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Most theories of psychopathology have focused on etiology at a specific level (e.g., genetic, neurobio-
logical, psychological, or environmental) to explain specific symptoms or disorders. A few biopsychoso-
cial theories have provided explanations that attempt to integrate different levels and disorders to some
extent. However, these theories lack a framework in which different levels of analysis are integrated
and thus do not explain the mechanism by which etiological factors interact and perturb neurobiology
which in turn leads to psychopathology. We propose that predictive processing (PP), which originated
in theoretical neurobiology literature, may provide a conceptually parsimonious and biologically plausi-
ble framework to achieve such integration. In PP, the human brain can be cast as implementing a gener-
ative model whose task is to minimize the surprise of sensory evidence by inferring its causes and
actively controlling future sensory signals via action. This account offers a unifying model of percep-
tion, action, and emotion implicated in psychopathology. Furthermore, we show that PP can explain
how different factors or levels result in psychopathology via updates of the generative model (the depth
of the PP framework). Finally, we demonstrate the transdiagnostic appeal of PP by showing how pertur-
bations within this framework can explain a broad range of psychopathology (the breadth of the PP
framework), with a focus on bridging well-established psychosocial theories of psychopathology and
PP.

General Scientific Summary
A useful theory of psychopathology explains the mechanism by which intra- and extra-individual
etiological factors interact to influence neurobiology and psychopathology. The current article pro-
vides an overview of one such theory: predictive processing. Predictive processing is a theory of
brain function that offers a unifying model of perception, action, and emotion underlying psychopa-
thology, as well as a computational toolkit for testing hypotheses concerning how these factors can
give rise to a broad range of psychopathology.
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psychopathology
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Psychopathology is considered a function of internal and exter-
nal forces, such as genetic and temperamental predispositions,

biochemical fluctuations, as well as familial, social, and cultural
factors (Kendler, 2019; Millon, 2009). Although there is no defini-
tive conceptualization of mental disorder (Kendler, 2016), one
useful definition states that psychopathology is the observable con-
sequences of the above mentioned factors that cause harmful dys-
function or, more broadly, maladaptive functioning given an
environment (Del Giudice, 2016; Wakefield, 1992).

Most psychopathological theories aim to explain specific symp-
toms, syndromes, or disorders by focusing on specific intra-indi-
vidual explanations such as temperament/personality (e.g.,
neuroticism (Griffith et al., 2010)), behavior (e.g., learning theo-
ries [Bouton et al., 2001]), cognition (e.g., cognitive schemas and
errors [Clark et al., 1999]), motivation (e.g., inhibition/activation
system [Gray & Rowe, 2000]), and neurobiology (e.g., dopaminergic
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model [da Silva Alves et al., 2008]) or extra-individual explanations
such as various types of stressors (Lippard & Nemeroff, 2020).
Stress-diathesis (Ingram & Luxton, 2005; Monroe & Simons, 1991)
and biopsychosocial (Engel & Engel, 1980) frameworks have
attempted to integrate explanations across psychological, social, and
biological factors. Although there have been mechanistic develop-
ments using these frameworks (e.g., how stressors influence the
hypothalamic-pituitary-adrenal axis in emotional problems [Kudielka
& Kirschbaum, 2005]), they remain insufficient in providing tools
for specific and quantitative explanations of psychopathology (Ken-
dler, 2019; McFall, Townsend, & Viken, 1995). In particular, there is
often a lack of detailed information regarding quantitative mapping
of (a) a hidden factor such as a core schema to the observable behav-
iors such as self-report of depression, within a particular domain of
analysis and (b) mechanistic mapping of neurobiology onto psycho-
pathology (Friston et al., 2017; Miller, 2010; Miller & Yee, 2015). In
other words, biological, psychological, and social risk factors have
all proved useful in understanding and predicting psychopathology,
but the field lacks a unified quantitative foundation that explains how
these factors interact over time to give rise to psychopathology (Ken-
dler, 2019). Building (mathematically) formalized models can help
tackle both problems. If an algorithmic model can generate measura-
ble pathological outcomes from the hypothesized causal processes,
then this model becomes a promising mechanistic explanation (Sharp
& Eldar, 2019; Wang & Krystal, 2014) and suggests new targets for
intervention and neurobiological investigations (Marr, 1982; Miller,
2010).
The predictive processing (PP) framework offers both a Bayes-

ian account explaining how an individual interacts with the envi-
ronment (Clark, 2013; Friston, 2010) and a concrete modeling
toolkit allowing for an explicit examination of underlying proc-
esses (e.g., Schwartenbeck & Friston, 2016). Accordingly, PP—as
a conceptual framework and a modeling toolkit—facilitates the
integration of various levels of analysis within and across
domains, and—as a theory of brain and behavior—bridges the gap
between psychosocial and neural theories. In addition, born in the-
oretical neurobiology, this framework offers a plausible and testa-
ble account of neural implementation. An emergent property of PP
is that it brings perception, action, emotion, and cognition-related
processes into a unifying and continuous framework, fostering a
holistic and integrative understanding of how these factors may
interact to give rise to psychopathology. Originally developed to
explain various aspects of general human functioning, its applica-
tion to understanding a variety of pathological phenomena is in line
with the current structural models of psychopathology showing that
normal and abnormal personality can be treated within a single
structural framework (Markon et al., 2005) and newer classification
approaches emphasizing the continuity or dimensionality of psy-
chopathology across the entire population (Kotov et al., 2017).

