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The predictive processing framework (PPF) attempts to tackle deep philosophical problems, including
how the brain generates consciousness, how our bodies influence cognition, and how cognition alters
perception. As such, it provides a zeitgeist that incorporates concepts from physics, computer science,
mathematics, artificial intelligence, economics, psychology, and neuroscience, leveraging and, in turn,
influencing recent advances in reinforcement learning and deep learning that underpin the artificial
intelligence in many of the applications with which we interact daily. PPF purports to provide no less than
a grand unifying theory of mind and brain function, underwriting an account of perception, cognition, and
action and their dynamic relationships. While mindful of legitimate criticisms of the framework, to which
we return below, an important test of PPF is its utility in accounting for individual differences such as
psychopathology. These, then, are the central concern of this special section of the Journal of Abnormal
Psychology: What is the state of the art with regards to applying the PPF to the symptoms of mental
illness? How might we leverage its insights to elevate and systematize our explanations, and ideally
treatments, of those symptoms? And, conversely, can we refine and refute aspects of the PPF by
considering the particular challenges that our patients experience as departures from the parametric
estimates of the PPF?

General Scientific Summary
An introduction to the special section on Predictive Coding and Psychopathology, this article unpacks
the predictive processing framework (PPF), which aspires to provide a grand unifying theory of mind
and brain function. The article introduces the issues involved in applying the PPF framework across
a wide swathe of psychopathological phenomena.
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Before we explore those lofty goals, we think it pertinent to
inspect what the predictive processing framework (PPF) is. Since
many of its terms have everyday meanings, we feel it important to
define some of them and sketch some of the assumptions and

commitments of the PPF, since we adopt them when we develop
PPF accounts in psychopathology.

Surprisingly Familiar: Revolutionary Old Ideas

The kernel of PPF accounts of the mind and brain is that
prediction is central to perception, cognition, and comportment.
That is, perception is not just the passive receipt of sensory
stimulation; rather, the brain harbors predictions about likely in-
puts that color what is perceived. This insight traces back to the
4th-century Buddhist scholar Vasubandhu, 9th-century Islamic
scholar Ibn Al Haythem, and the German polymath Herman Von
Helmholtz. For Helmholtz, perception involved inference (al-
though unconscious and nondeliberative) based on the association
of ideas and previous experiences (Warren, 1921). Prediction
therefore relates to associationism, which has its origins in West-
ern thought in Plato (350 B.C./1999) and Aristotle (350 B.C./1930),
and was elaborated by Pavlov’s empirical work in the 20th century
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(Pavlov, 1927). These conditioning paradigms highlighted that
mere contiguity was insufficient for learning and that the associ-
ation of ideas was sensitive to surprise (McLaren & Dickinson,
1990), and indeed, the processes of association and prediction
engender a mismatch between what was expected and what was
experienced. Building on this notion, the engineers Bernard Wid-
row and Marcian Hoff created a simple connectionist neural net-
work of nodes, representing inputs and outputs as links between
nodes (Widrow & Hoff, 1960). Those links were strengthened by
reducing a prediction error signal, the mismatch between the
desired output from a given input and the output that actually
occurred. A similar algorithm was proposed for animal condition-
ing by Rescorla and Wagner (1972); environmental stimuli induce
expectations about subsequent states of the world, exciting repre-
sentations of those states. Any mismatch between the expectancies
and actual experience is a prediction error, which is central to this
framework.

The notion of an interplay between expectancy and experience
resonates with Bayesian formalisms that are now central pillars for
understanding basic psychological processes. Thomas Bayes was a
British clergyman and mathematician whose doctrine of probabil-
ities (published posthumously in 1873; Bayes, 1958) embodies a
formal approach to reasoning about data using hypotheses and
captures the probabilistic nature of many of the tasks faced by
organisms: to predict their environment and respond appropriately
by minimizing its uncertainty about subsequent inputs. From the
sense organs onward, the neural representations of stimuli are
sculpted through hierarchical processing in the brain. Top-down
expectations are communicated from areas with more abstract
representations downward through the hierarchical neural circuit
(Mesulam, 2008). This casts association in statistical terms, where
the prediction (or prior) is the weighted mean of some random
variable. Prediction error then refers to the discrepancy between
the predicted value of that variable and what is observed. Depend-
ing on the relative precision of priors and prediction errors, the
error can be ignored or used to update subsequent expectations
with new learning (Friston, 2005, 2009). The neuroanatomy and
neurochemistry of backward and forward connections across cor-
tical layers are exquisitely suited to this approach (Friston, 2005).
Pavlov believed that Helmholtz’s unconscious perceptual infer-
ences were aligned with his conditioned responses (Pavlov, 1927).
Bayesian formalisms have been used to explain visual perception
(Itti & Baldi, 2009; Rao & Ballard, 1999), perceptual learning
(Fiser, Berkes, Orban, & Lengyel, 2010), and a phenomenon in
which learning does not occur due to blocking (Courville, Daw, &
Touretzky, 2006). Indeed, color aftereffects in vision (McCol-
lough, 1965), which are considered obligate and low level, appear
to be subject to selective learning effects like blocking (Brand,
Holding, & Jones, 1987; Sloane, Ost, Etheriedge, & Henderlite,
1989; Westbrook & Harrison, 1984). Taken together, these find-
ings point toward a unified model of perception, action, and belief
driven by predictions and prediction errors.

