of the objective and the smaller 
the opening of the confocal pinhole, the greater the confocality in 3D. c | Laser: in general, 350–785 nm lasers 
are used for Raman measurements and 785–1,064 nm lasers are used for optical trapping. For the Raman 
measurement, an appropriate laser wavelength should be chosen considering the trade-off between the 
generated Raman intensities (inversely proportional to the laser wavelength to the power of four) and the 
likelihood of generation of fluorescence (greater with shorter laser wavelength). d | Detector: in general, a 
front-illuminated visible light CCD detector can be used, but if higher sensitivity is required, other types of 
detectors are available. e | Substrate: every substrate produces an inherent background signal that is dependent 
on the wavelength of the Raman laser. Glass and aluminium-coated slides can be used as a starting point for 
measurement of samples in liquid phase and dry cells, respectively. If less interference by the substrate is 
required, use of CaF2 or quartz provides a potential solution. Additionally, background signals that are 
generated from substrates are highly influenced by the quality of the substrate (e.g., purity). f | Diffraction 
grating: a key component that determines the spectral resolution of the Raman measurement. The higher the 
number of grooves per mm, the higher the spectral resolution but the lower the throughput of the Raman 
signals diffracted. A grating that is blazed at an appropriate wavelength (e.g., blazed around 532 nm for 
measurement using a 532-nm laser) should be used to maximize the measurement of the generated Raman 
signals. 
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Supplementary Note 2: Isotope mass effect in stable isotope probing (SIP)–Raman 
In SIP–Raman experiments, the magnitude of spectral red shifts depends on heavy and light isotope 
masses and to what element(s) it is bound (see Supplementary Box 1 for mathematical explanation). 
For example, introduction of a single deuterium atom (2H or D) will slow vibrational frequencies by 
~13% when bound to a hydrogen atom and by ~27% when bound to a carbon atom (Supplementary 
Fig. 2b). The red shift’s magnitude also varies inversely with elemental mass (Supplementary Fig. 
2b).  
 

Supplementary Box 1 | Atomic mass effect on vibrational frequency. 
The diatomic molecular vibration is modelled as a harmonic oscillator where two masses vibrate 
as if joined by a spring, as illustrated in Supplementary Fig. 2a. Vibrational frequency of the 
oscillation is directly related to masses of the bound atoms in wavenumbers (ν, cm-1) 

ν = 
1

2πc

k

μ
 ,                                                                     (1) 

where c is speed of light (cm/sec), k is a force constant (erg/cm2), and  is the reduced mass (gm). 
The atomic partners will have reduced masses, µl and µh, in the light and heavy pairs, respectively, 
each is described by  
 

μ = 
m1 m2

m1 + m2
,                                                                      (2) 

 
where, m1 and m2 are the masses of atoms 1 and 2 bound together. On the assumption that k is the 
same between the µl and µh because neutrons are uncharged and because other terms cancel out, 
the fractional reduction factor for frequency can be computed by 
 

νh

νl
 = 

μl

μh
.                                                                        (3) 

 
This reduction factor is then multiplied by 𝜈  of the light isotopologue to predict red-shifted νh. For 
example, the 12C–12C pair has a reduced mass (µl) of 6.00 (12×12/(12+12)) and its symmetrical 
bond stretching has a νl of ~1,157 cm-1. If one atom is replaced with a 13C, then the reduced mass 
becomes 6.24 (12×13/(12+13)) and hence the reduction factor (νh νl⁄ ) is 0.981 and the predicted 
red-shifted frequency (νh) is 1,135 cm-1. 