The Scope of the Present Study

The present study highlights the value of the PP framework in
psychopathology research. Our aim is not to argue for an alterna-
tive to existing models; rather, it is to provide a conceptual frame-
work through which predictions based on existing psychosocial
theories can be explicitly examined and linked to neurobiological
processes. Although this link is achieved primarily via formaliza-
tion of computational processes, the technical details for achieving

this are not within the purview of the present article. Rather, we
hope to familiarize a broad audience with the conceptual founda-
tions of PP and how it can be applied to understanding psychopa-
thology and thereby encourage the pursuit of the subsequent
formal modeling. This means that we will focus on how PP can
help conceptualize and operationalize widely studied psychologi-
cal constructs and facilitate their quantification but will not cover
the actual algorithms carrying out this quantification, for which we
refer the audience to recent tutorial papers (e.g., Friston et al.,
2017; Sajid et al., 2021; Schwartenbeck & Friston, 2016; Smith et
al., 2021; Smith, Parr, & Friston, 2019). As an example, we will
discuss how threat sensitivity, a construct key to anxiety and pho-
bia, can be conceptualized in PP as high precision for sensory sig-
nals carrying information regarding threat. Although this precision
can be modeled as the inverse variance of a probability distribu-
tion over a set of possible discrete sensory and action states, the
exact algorithms will not be covered.

In what follows, we first give a brief overview of PP to show
how it provides a synergistic framework for explaining perception,
action, cognition, and emotion. A considerable proportion of this
paper is devoted to explaining the foundation of PP and how it can
explain human functioning generally, but we view this as neces-
sary to understanding the following content, which is a selective
review of how psychopathology, including existing etiological the-
ories, can be conceptualized in the PP framework. While there are
a number of excellent reviews of the conceptual (e.g., Friston et
al., 2014; Kube et al., 2020; Paulus et al., 2019; Smith et al.,
2019), technical (e.g., Buckley et al., 2017; Linson, Parr, & Fris-
ton, 2020; Smith, Lane, Parr, & Friston, 2019; Smith, Parr, & Fris-
ton, 2019), as well as neuroscientific bases of PP (Friston et al.,
2014; Smith, Badcock, & Friston, 2021), our aim is to show how
more general models of psychopathology, spanning multiple levels
of analysis and across diagnostic boundaries as well as social and
psychological factors, can be understood through PP. We also
highlight some future proposals of how the PP can provide a con-
ceptual framework for specific pathological phenomena. We will
conclude by discussing the value of PP in the context of computa-
tional psychiatry, and its current limitations.

The Predictive Processing Framework

In research, we construct models based on existing knowledge
and compare model-generated predictions against data to check
and update our models. Similarly, PP proposes that the brain main-
tains a generative model predicting the sensory experience result-
ing from the organism’s actions given the environment, and these
predictions are tested against incoming sensory data (Friston,
2010; Friston et al., 2006; Gregory, 1980; Helmholtz, 1925;
Powers, 1973). It is generative because it models not only the sen-
sory data but also the causal processes that yielded those data.
Essentially, a generative model carries the beliefs about how the
world functions and predicts the consequences of interacting with
the environment. This type of model is thought to be evolutionar-
ily conserved because an organism can increase its odds of sur-
vival if it embodies a model of its interactions with the
environment (Ashby, 1947; Conant & Ashby, 1970; Craik, 1943;
Dayan et al., 1995; Friston et al., 2006).

Scientists using a computational approach based on the PP
framework would construct a generative model simulating the
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information processing given the specific experimental setting,
which carries their explicit beliefs regarding how the observable
data are generated from the hypothetical mechanisms. If a genera-
tive model constructed by scientists can yield observable data that
match the empirical data, then they declare that there is good evi-
dence supporting this model. If the observable data are measure-
ments taken from human subjects while interacting with the
environment (e.g., doing a task), then the scientist is constructing a
generative model based on the scientist’s theory of the subject’s
generative model of the world (Schwartenbeck & Friston, 2016).
Figure 1 illustrates how the generative model interacts with the

world via the cycle of receiving sensory inputs from the world and
executing action (output) to the world. The loop starts with the
generative model encoding a set of beliefs about how the world
functions. Based on these beliefs the generative model predicts
what action will lead to what sensory consequences, and then
chooses the action that will lead to the best expected consequence.
Once the action is selected, the generative model also predicts
what sensory consequences are expected upon executing the

action. The generative model impacts the world by action execu-
tion. Now based on how the world actually functions, which is
hidden from the generative model, the world generates actual con-
sequences given the executed action. These consequences form
the sensory feedback to the generative model. Importantly, not all
actual consequences are received by the generative model faith-
fully; instead, consequences provided by the world are weighted
by their precision, with higher precision translated into higher
weight for the sensory signal. This sensory evidence either con-
firms or disconfirms the beliefs, updating the model. Perception
and action are thus unified in this synergistic framework. The na-
ture of this cycle can be captured by the title of William T.
Powers’ classic book on a conceptually similar framework—
Behavior: The Control of Perception (Powers, 1973; also see the
online supplemental materials). Naturally, human beings share
commonalities and display individual differences in perception
and action. Conceptually, genes encode natural preferences, and
thus can be regarded as basis of the initial setup of the generative
model. Life experiences provide constant feedback sculpting this

Figure 1
The Interaction Between the Generative Model and the World

Note. See the online article for the color version of this figure.
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generative model, resulting in updated beliefs and updated predic-
tions regarding future perception and action. Consequently, an
individual’s perception, emotion, cognition, and action at a given
moment reflect the generative model cumulatively shaped by both
nature and nurture.