One feature of these models that is now receiving attention is
precision weighting. The contributions that priors and prediction
errors make to inference and learning depend on their reliability
(or inverse variance): More reliable prediction errors demand
belief change, and more reliable priors are robust to deviations.
This feature too has precedence in the associative learning litera-
ture, wherein the associability of elements (cues, outcomes,

causes, effects), their proclivity to enter into associative relations,
or more simply the learning rate is proportional to the degree of
surprise the last time those elements were encountered. Often
equated with attention, this model feature augurs a sensitivity to
volatility and, more broadly, underwrites beliefs that are robust to
noise but malleable and adaptive to change.

Modeling What Matters to Gray Matter

If much of what is attractive about PPF with regards to psy-
chology is not particularly novel, what does PPF add? One valu-
able feature is its potential to be neurally realized, not just in the
midbrain and basal ganglia, but across cortex. The suggestion,
supported by neuroanatomical observations, is that the whole brain
deals in predictions and prediction errors as part of a generative
model of the causes of our ongoing sensorium. That model, and the
cortex itself, is hierarchical such that activity in each layer tries to
predict the activity in the layer projecting to it (Friston, 2005). For
example, hierarchical predictive coding models of vision reflect
features of visual receptive fields, like end-stopping—that some
cells respond more vigorously to short than long stimuli. Rajesh
Rao and Dana Ballard (Rao & Ballard, 1999) showed that a
hierarchical (three-layer) model tracking predictions and predic-
tion errors about natural image inputs evinced end-stopping, car-
ried by “cells” (nodes in the model) that signaled prediction errors.

There are several more components that provide more traction
to PPF. Entropy refers to the uncertainty associated with model
predictions. If our model of the world has low entropy, the data
sampled from it are predictable. Agents should strive to occupy
predictable states. Related to entropy is surprisal, the amount of
information yielded by being in a particular state. Free energy,
which refers to the probability of observing some data given a
model of how those data were generated, serves as a proxy for
surprisal. The free energy principle states that any self-organizing
system (not just brains and bodies, but any living thing) acts to
minimize mismatches between their predictions about the world
and the way the world is. By minimizing free energy, brains
minimize surprisal indirectly. Since free energy only depends on
the sensory data and the model of the causes of those data—the
claim is that free energy minimizing agents avoid surprises and
live longer, in a manner that is computationally tractable—that is,
that could be realized in a brain. Another way of minimizing
prediction error is active inference. Actions change the data that
are sampled from the world (Braitenburg, 1986; Powers, 1973,
1978). Through active inference, prediction error, free energy and
surprisal can all be minimized by gathering more predictable
data—a confirmation bias of sorts.

Given the large number of variables (internal and external) with
many possible values, inference and learning within PPF may
become intractable, irrespective of ex-post-facto explanatory mod-
els. It is therefore reassuring that PPF computations can be tried
and tested in silico. Predictive coding is an encoding strategy in
signal processing whereby the expected features of an input signal
are suppressed and only unexpected features are conveyed. This
strategy is employed in the MP3 format, the vocoded speech
popular in electronic music, and in the popular 1980s Speak and
Spell toy. In each case, the compression process is reversed and the
source signal resynthesized from the prediction error. However,
simply because there are models whose dimensions are tractable is
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insufficient, it remains to be confirmed empirically whether the
models required to explain actual neural signal and behavior
embody those more tractable features. This represents a key test of
the PPF and attendant theories: Do the assumptions they require
hold? If they do not, we will have to refine and reject aspects of the
PPF.

