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Abstract

Background: Adolescence is characterized by affective and cognitive changes that increase 

vulnerability to depression, especially in females. Neurodevelopmental models attribute adolescent 

depression to abnormal responses in amygdala, striatum, and prefrontal cortex (PFC). We 

examined whether the strength of functional brain networks involving these regions predict 

depression symptoms in adolescent females.

Methods: In this longitudinal study, we recorded resting-state functional connectivity (RSFC) in 

174 adolescent females. Using a cross-validation strategy, we related RSFC profiles that included 

1) a network consisting of amygdala, striatum and PFC (within-circuit model), 2) connectivity of 

this network to the whole brain (extended-circuit model), and 3) a network consisting of the entire 

brain (whole-brain model) to depression symptoms assessed concurrently and 18 months later.

Results: In testing subsets, the within-circuit RSFC profiles were associated with depression 

symptoms concurrently and 18 months later, while the extended-circuit and whole-brain model did 

not explain any additional variance in depression symptoms. Connectivity related to anterior 

cingulate and ventromedial prefrontal cortex contributed most to the association.

Conclusions: Our results demonstrate that RSFC based brain networks that include amygdala, 

striatum and PFC are stable neural signatures of concurrent and future depression symptoms, 

representing a significant step towards identifying the neural mechanism of depression in 

adolescence.
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Introduction

Adolescence is a period marked by dynamic reorganization in functional neural networks 

implementing cognitive and affective functions (Galvan, 2017). Adolescence is also a period 

marked by a sharp increase in incidence of depression (Birmaher et al., 2007), especially in 

females (Salk et al., 2017). However, little is known regarding the neural circuitry associated 

with depression in adolescence. Here, we test whether the strength of functional connectivity 

in neural networks that include interconnections between 1) the amygdala, striatum and 

prefrontal cortex (PFC), 2) the amygdala, striatum, PFC and rest of the brain, and 3) the 

whole-brain can account for depression symptom in adolescents concurrently and in the 

future.

Impairments in affective and cognitive functioning are among the core symptoms of 

depression. In line with this, depression in adolescence is associated with alterations in the 

functioning of the 1) amygdala, implicated in emotional evaluation; 2) striatum, implicated 

in reward-processing and 3) PFC, implicated in the regulation of the above processes (Casey, 

2015). However, affective and reward processing, and their control, do not map one-on-one 

onto specific regions, but are computed via rich interconnections within and across the 

affective, reward and control systems, as well as via their interactions with the whole brain 

(Pessoa, 2008). For example, decreased ability to use distal and complex rewards to guide 

behavior may be mediated via reduced recruitment of frontostriatal circuitry (Heller et al., 

2013) and less regulation of emotional reactivity may be mediated via impairment in 

frontoamygdalar circuitry (Banks et al., 2007), potentially resulting in greater depression 

symptoms in adolescence. Not only are amygdala and PFC highly interconnected with each 

other, but they are also highly connected with the rest of the brain and considered “hub” 

regions (Pessoa, 2008).

Furthermore, adolescence is characterized not only by alterations in the functioning of 

amygdala, striatum and PFC, but also by critical changes in the structural and functional 

connectivity between these regions (Paus, 2005). Animal and human studies show that 

structural (Achterberg et al., 2016, Cunningham et al., 2002) and functional (Fareri et al., 

2015, Gee et al., 2013, Jalbrzikowski et al., 2017) connectivity of amygdala and striatum 

with PFC are changing during adolescence. The alteration of amygdalar, striatal and 

prefrontal connections coinciding with the sharp increase in depression in adolescence 

strongly suggests that examining whether these networks contribute to depression symptoms 

in community dwelling adolescents may significantly advance our understanding of the 

neuropathology of adolescent depression.

Based on theoretical neurobiological models of emotional, reward, and cognitive processing 

in adolescence (Casey, 2015), we selected functionally defined nodes corresponding to 

amygdala, striatum and PFC (within-circuit model) from a larger 268-node functional brain 

atlas (Finn et al., 2015). Since the connectivity of hub regions such as amygdala and PFC 
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may be established earlier in life while the development of long-range connections between 

hubs and non-hubs continues through adolescence (Di Martino et al., 2014), in another 

model we examined network connectivity not only within the network consisting of 

amygdala, striatum and the PFC, but also of this network to the rest of the brain (extended-
circuit model), as well as a further expanded whole-brain model. Specifically, we were 

interested in examining whether including additional information from the extended and 

whole brain network accounted for additional variance in adolescent depression symptoms 

over and above the within-circuit model. We tested these models in a large (N=174) 

community dwelling sample of adolescent females using a connectome-based predictive 

modeling (CPM) approach (Shen et al., 2017, Finn et al., 2015) that has been utilized to 

predict personality traits and a wide range of psychological functions such as intelligence, 

sustained attention, and creative ability in normal function and disorders such as attention 

deficit hyperactivity disorder and anxiety (Hsu et al., 2018, Feng et al., 2018, Beaty et al., 