The Synergy of Perception and Action via Belief
Updating

Free energy measures the uncertainty in a system (Friston et
al., 2006; see the online supplemental materials for the mathemati-
cal definition). A central idea of PP is the free energy principle,
which states that any self-organizing system (e.g., a sentient agent)
will adapt so as to minimize its free energy (Friston, 2010; Friston
et al., 2006). An organism conforming to this principle is capable
of adapting to its environment by predicting the consequences of
its interaction with the environment (Friston et al., 2006; Friston et
al., 2013). To minimize free energy is to minimize the divergence
between predicted and experienced sensory data in perception or
predicted and preferred sensory states in action selection. Mini-
mizing free energy is hence equivalent to maximizing the predic-
tive power of the generative model maintained by the brain
(Friston et al., 2006, 2013). Thus, adaptation becomes a process of
constructing and updating the generative model.
Under the umbrella conceptual framework of PP, predictive

coding theory often refers to the study of neurobiological proc-
esses via which the brain infers the causes of the sensory data
(also see the online supplemental materials). Predictive coding
theory describes the brain as a “prediction machine” that is con-
stantly making predictions about its sensory input. These predic-
tions are based on the beliefs (i.e., a probability distribution over a
set of hypotheses about the world) that are encoded in the genera-
tive model regarding how the world functions at a given moment.
These hypotheses are about what causes the sensory experience in
perception and what sensory outcome will occur following a
potential action. The most probable hypothesis is the expectation.
At a given moment, we make predictions regarding sensory data
(i.e., prior sensory predictions) based on (prior) expectations. At
the next moment, if the sensory input differs from the predictions,
a prediction error (PE, under simplifying assumptions, PE

reflects an increase in free energy; Buckley et al., 2017) is gener-
ated, based on which we update our beliefs, yielding updated
expectations (i.e., posterior expectations) about the world and
updated predictions about the sensory input (i.e., posterior sensory
predictions). This is akin to Bayesian belief updating or inference.
Importantly, the generative model maintained by the brain encodes
not only the beliefs, the sensory predictions, and PEs, but esti-
mates about their “precision” or inverse variance. Whether we
should update our beliefs and to what degree depends on precision
(Clark, 2015; Friston et al., 2013). Precision reflects confidence
regarding how sensory data are generated, with high precision
indicating lower uncertainty and higher confidence. The precision
afforded to a type of sensory evidence or PE can be conceptualized
as describing its salience. The precision of a prior belief reflects
how easy or hard it will be to update based on new sensory evi-
dence or PE, and the consequence of the updated belief is the pos-
terior belief. Hence, a more precise belief (e.g., I highly expect it
will rain today) will need a more precise PE (e.g., a clear sky) to
warrant being updated than a less precise PE (e.g., a cloudy sky;
see Figure 2). If new sensory evidence or PE does not drive an
update of the prior belief, then the posterior belief will be equiva-
lent to the prior belief.

With some of the key terms described above (also see the online
supplemental materials for a table of key terms), we can discuss
how percept formation can be understood under the PP frame-
work. The assumption of the PP framework is that the generative
model conforms to the free energy principle, that is, to minimize
free energy, as free energy reflects uncertainty (or lack of knowl-
edge) about the world. We will next see how percept formation
and action selection emerge naturally from this assumption. It is
crucial to note that the generative model interacts with the world
only via executing actions and receiving sensory inputs as the
feedback (see Figure 1). The generative model implemented by
the brain does not know the processes via which action leads to
sensory feedback. Sensory data are the only new information to
which the generative model has access. The brain must (actively)
infer the cause of the sensory data for perception to occur. Let us
take the example of someone who owns two cats: an orange tabby
and a gray tabby. As the owner is working at her desk, her visual
system senses an orange object on the table. Her brain does not

Figure 2
Example of Belief Updating

Note. A belief is a probability distribution over hypotheses. A belief with the lowest precision will be a flat
prior distribution, conveying the information that every option is equally probable. Precision reflects how nar-
row the distribution is about the expectation. When novel information comes in, the belief distribution will be
updated forming posterior distribution, with a posterior expectation and posterior precision. See the online arti-
cle for the color version of this figure.
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know that it is her orange tabby in front of her but can infer from
the sensory data (orange sensation) that the orange tabby is the
most likely explanation of what caused this sensory data. This “or-
ange tabby” hypothesis is tested by matching the incoming sensory
data against the predicted sensory data of her cat. To the extent
that the hypothesis is accurate, that is, the predicted and incoming
sensory data match, a percept is formed. Hence, the percept repre-
sents the posterior expectation of the cause of the sensory data.
This explanation is in line with the widely accepted theory that
visual perception is a constructive process in which the brain must
actively infer the causes of the sensory data (Palmer, 1999). How-
ever, if the prior hypothesis is inaccurate, for example, “grey
tabby,” the mismatch between the predicted (gray sensation) and
actual (orange) sensory data generates a PE. PE reflects an
increase in free energy, and thus a system conforming to the free
energy principle is motivated to minimize PE. The PE alerts the
generative model that the gray tabby hypothesis is unlikely to
explain the data, prompting the model to update the belief and gen-
erate updated predictions about the sensory data. By doing so, PE
drives the updating of the belief about what causes the sensory
data until PE is itself minimized and the pet owner accurately per-
ceives her cats.
Whether and how much novel sensory evidence or PE can