Predictive Processing in the Wild: Predictions as
Motivated Perceptions

Although it may have triggered hysterics or even violence in
people, no Speak and Spell—a toy perfectly capable of predictive
coding—ever developed a serious mental illness to our knowledge
(although studies of simulated patients with aberrant prediction
errors have been reported; Hoffman et al., 2011; Yamashita &
Tani, 2012). The kinds of psychopathology that interest us have an
inherently emotional quality that requires explaining. Disrupted
emotion processing may underlie disorders ranging from internal-
izing disorders such as anxiety and mood disorders to externalizing
disorders such as antisocial personality disorder and addictive
disorders to thought disorders such as schizophrenia. Emotional
disruptions may also constitute a broad liability related to comor-
bidity within and across these disorders (Kret & Ploeger, 2015).
This view is bolstered with substantial evidence from cognitive
neuroscience research exhibiting perceptual and attentional biases
toward hedonic stimuli across these disorders (Cisler & Koster,
2010; Kret & Ploeger, 2015; Sabharwal et al., 2016). Despite the
importance of emotion and motivation in clinical and cognitive
accounts of mental disorders, the role of affect is often underex-
plored in PPF accounts of mental disorders.

This lack of emphasis on affect in PPF accounts may be due to
a biased view that perception of emotional stimuli is driven by
“bottom-up” processing due to physical characteristics or evolu-
tionary significance of these stimuli (Bannerman, Milders, de
Gelder, & Sahraie, 2009; Öhman, Flykt, & Esteves, 2001). Con-
sistent with this view, neuroscience research has focused on ex-
amining the neural pathways that promote “automatic” perception
of emotional stimuli (Fox, 2002; Vuilleumier & Pourtois, 2007).
Hence, most research in psychopathology has focused on relatively
“automatic” perception of emotion stimuli and how this disrupts
cognition in mental disorders (Mathews & MacLeod, 1994; Öh-
man et al., 2001). For example, empirical studies examining per-
ception of threatening stimuli in anxious individuals often utilize
tasks that exogenously drive perception through the use of unan-
ticipated or task-irrelevant stimuli where emotional stimuli “pop
out” among nonemotional stimuli (Fox et al., 2000; Öhman et al.,
2001; Williams, Mathews, & MacLeod, 1996), are peripheral to
fixation (Mogg & Bradley, 1999), or appear rapidly in a stream of
images (Arend & Botella, 2002). PPF suggests a shift in focus
from emotion perception that is driven automatically to neural
representations that are shaped via hierarchical processing in the
brain (Mohanty & Sussman, 2013; Sussman, Weinberg, Szekely,
Hajcak, & Mohanty, 2017). Similar to nonemotional stimuli, top-
down predictions or priors regarding valenced stimuli can be
communicated hierarchically from higher-order areas and the re-
sulting prediction errors. In the present issue, Lyndon and Corlett
(2020) describe how strongly consolidated trauma-related memo-
ries could lead to inaccurate but overly precise prior beliefs,
triggered by trauma-relevant stimuli, resulting in the ongoing

symptoms of posttraumatic stress disorder. While this represents
an important step for incorporating emotional stimuli within PPF,
overall, the role of PPF in explaining perception of external emo-
tional stimuli (exteroception) is underdeveloped, including how
stimuli acquire valence in the first place and how these processes
can result in symptoms.

In contrast to exteroception, the role of PPF in interoception, or
the perception of internal or somatic body signals for the genera-
tion of emotion and its disruption in mental disorders, is well
elaborated (Barrett, Quigley, & Hamilton, 2016; Seth & Friston,
2016). In the PPF framework, emotions have been recast as infer-
ences regarding the best explanation for our interoceptive signals
(heart rate, blood pressure, etc.). Hence, the discrepancy between
predictions and interoceptive signals is minimized by updating
predictions about the causes of the interceptive signals or by
changing autonomic states such that they are more predictable
(active inference; Seth & Friston, 2016). Emotional states thus
have been hypothesized to reflect changes in the uncertainty about
the somatic consequences of action, such that increased precision
of predictions about the (controllable) future results in positively
valenced brain states while a loss of prior precision and uncertainty
about the consequences of action are associated with negatively
valenced states (Clark, Watson, & Friston, 2018; Joffily & Cori-
celli, 2013; Seth & Friston, 2016). Here, Mollick and Kober (2020)
discuss models of drug addiction characterized by more precise
beliefs about reward-related physiological states in addicted indi-
viduals, who then ignore sensory evidence to the contrary (e.g.,
inaccurate priors). More recent models have extended the idea of
precise priors to a further level of the hierarchy and proposed that
depressed or anxious mood acts as a hyperprior such that the brain
is certain that it will encounter uncertain uncontrollable environ-
ments (Clark et al., 2018). While these explanations of depression
and anxiety through the PPF lens are compelling, empirical data
are not yet forthcoming.