 
In theory, red shifts shown in Supplementary Fig. 2b can be resolved by a Raman 
microspectrophotometer capable of 1 cm-1 spectral resolution. However, diagnostic peaks may 
overlap with other bands that are often broadened by interactions among neighbouring molecules18. 
Thus discerning isotopologues can be challenging, but detectability sometimes can be improved by 
selecting the heaviest of multiple stable isotopes. Clearly, higher resolution diffraction gratings 
available on a dispersive spectrophotometer should be used to detect red shifts, e.g., 1,200 or 1,800 
grooves/mm. 
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Supplementary Fig. 2 | The neutron factor. Effects of isotopic substitutions on molecular vibrational 
frequencies (f) and consequently on Raman wavenumbers (ν). a | Diatomic harmonic oscillator model of the 
mass effect on symmetrical bond stretching frequencies. b | Mass effect on the magnitude of isotope-induced 
red shifts on isotopes bound to either light hydrogen (□) or light carbon (○) atoms, expressed as % reduction 
in f or ν from the light isotopologue. In all but 18O and 42Ca, a single additional neutron accounts for the 
vibrational deceleration. 
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Supplementary Table 
 
Supplementary Table 1 | Assignment of Raman peaks to common cell constituents. Raman peaks for 
substances that commonly accompany measurements of biological samples (e.g., water and substrates where 
the sample is placed for measurement) are also listed. Care should be taken when matching measured data 
with peaks in this table, as the peaks of the molecules may overlap with others. 
 
Biomolecules/substance Wavenumber (cm-1) Reference 
Cholesterols 430; 548; 608; 700; 742; 960; 1,176; 1,438; 1,672 19 
Fatty acids 1,100; 1,262; 1,438; 1,655; 2,850; 2,935 20 
Starch 478; 866; 940; 1,083; 1,127; 1,340; 1,459; 2,911 21 
Lipids 1,050–1,200; 1,250–1,300; 1,400–1,500; 2,800–3,000 22 
DNA 540; 728; 785; 1,092; 1,480; 1,575; 1,660  23–25 
RNA 580; 724; 784; 886; 1,092; 1,254; 1,326; 1,408; 1,560; 

1,606; 1,686  
19 

Protein 1,257; 1,340; 1,453; 1,660 26 
Amino acids Various 19,25,27 
Bicarbonate 683; 1,043; 1,266 * 
Carotenoids 960–1,005; 1,100–1,250; 1,500–1,535 28–31 
Ca-dipicolinic acid 
(CaDPA) 

662; 824; 1,017; 1,395; 1,572 32,33 

Chlorophyll 733–773; 900–986; 1,173–1,186; 1,325–1,371;  
1,437–1,445; 1,554–1,640 

29 

Collagen 760–770; 818; 856; 928–938; 1,246; 1,440–1,452; 
1,666–1,670 

19 

Cytochrome c 750; 1,128; 1,311; 1,583 34–36 
polyhydroxybutyrate 
(PHB) 

840; 1,055; 1,453; 1,725 34,37,38 

Glycogen 480; 850; 940; 1,046; 1,082; 1,123; 1,260; 1,335; 
1,380; 1,460 

19,34 

Glucose 406; 543; 775; 843; 915; 1,022; 1,074; 1,121; 1,151; 
1,271; 1,348; 1,460; 2,879; 2,892; 2,948; 2,962 

25,* 

Lignin Various 39 
phenylalanine  486; 622; 1,003; 1,032; 1,206; 1,586; 1,606 19,25 
Polyphosphate 700; 1,178 34,40 
Polysulfide 152; 218; 473 41 
Proteorhodopsins  1,530 42 
Riboflavin 1,225; 1,346; 1,401; 1,463; 1,534 25 
Triacylglycerol 1,066; 1,080; 1,125; 1,264; 1,203; 1,441; 1,656; 1,746; 

2,851; 2,889  
43 

Water 1,665; 2,100; 3,400 ** 
Glass 442; 800; 920; 1,066; 1,400; 2,430 ** 
Quartz 474; 595; 800; 1,066; 1,200; 2,430 ** 
CaF2 474; 1,030; 2,430 ** 

*Huang, pers. obs. 
**Lee, pers. obs. 
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