drive an update of the belief depends on the relative precision of
the PE and the prior belief. In the example of the pet owner at
her desk, if the owner thinks that her gray tabby is in another
room, she has a strong (high precision) expectation of seeing her
orange tabby. Imagine a case in which this is wrong, and her
gray tabby is on the desk. Now, if her office is brightly lit, the
generative model will allocate high precision to the sensory evi-
dence of “greyness” given the high-quality physical environ-
ment, causing a strong PE that will update her belief of which
tabby she is seeing. If her room is poorly lit, then her high-preci-
sion (wrong) expectation that her orange tabby is on the desk is
likely to be retained, since the sensory evidence is allocated low
precision in conveying the color of the cat.
Besides the signal quality, the precision of PE can also be modu-

lated in a top-down manner by higher-order cognitive factors. This
effect is exemplified by spatial attention. Imagine that the pet own-
er’s orange tabby has a bed on the left of her desk. When she would
like to find her cat, there is a strong (high precision) belief that the
orange cat will appear in the left visual field rather than the right
visual field. This belief will lead to a higher precision allocated to
sensory data coming from the left compared with the right visual
field, allowing sensory signals from the left to win the competition
for higher-level cognitive resources (Feldman & Friston, 2010; Parr
& Friston, 2019). This precision assignment describes the psycho-
logical phenomenon of “attending to the left.” It also speaks to why
the perceptual inference is active in PP. This is consistent with the
classical findings of spatial attention that perceptual judgment is
sharper for attended than for unattended locations.
Above we described how perception emerges from minimization

of free energy. Another way free energy (or PE) can be minimized
is by actively sampling the environment to bring the sensory signal
more in line with the predictions (Clark, 2013; Friston et al., 2006).
Hence, action selection can be regarded as the brain making infer-
ences about what actions to execute to bring the self to a preferred
(sensory) state (i.e., a state that minimizes free energy; Botvinick &
Toussaint, 2012; Friston et al., 2013; Powers, 1973). In a familiar

context, the generative model computes the free energy associated
with each action option and selects the one that has the lowest free
energy. In an unfamiliar context, the generative model lacks prior
knowledge to make confident predictions about what actions can
lead to what outcomes (sensory states such as hunger or satiation).
In such a context, exploratory actions possess epistemic value due
to the amount of knowledge that can be gained by executing these
actions (i.e., the epistemic value reflects the amount of free energy
that is expected to be reduced by executing the action). The value
of an action can thus be quantified using free energy, consisting
both of extrinsic value (reflecting the preference of the expected
sensory state following the action) and epistemic value (reflecting
the amount of knowledge about the environment that can be gained
following the action). Thus, in a familiar context, the extrinsic value
dominates the action selection, leading to more habit-driven behav-
iors, whereas, in an unfamiliar context, epistemic value may domi-
nate the action selection, leading to more exploratory behaviors
(Friston et al., 2013, 2015; Parr & Friston, 2017a; also see the
online supplemental materials). Thus, one’s confidence in their
belief regarding the environment, that is, “whether I am in a famil-
iar versus unfamiliar context” influences whether extrinsic or epis-
temic value dominates the action selection decision.

In summary, the generative model is concerned with the states of
the world and predicts the various sensations and actions with the
goal of minimizing free energy. By changing both the beliefs (and
sensory predictions) and actions the model embodies a self-fulfill-
ing loop, in which we are more likely to experience what we expect
to experience (Powers, 1973). In addition to perception and atten-
tion, the PP framework has been used to explain a variety of
higher-order cognitive functions including memory, conceptual
knowledge, and language (Parr & Friston, 2017b; Spratling, 2016).

Predictive Processing Conceptualization of Emotion

There is a long history of contrasting theories regarding how con-
scious emotion arises. These theories range from viewing emotions
as inferred from physiological arousal (Cannon, 1987; James, 1884)
and based on contextual information (Schachter & Singer, 1962), to
viewing them as being simultaneous with physiological arousal
(Cannon, 1987), to viewing them as arising from cognitive appraisals
(Lazarus & Folkman, 1984). More recently, conceptual and simula-
tion studies have applied the PP framework, particularly the active
inference scheme, to explain and formalize the process via which
conscious emotions can be inferred from context-dependent sensory
data (Hesp et al., 2019; Smith, Parr, & Friston, 2019). Sensory data
can come from two sources, one generated from the internal physio-
logical milieu of the body (interoceptive) and the other caused by
external stimuli (exteroceptive and proprioceptive). Applications of
PP to understanding emotion and mood have focused on perception
of the internal bodily signals or interoception, for example, in the
active interoceptive inference theory of emotion (Barrett et al., 2016;
Seth& Friston, 2016). Conceptually, in this view, conscious emotion
has been described as the posterior expectations (i.e., the best hy-
pothesis) about the causes of interoceptive signals (Barrett et al.,
2016; Seth & Friston, 2016; Smith, Lane et al., 2019).

Simulation studies have demonstrated that a conscious emotion
or emotion awareness can emerge from a generative model that
encodes expected interoceptive sensory data given a context (Hesp
et al., 2019; Smith, Parr, & Friston, 2019). Accordingly, the final
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conscious experience of an emotion is the inferred cause (e.g., fear)
of the sensory data (e.g., increased heart rate) which is the same as
the posterior expectation about what emotion caused the sensory
data. Hence, “I feel fearful” because the generative model con-
cludes that fear is the most likely emotion based on a good match
between predicted interoceptive sensations under the hypothesis of
fear (compared with happy or sadness etc.) and the actual interocep-
tive sensations. Whereas conscious emotion or “feeling” is perhaps
the most widely studied aspect of emotion under PP, this frame-
work can also explain other aspects of emotion, including the
behavior involved in emotions. For example, the fear response of a
mouse running away after spotting a cat has been successfully
simulated using the active inference scheme (Linson & Friston,
2019).