There is also considerable evidence indicating that psychotic
symptoms, traditionally considered disorders of thought without
much regard to emotion, are in fact intricately intertwined with
emotions (Freeman, 2007; Freeman, Garety, & Kuipers, 2001) and
that cognitive deficits in psychoses are influenced by emotion and
motivation (Barch & Dowd, 2010; Sabharwal et al., 2016). Indeed,
Diaconescu, Wellstein, Kasper, Mathys, & Stephan (2020) show
that paranoia is explicable in terms of perturbed belief updating
about social reputations. We have very little reliable data that
inform our inferences about other individuals’ beliefs and inten-
tions. Therefore, the central challenge of social inferences stems
from an overreliance on our generative models. If our mechanisms
of inference are compromised, social inferences, because they are
so challenging, will be among the first to be impaired.

The current studies were also selected to determine how PPF
reflects on transdiagnostic symptoms over-and-above diagnostic
categories. Donaldson et al. (2020) report that prediction errors in
a popular perceptual task correspond to positive but not negative
symptoms across people with schizophrenia and affective psycho-
ses. If prediction errors are robust across diagnoses, they may also
shed light on the transition to psychosis. Indeed, in a sample that
includes both first-episode psychosis and those at clinical risk for
psychosis, Haarsma et al. (2020) highlight how the trajectory of
reliance upon perceptual priors changes with the magnitude of
psychotic symptom expression. Furthermore, as reported by Fryer
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et al. (2020), smaller prediction errors in a sample of clinical
high-risk participants predict the likelihood of developing a more
serious psychotic disorder.

This interlocking body of work builds a PPF account of predic-
tion errors in various sensory and integrative tasks related to the
development and expression of some symptoms and not others. In
this regard, an important hypothesis to test was whether autistic
symptoms might also be explicable in terms of an underweighting
of prior expectations on sensory inference. This idea is examined,
and ultimately rejected, by Ward, Braukmann, Buitelaar, and Hun-
nius (2020), lending further specificity to the PPF.

Another growth area for PPF is embodiment. There are of
course PPF accounts of motor control and agency, which have
been applied to explain the perturbations of bodily ownership and
intentionality that characterize delusions of passivity and halluci-
nations. However, depression and anxiety are also associated with
disruptions of bodily ownership and discomfort as well as immune
and metabolic disturbances. We predict that the exquisite and
powerful links between the brain, mind, and periphery (underpin-
ning sense of bodily ownership, immune recognition, and placebo
responses) will be key growth areas for PPF in future. PPF cer-
tainly has detractors, whose concerns—including (but not limited
to) its particular assumptions, falsifiability, tractability, and orig-
inality—we take very seriously. Indeed, there are no doubt those
among our readership who are not only skeptical of unifying
theories but also question their utility at all. Again, predictive
coding is considered one particular instantiation of the free energy
principle and part of the broad family of entities that comprises the
PPF. This exercise reminds us that there are analytic levels (Marr
& Poggio, 1977) to consider with regards to the PPF: Different
authors tend to agree that the computational goal of the brain is to
minimize prediction errors through a generative model. They de-
part with regards to the specific features of that model (the algo-
rithmic level, what is represented and how those representations
are manipulated in service of the computational goal) and how that
model may be instantiated in the brain (the implementational level,
how cells and systems perform those computations). These levels
are worth considering as readers evaluate the articles in this special
section. Are they clearly expressed? Are the claims and commit-
ments similar to other PPF studies and models encountered else-
where? Do the authors describe whether and how neurons can even
represent the quantities being computed and manipulated?

Ultimately, the value of any approach should be measured by
what we learn from adopting it, how we turn that learning into
better treatments for those who suffer and perhaps a deeper un-
derstanding of ourselves as living agents who both comprise and
interact with our environment. We have not thus far had a theory
with such broad and potentially integrative reach. This can be
daunting, but we hope too that it is enlightening.
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