2018, Rosenberg et al., 2016). In the present study, we used cross-validation approaches, 

deriving the neural network model in training subsets of the sample and then directly 

examining the performance of the model in predicting depression symptoms in the 

remaining (testing) subsets. By keeping the training and testing subsets independent, the 

cross-validation approach directly tested how well the models performed in new data, 

thereby facilitating future generalizability of neural network findings and their eventual 

development as neuroimaging-based markers of adolescent depression symptoms with real-

world applicability.

Materials and Methods

Participants

The current study recruited 261 adolescent females (mean age = 15 years, 3 months, SD = 7 

months) from the larger Adolescent Development of Emotions and Personality Traits 

(ADEPT) project. Participants and their parents gave informed assent and consent 

respectively, and all families were financially compensated for participation. The parent 

ADEPT project is a longitudinal project designed to examine personality traits and first 

onset of depression, approved by the Institutional Review Board at Stony Brook University. 

The parent ADEPT cohort consisted of 550 adolescent females (13.0 to 15.5 years of age at 

baseline assessment, mean age = 14 years, 5 months; SD = 7 months) and one of their 

biological parents as informants (93.1% mothers) that were recruited from the community. 

The cohort consisted of 80.5% Caucasian, 5.1% African-American, 8.4% Latino, 2.5% 

Asian, 0.4% Native American, and 3.1% “Others”. Inclusion criteria included fluency in 

English, capable of reading and comprehending questionnaires, and consent for participation 

from a biological parent. For additional description of recruitment procedures please refer to 

previous publications (Nelson et al., 2015, Speed et al., 2015).

At the baseline assessment (wave1), adolescents with lifetime history of major depressive 

disorder or dysthymia were excluded from further follow-up assessment waves. After 

completing the baseline assessment (wave1), participants were invited for follow-up clinical 

assessments for 3 years, and resting state fMRI (RSFC) data were acquired at the first 

follow-up (9 months after the baseline assessment). With the final assessment still under 
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collection, the current study was based on assessment concurrent to and 18 months post-

fMRI acquisition. The fMRI sample (N = 261) consisted of all participants who were willing 

to participate and met basic eligibility criteria for MRI (e.g., without metal implants, braces, 

claustrophobia, etc.). Difference in severity of depression symptoms between the fMRI 

subsample and participants who were not scanned were minimal suggesting little if any bias 

(Jin et al., 2017).

A total of 87 participants were excluded due to technical problems during data acquisition 

and incomplete fMRI data (N = 21), low fMRI image quality during initial quality control 

(N = 7), data processing errors due to crashed data (N = 2), subjects falling asleep (N=2). 

We also applied a stringent control of motion (see below) resulting in further exclusion of 55 

participants. A final set of 174 participants were included for further analyses. Among these 

participants, depression symptom measures were completed for 173 at time of fMRI and 165 

participants 18 months later.

Clinical measures

Mood and anxiety symptoms in adolescents were measured using the Inventory of 

Depressive and Anxiety Symptoms (IDAS-II), a new-generation factor-analytically derived 

measure of these symptoms (Watson et al., 2012). The IDAS-II measures individual 

symptoms of depression and anxiety, and also includes a general depression scale that 

converges strongly with commonly used measures of depression, such as Beck Depression 

Inventory (Beck et al., 1996). IDAS-II scales have demonstrated high internal consistency 

across multiple samples, with most showing coefficient alphas above .80 in adolescents 

(Watson et al., 2007) and other populations (Watson et al., 2012). Scales were computed as 

mean item response on a scale of 1–5 if at least 85% of items were endorsed.