Applying the Predictive Processing Framework to
Psychopathology

So far, we have described how the PP framework can explain
basic cognitive and emotional processes. Next, we will describe
how biological, psychological, and environmental influences can
contribute to the formation of dysfunctional generative models in

the PP framework, ultimately giving rise to psychopathology
(illustrated in Figure 3).

Biopsychosocial Factors Under the PP Framework

In the PP framework, both normal and abnormal cognitions,
emotions, and behaviors are part of a process to minimize free
energy. In line with current conceptualization of mental disorder
being environment-dependent (APA, 2013; Wakefield, 1992),
whether the perceptions and actions are adaptive or maladaptive
depends on the context. For example, consuming a highly pre-
ferred food (an action with a higher extrinsic value) can be viewed
as an action leading to a smaller free energy state than consuming
less preferred food items (actions with lower extrinsic values).
This preference is a function of inherited ancient prior beliefs
(e.g., preference as a belief that consuming calorie-rich foods will
reduce uncertainty about future hunger states and therefore lower
free energy) that were adaptive during the paleolithic era, but in
our current context increases the risk of obesity and hypertension.

Furthermore, PP allows belief updating at various temporal
scales, from instantaneous (as in percept formation), to moderate
(as in a change in emotional state), to long-term (as in habit

Figure 3
The Correspondence Between Biopsychosocial Framework and Predictive Processing Framework

Note. Genetic risk factors determine the initial generative model setup. At a given moment, the neural activity conceptualized under predictive coding
maps onto the neural functioning (or endophenotype, such as activation in neural circuitry supporting threat anticipation) in the biopsychosocial model.
The generative model encodes the beliefs about how the world functions, and generates predictions about sensations, actions, and precisions, governing
what information is salient, what behaviors to take, and what sensory consequences can be experienced. This maps onto how neural activity manifests
in cognitions and behaviors. For example, a belief about how the world functions maps onto the idea of cognitive schema. Via interacting with the
world, the generative model updates its beliefs and predictions, mapping onto learning or development. Ultimately, pathological phenomena can be con-
ceptualized as the output of a generative model that is unoptimized given an environment. See the online article for the color version of this figure.
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formation or trait-level changes). Belief updating at a longer tem-
poral scale constrains the belief updating at a shorter temporal
scale, and belief updating at a shorter temporal scale can accumu-
latively lead to update at a longer temporal scale. Such a temporal
hierarchical system makes it possible to conceptualize various fac-
tors such as trait and state level factors and neurodevelopmental proc-
esses (see the online supplemental materials) in psychopathology
comprehensively.

Genes and Temperament

To our knowledge, there has been no direct mathematical for-
malization of how genetic and personality factors impact psycho-
pathology under PP, although they are often implied in the model
specification as prior preferences. Because they are pivotal in our
understanding of psychopathology, in this section we attempt to
explicitly outline some preliminary ideas of how PP can be used to
study how genetic and temperamental influences give rise to psy-
chopathology. Broadly, the influence of genes in the PP frame-
work can be described in terms of initial layout of the generative
model, encoding initial preferences shaped by evolution and inher-
ited individual differences (Badcock et al., 2017; Friston et al.,
2006). One way to incorporate this genetic influence can be in
terms of inherited precisions that influence what the individual is
sensitive to at the beginning of their life, which can be modified
by subsequent life experiences. For example, family studies show
that bipolar mood disorders share less genetic commonality with
unipolar depression than with schizophrenia (Kendler et al., 2020).
However, the endophenotypic mechanisms remain unclear. Using
PP for computational phenotyping (Schwartenbeck & Friston,
2016), one can conceptualize how the genetic factor impacts preci-
sion assignment in a particular functional domain. For example,
people who exhibit high precision in beliefs regarding what causes
the sensory data may show proneness to psychotic symptoms
(e.g., delusions), which are more common in bipolar and schizo-
phrenia than unipolar depression (Cuellar et al., 2005; Goes et al.,
2007). Different phenotypes may emerge from different levels of
sensory precision. Such a conceptualization can be translated into
a formal model. For example, researchers may recruit offspring of
patients from all three types of disorders. Using model compari-
son, researchers may find that a generative model equipped with
higher sensory precision fit the data best for offspring for both
bipolar and schizophrenia, but not unipolar depression. Thus, the
similarity and dissimilarity in genetic factor across the three forms
of psychopathology may be mediated by nuanced precisions.
Closely related to genes is temperament and personality. Neu-

roticism is a reliable risk factor for internalizing disorders, and
heritable (Krueger, 1999; Watson & Clark, 1984). One way neu-
roticism can be conceptualized is as a belief with a high probabil-
ity that the world is unpredictable and threatening, and thus the
generative model allocates a higher precision to sensory evidence
carrying negative or threatening information compared with sen-
sory evidence carrying safe or positive information. Such precision
assignment will lead to a belief update driven largely by threaten-
ing information (more salient than positive or safe information),
manifesting in hypersensitivity to stressors. Here again, one can
use PP to construct explicit models (conceptually and formally) on
how the temperament diathesis can impact sensitivity to external

events, which in turn biases what information drives the update of
the beliefs about the world.

Environment

Even if two individuals—identical twins, for example—have
the same initial generative model, life experiences shape different
trajectories (Badcock et al., 2017; Friston et al., 2006). Repeated
stressful events can shape a generative model into one that is
adaptive in a highly uncertain environment. Such a model may
result in a self-fulfilling prophecy, in which prior beliefs about the
world lead to a vicious cycle of allocating high precision to nega-
tive or punishing sensory evidence, allowing them to drive the
belief updating. And because it is easier for the environmental fac-
tors to influence prior beliefs with lower precision than ones with
higher precision, the PP framework can accommodate ideas such
as clinical staging, in which the precision of maladaptive beliefs
grow over time and become harder to change. PP is also consistent
with the diathesis-stress model, in which symptoms to which an
individual is especially prone to require less environmental stress
to become pathological. For instance, if the genetic or tempera-
mental diathesis can be seen as a generative model assigning
abnormally high precision to sensory information about threat,
then the individual will be more sensitive to potential threat. Con-
sequently, the individual may process more threat-related informa-
tion than safety-related information, resulting in pathological
manifestations.

Finally, an early life environment is especially important in
shaping beliefs about the world. In a nurturing childhood environ-
ment, the individual is more likely to develop a belief system that
the world is predictable and controllable. In a nurturing environ-
ment, stress is temporary, and the individual can bring themselves
to a preferred sensory state by actions, leading to adaptive behav-
iors in the face of challenges. In contrast, childhood adversity can
be regarded as repeated or prolonged period in an unpreferred state
(high free energy resistant to reduction). Such an environment can
engender a strong (high-precision) belief characterized by that the
world is uncontrollable and punishing, reflecting high uncertainty
about what actions need to be executed to safeguard physical and
mental well-being (Peters et al., 2017; Slavich & Irwin, 2014).
The generative model developed in such an environment will be
optimized to survive in an unpredictable world, prioritizing short-
term over long-term reward, in line with social psychological theo-
ries on childhood adversity and psychopathology (e.g., Amir et al.,
2018). When the environment has changed to be less unpredict-
able/uncontrollable, the same generative model then yields pre-
dicted perceptions and actions that are maladaptive. In this sense,
the idea of generative model holding beliefs about the world maps
onto the cognitive schema that represents views of the world and
the self in traditional cognitive theory (Clark et al., 1999).

Psychology

In addition to biological (see the online supplemental materials),
genetic, and environmental factors, several psychological factors
play a role in the development of psychopathology. Take cognitive
flexibility as one example. Cognitive flexibility is commonly asso-
ciated with several clinical disorders (e.g., Geurts et al., 2009; Mur-
phy et al., 2012). Cognitive flexibility requires timely updating of the
beliefs (and related predictions and precision assignments) as context
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changes. Impairments in flexibility can happen by failing to update
the beliefs to account for context updates, leading to context insensi-
tivity. We have mentioned above that the answers to the questions
“which context am I in?,” “Is this a familiar context or a novel one?,”
and “Has the context changed?” are part of the beliefs and are subjec-
tive to being updated by novel sensory evidence. Thus, context-
insensitivity can be conceptualized in the PP framework as a failure
of updating the belief regarding the familiarity of the context. This
can be caused by the precision of the prior belief with a high proba-
bility over “I am in a familiar context” being too high relative to the
precision of the novel sensory evidence. Consequently, a failure to
account for the changes of context can lead to a selection of action
based on a suboptimal calculation that is suitable for an outdated
context.

PP Conceptualization of Exteroception and Threat
Detection in Anxiety

Clinically, anxiety is characterized as an anticipatory response
to possible, but uncertain, future threats (APA, 2013; Barlow,
2000, 2004; Grupe & Nitschke, 2013). Mainstream cognitive con-
ceptualizations of anxiety emphasize that it develops and persists
due to prioritized or biased attention toward threatening stimuli, a
bias that is characterized by (a) facilitated attention, (b) difficulty
in disengagement, and (c) attentional avoidance (e.g., voluntarily
directing attention away from threats) for threatening stimuli (for
review, see Cisler & Koster, 2010). Facilitated attention or percep-
tion of threatening stimuli is hypothesized to be an automatic pro-
cess, while attentional avoidance is viewed to be more controlled,
and difficulty in disengagement to be a mix of the two (Cisler &
Koster, 2010). Here we provide a novel narrative using the PP
framework to explain these diverse aspects of threat-related (exter-
oceptive) attentional biases in anxiety.
We propose that overidentification of threat may be attributed to

an imbalanced precision assignment to threatening versus safety
signals. Specifically, genes, personality (e.g., neuroticism), learn-
ing (e.g., fearful experiences), and the environment (e.g., uncertain
and unpredictable stressors) can shape a generative model that, at
the pathological stage, assigns an abnormally higher precision to
threat-related beliefs than safety-related beliefs. Consequently,
such beliefs will result in predictions favoring threatening sensory
signals and a higher precision assigned to threatening compared
with safe sensory evidence. When both threatening and safe stim-
uli are present, the related sensory evidence competes for cogni-
tive resources for downstream processing (as described in
aforementioned simulation of spatial attention (Feldman & Fris-
ton, 2010) and, owing to its higher precision, threat-related infor-
mation is more likely to be propagate downstream and be
represented in conscious awareness. Threat-related attentional bias
(facilitated attention) is thus an emergent property of maladap-
tively high precision assigned to threatening sensory evidence,
allowing it to capture attention more easily than safety sensory
evidence. Importantly, individuals with anxiety do not encounter
threatening stimuli in a vacuum. Rather, these stimuli are encoun-
tered in familiar settings where learning and prior knowledge pro-
vide contextual cues on what is likely to occur and thus influence
the beliefs and subsequent sensory predictions and precision
assignment for encountering threatening targets. Altogether this
indicates that facilitated attention to threat in anxiety is not a

purely stimulus-driven and automatic effect (Sussman et al.,
2016). Rather, it also involves an anxiety-related and context-de-
pendent top-down modulation via precision assignment that ampli-
fies the threatening signals.