Experimental design and statistical analyses

Image acquisition.—Structural and functional data were acquired using a Siemens Trio 3 

T scanner with a 12-channel head coil at Stony Brook University SCAN Center. Resting-

state data were acquired using a 6.02-min, T2-weighted echoplanar imaging (EPI) sequence 

(37 oblique-axial slices, in-plane resolution = 2.3 mm × 2.3 mm, slice thickness = 3.5 mm, 

field of view (FOV) = 224 mm x 224 mm, matrix = 96 × 96, TR = 2100 ms, TE = 23 ms, flip 

angle = 83°) while participants were asked to lay still with their eyes open to a fixation on 

the screen. A 5 to 6 min long acquisition sequence has been used to detect functional 

correlations between regions at rest in children and adults (Van Dijk et al., 2010, Braun et 

al., 2012, Thomason et al., 2011) and in psychiatric populations (Baker et al., 2019). 

Anatomical images were acquired using a T1-weighted MPRAGE sequence (in-plane 

resolution: 1 mm × 1 mm, FOV = 256 mm x 256 mm, with 176 slices). To ensure 

consistency among participants, brain images were aligned to the anterior-posterior 

commissure plane.

Image preprocessing.

General preprocessing.—Resting-state EPI data were preprocessed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/) and custom scripts in Matlab (https://

www.mathworks.com/products/matlab.html) following standard procedures. After 
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discarding the first 6 volumes for spin saturation, EPI data were slice-time corrected, 

realigned to the first volume, and coregistered to the MPRAGE. The structural MPRAGE 

data was used to derive normalization parameters by mapping onto T1 template in the 

Montreal Neurological Institute (MNI) space. The EPI data then underwent mode 1000 

normalization (Power et al., 2012). The MPRAGE data were segmented into grey matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF), and were normalized to MNI 

space by applying the transformation matrices derived above. Erosion using the erode3d 

function from the NeuroElf (http://neuroelf.net) was then applied to WM and CSF images to 

decrease the potential overlapping signal with GM (Power et al., 2017). Finally, timeseries 

data averaged across all voxels within each node was extracted from the GM mask. 

Following a previously established preprocessing pipeline, no further spatial smoothing was 

applied given that the timeseries was already averaged across voxels within each node (Finn 

et al., 2015).

Functional connectivity specific preprocessing.—Further processing included 

rigorous motion correction as well as bandpass filtering optimized for RSFC analyses. For 

motion control (Power et al., 2012), framewise displacement (FD) was calculated using the 6 

rigid body motion parameter estimates, and volumes exceeding an FD values of 0.5 mm 

were censored from run timeseries. To balance the data quality and quantity in our study, the 

FD cutoff was chosen based on previous work using relatively motion-free participants 

showing that this value would flag high motion volumes above the norm (Power et al., 

2012). Additionally, DVARS (D = temporal derivative of time courses, VARS = RMS 

variance over voxels) was computed and the cutoff for censoring was set as two standard 

deviations above the median across all participants. A volume was flagged if either the FD 

or the DVARS criteria was met. Variances that could be attributed to censored volumes were 

regressed out via regressors of no interest that contained binary coding [0s and 1] with a 1 

assigned to the to-be-removed volume. If there were k flagged volumes, k orthogonal 

regressors were then included in the nuisance regressor matrix. The participant was excluded 

from further analyses, if less than 71 volumes were artifact-free. Results using a higher 

cutoff threshold of 99 volumes (~3.5 min) were reported in Appendix S1 in the Supporting 

Information. About 24% of participants were excluded from further analyses due to lack of 

sufficient artifact-free volumes. In addition to censored volume regressors, the nuisance 

regressors also consisted of 1) 24 motion regressors including the 6 rigid body motion 

parameter estimates and their first derivatives, and the square of these 12 linear parameter 

estimates, and 2) 3 nuisance signal regressors including mean signal averaged over CSF, 

mean signal averaged over WM, and mean signal averaged over the whole brain (Baker et 

al., 2014, Baker et al., 2019). Finally, for each subject, a temporal band filter of 0.009 HZ < f 
< 0.08 HZ was applied using butterworth filter (butter function in Matlab) to demeaned and 

detrended EPI data, as well as the 27 nuisance regressors.