The same PP framework can be applied to explaining inability
to disengage from threat. Disengagement from threatening stimuli
requires the attenuation of the precision allocated to the threaten-
ing sensory signals. A higher-precision sensory evidence requires
more effort to attenuate than lower precision sensory evidence,
resulting in prolonged processing of the attended information.
Therefore, individuals with anxiety may show difficulty disengag-
ing from the (no-longer salient) threatening stimuli because of fail-
ing to attenuate the precision of threatening signals. Finally,
attentional avoidance can be understood from the action selection
perspective such that the generative model assigns a higher value
to escape behaviors compared with other action options, and this
(extrinsic) value reflects the high-precision belief that executing
the avoidant behavior will bring the individual to a relaxed state (a
preferred state with lower free energy). Experimentally, higher
precision over an action will lead to a more confident decision,
which can be captured by faster reaction time (RT). Hence, if the
above conceptualization is correct, then holding everything else
fixed, a model with more imbalanced precision over sensory sig-
nals and actions favoring threat-detection and avoidance behavior
shall be able to explain real human data including choice and RT
distributions in a specific experiment (e.g., discriminating between
threatening vs. safe stimuli).

Relatedly, a series of recent simulations studies on posttrau-
matic stress disorder (PTSD) symptoms can provide insights into
how hypervigilance may be developed. Using the active inference
scheme (modeled using partially observable MDP) Linson and
colleagues (Linson & Friston, 2019; Linson et al., 2020) simulated
how the mouse (Jerry) developed stress responses after encounter-
ing and escaping his feline foe (Tom). Jerry actively infers the
causes of the sensory signals (e.g., Tom’s face) from their conse-
quences (e.g., a dot in the horizon) and constantly updates his
beliefs about the state of the environment (whether safe or threat-
ening). These beliefs lead to action selection from relax, fight,
flight, or freeze depending on the expected free energy. Hypervigi-
lance behavior emerges when Jerry holds excessively a high confi-
dence belief that Tom is present, and thus engages in hyperarousal
and freezing when spotting a remote dot (which turns out to be a
dog). Under this context, an unimpaired simulated mouse would
engage in exploratory behaviors substantially more than the
impaired and hypervigilant mouse.

To give a concrete example, next, in Figure 4, we illustrate how
PP can be integrated with well-established cognitive behavioral
model of social anxiety (e.g., Clark & Wells, 1995). Social situa-
tions trigger high-precision threatening beliefs encoded in the gen-
erative model. This leads to an imbalanced precision assignment
such that threat-related external (e.g., frowning expression) and in-
ternal (e.g., rapid heart rate) sensory evidence are assigned higher
precisions than benign sensory evidence (e.g., neutral expression
and normal heart rate). Given that social signals are often ambigu-
ous (e.g., a puzzled face, mildly high-heart rate), this imbalanced
sensory precision assignment will lead to an amplification of any
threat-related signals in the stimulus compared with safety-related
signals, leading to a biased or selective processing of threat-related
information, resulting in perceived threat. Perceived threat can
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further enhance the strength of internal physiological threat-related
signals (i.e., high free energy state) that the individual is motivated
to reduce by taking actions. This is akin to asking “what do I need
to do to attenuate the precision of these threatening sensory sig-
nals?.” An adaptive action will be to reassign the precision (redi-
rect attention) to safety signals.
However, a socially anxious individual may find it hard to redi-

rect attention and may also have learned from past experience that
escape will lead to an immediate reduction of free energy (a pre-
ferred state), then avoidance behaviors naturally follow. This nar-
rative can be formally modeled using a partially observable MDP,
similar to how interoception and fear-learning have been success-
fully simulated in above mentioned study (e.g., Linson et al.,
2020). This narrative is also in line with empirical findings show-
ing that a failure to adaptively increase the precision assigned to
the internal sensory signals is present in patients with anxiety
among other disorders (Smith, Moutoussis, & Bilek, 2021).
Although the above model is an already-learned generative

model, the learning process (as belief updating) itself can be con-
ceptualized and formally modeled using active inference scheme.
For example, reward-based learning has been successfully mod-
eled using the current framework (FitzGerald et al., 2015).
Broadly speaking, a diathesis of social anxiety, high neuroticism,
can result in a high precision for threatening signals prior to the
encounter of threatening signals. Given the same external environ-
ment, a neurotic individual with a maladaptively imbalanced

precision assignment will learn threat-related information faster
compared with individuals with a more balanced precision assign-
ment, as the learning (i.e., belief updating) is largely driven by
threatening information.

Together, anxiety, depression (see the online supplemental
materials), and other internalizing disorders may be conceptual-
ized as maladaptive precision assignment, both interoceptively
(Paulus et al., 2019) as well as exteroceptively under PP. Notably,
whereas depression has been hypothesized to be related to low
precision assigned to internal sensory signals, anxiety maybe
related to high precision assigned to internal and external sensory
data indicating threats. This means that whereas individuals with
pure depression are insensitive to (internal) sensory signals, indi-
viduals with pure anxiety are more likely to have belief update
driven by threat-related sensory signals. Such predictions are in
line with psychopathology models of the commonality and speci-
ficity of anxiety and depression (Kotov et al., 2017; Watson &
Clark, 1984; Zinbarg & Barlow, 1996).

Conclusions

PP is a framework based in theoretical neurobiology that has
received significant attention across several domains, including
psychology, robotics, artificial intelligence and philosophy (Corlett
et al., 2020). Recent development in psychopathology, and partic-
ularly clinical neuroscience, has witnessed an increasing interest

Figure 4
Model for Social Anxiety

Note. See the online article for the color version of this figure.
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in applying the PP framework to understand pathological phenom-
ena (Corlett et al., 2020; Friston et al., 2014; Smith, Badcock, et
al., 2021). The PP framework is based on one simple principle—
the free energy principle (Friston et al., 2006) and has demon-
strated its power in explaining a range of basic phenomena includ-
ing perception, action, cognition (including language) and emotion
(Friston et al., 2015; Parr & Friston, 2017b; Seth & Friston, 2016).
Conceptually, PP offers a system in which the interaction between
intra- and extra-individual factors dynamically shapes the develop-
ment of the generative model implemented by the brain, which
given the right circumstances can manifest in psychopathology.
Furthermore, it offers a system to explicitly integrate the neurobio-
logical, psychological, and environmental factors into one frame-
work. An appealing feature of PP is that it allows one to formalize
the interaction of intra- and extra-individual factors, and the map-
ping between psychological constructs and their biologically plau-
sible neural implementations. The present article stresses how PP
framework can facilitate the integration of psychological and envi-
ronmental factors and can be used to examine the psychological
and neurobiological mechanisms of well-established psychosocial
models of psychopathology.
Although the focus of this article has been to familiarize the au-

dience with the conceptual aspects of PP, we will briefly discuss
the formal modeling approach here (see the online supplemental
materials for a sketch). PP provides a specific example of recent
movement of computational psychiatry (Adams et al., 2016; Mon-
tague et al., 2012; Wang & Krystal, 2014). To use the PP frame-
work to model a specific pathological phenomenon, researchers
will need to construct an explicit mechanistic model that aims at
producing output behavioral and/or neural responses that can be
tested against empirical data. If the model generated data are
undistinguishable from empirical data, then the face validity of the
hypothetical mechanistic model is established. Researchers can
then apply the model to empirical data to gain insights into the hid-
den pathological processes. Throughout this article, we have men-
tioned multiple examples where we see convincing face validity,
as well as emerging empirical support. Specific model examples
can be found in Statistical Parametric Mapping (SPM, https://
www.fil.ion.ucl.ac.uk/spm/). This formalization provides clarity,
precision, and rigor in psychopathology research (Teufel &
Fletcher, 2020). Note that there are many modeling approaches
that can be described as PP: many active inference studies use par-
tially observable MDP with discrete variables, whereas predictive
coding studies often use continuous variables.
Although the PP framework can unify and operationalize many

theories of psychopathology, there are several challenges that remain
to be addressed. There is considerable simulation-based research sup-
porting PP; however, more experimental studies, particularly studies
designed to integrate existing psychosocial factors and neurobiologi-
cal factors, are needed. An increasing number of empirical studies
involving real human data have applied conceptual ideas from the PP
framework, such as the effect of prior information in guiding percep-
tion in anxiety (Sussman et al., 2016), autism (Lawson et al., 2017),
and psychosis (Powers et al., 2017); however, few of these studies
take advantage of the computational scheme. In addition, although a
growing body of literature is demonstrating the utility of PP in
explaining clinical symptoms/syndromes, most of the research
focuses on interoception (in internalizing disorders) and sensory pri-
ors and PE (in psychoses). It is our hope that the present article draws

attention to threat-related exteroception in anxiety and the role of
emotion in development of psychotic symptoms (see the online
supplemental materials).

Here we provide a couple of examples of hypotheses that can be
tested using the PP framework. A high precision belief (“what I
think I am sensing” or “what I think I will do”) will lead to fast
belief update when the individual enters a novel situation. Once
the beliefs are formed (that is a strong prior belief about the envi-
ronment), these beliefs will be difficult to update further. If a
researcher hypothesizes that anxiety may be related to abnormally
high precision beliefs, then using a threat-related associative learn-
ing task, one may predict that individuals with anxiety will show
faster early belief updating and slower later belief updating. Also,
given that visual attention can be formalized using precision
assignment, one may hypothesize that in a task requiring sustained
attention, performance of individuals with attention deficits such as
in ADHD may best be predicted by a generative model with rela-
tively nonprecise (flat) assignment about which part of the visual
field the signals should be processed.

Future research also needs to address how the PP framework
can help explain and inform nosology. Current genetic research
suggests that genetic vulnerabilities act at a broad level of the hier-
archy, predisposing individuals to psychopathology generally,
rather than specific disorders and symptoms (Waszczuk et al.,
2020). Future PP research could examine whether a genetic liabil-
ity for anxiety, for example, is likely shaped into a phobic genera-
tive model through events that hone the precision of that belief.
Also, it is yet to be examined how the current framework can
explain the transition from one form of psychopathology to
another, for example, mania to depression (Solomon et al., 2010).
Furthermore, contemporary psychopathology models often stress
the thought component, which intrinsically relies on human lan-
guage. Recent advancement in PP, specifically active inference,
has indeed started modeling language generation (Friston et al.,
2020), but future experimental and empirical studies are needed to
examine how maladaptive thoughts (e.g., excessive worries) are
generated and maintained. Finally, although the temporal hierar-
chy of PP naturally incorporates neurodevelopment, there is a gen-
eral lack of developmental and neurodevelopmental studies using
PP, which warrants future research.

To conclude, the PP framework is very much in line with psy-
chotherapy models such as cognitive behavior therapy with focus
on internal schemas, stressing the roles of factors at various tem-
poral scales that lead up to the present manifestation of psychopa-
thology. This framework holds the promise to model and uncover
the mechanisms of modifying prior beliefs that lead to therapeutic
effects, but more intervention research is needed. Furthermore,
given its strong base in neurobiology, the framework can naturally
incorporate changes brought by pharmacological treatments.
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