In addition to using well-established preprocessing methods to minimize motion-related 

confounds, we examined whether frame-by-frame motion is correlated with depression 

symptoms.
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Adolescent depression network models.—The details regarding selection of nodes 

(i.e., anatomical regions), network models and cross validation analyses are outlined in 

Appendix S2. In short, network nodes in the present study were a subset of nodes derived 

from a larger atlas that was based on RSFC of 45 healthy participants (Finn et al., 2015) 

(Figure 1–A). RSFC was measured as the Pearson’s correlation coefficient between time 

series extracted from all possible pairs of the 217 nodes from this atlas. The adolescent 

depression-circuit consisted of a subset of 40 nodes corresponding to dorsolateral prefrontal 

cortex (dlPFC), ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), 

amygdala (AMY), and striatum (STR) (Figure 1–B). See Table S1 for the complete list of 

the nodes. Three anatomical models, within-circuit, extended-circuit, and whole-brain 
(Figure 2) were constructed to investigate if the RSFC edges (the connectivity between two 

nodes) within the adolescent depression-circuit were associated with depressive severity 

concurrently and 18 months later. In order to control for the effect of developmental stage as 

well as the effect of movement, we obtained the residuals of each edge after regressing out 

age and number of artifact-free volumes across all participants. The residuals of the 

depression symptom severity measures were computed in the same way. We then tested the 

association between each of the network models with adolescent depression symptoms, 

using the well-established CPM method (Shen et al., 2017) that has been used to predict 

various individual difference measures (Hsu et al., 2018, Feng et al., 2018, Beaty et al., 

2018, Rosenberg et al., 2016). Statistical significance was evaluated using a 10-fold-cross-

validation (10fCV) approach (see Appendix S2 for details).

Anatomical localization of the RSFC edges that predict depression symptoms.
—After establishing the association between RSFC and depression symptoms, we identified 

edges that contributed to the successful prediction of concurrent and future depression 

symptoms for the successful anatomical model and then visualized these RSFC edges, i.e., 

the composition of the connectivity predictive of depression symptoms. The most reliable 

RSFC edges were identified as the ones selected in more than 95% of the 1,000 × 10-fold 

iterations. We also examined the edges using a lower threshold of 90% to qualitatively test if 

the RSFC profile varies due to different thresholds (Figure S2). To determine the anatomical 

locations of these edges we examined the MNI coordinates of the nodes which contributed 

to the identified edges.

Results

Depression symptom scores

IDAS-II General Depression scores concurrent with fMRI (M = 1.59, SD = .58) and 18 

months later (M = 1.66, SD = .68) did not differ, t(164) = 1.50, p = .136.

Circuit-based RSFC profile explains concurrent and future depression symptoms

Given that head motion is a known confound for RSFC, we first confirmed that average 

frame-to-frame motion was not correlated with both concurrent (r = .05, p = .519) and future 

(r = .04, p = .587) depression symptoms in the participants included in our analyses. 

Similarly, the number of artifact-free volumes were not correlated with concurrent (r = −.05, 

p = .528) and future (r = .01, p = .851) depression symptoms in our sample.
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By using a cross-validation approach, we examined whether the within-circuit RSFC 

profiles were associated with concurrent and future depression symptom severity scores. The 

within-circuit RSFC profiles were derived from the training sets and were tested in the 

testing sets by examining the correlation between observed and model-predicted depression 

severity scores (Figure 3 A–B). The results revealed a significant correlation, r = .22 (p 
= .032) between predicted and observed depression symptom scores for concurrent 

depression symptoms. The significance of the model remained when examined using 

another measure of association, i.e., mean squared error (MSE = .36, p = .033). Importantly, 

the same neural model that was derived based on relationship with concurrent depression 

symptoms in the training set also demonstrated a significant correlation with depression 

symptoms 18 months later, r = .20 (p = .042) and MSE = .47 (p = .022), in the testing set. 

Given that there is a substantial correlation between the concurrent and future depression 

symptoms across the entire sample (r = .61, p < .001), this finding suggests that the RSFC 

model trained using concurrent depression symptoms captures the individual differences in 

depression symptom severity that is stable over time, rather than specific to concurrent 

depression symptoms.

Next, we tested the model performance of the extended-circuit model and the whole-brain 
model to investigate whether extending the RSFC space outside of the depression-circuit led 

to higher association with depression symptom severity using the same cross-validation 

analyses. Our results showed that the extended-circuit model, which naturally included 

edges from the within-circuit model (Figure 3 C–D), did not correlate with concurrent 

depression symptoms, r = .16 (p = .069) and MSE = .36 (p = .080) or depression symptoms 

18 months later, r = .13 (p = .091) and MSE = .49 (p = .129). The whole-brain model, which 

included both extended and within-circuit models (Figure 3 E–F), showed a significant 

correlation for concurrent depression symptoms, r = .19 (p = .038) and MSE = .34 (p 
= .047), but not for depression symptoms 18 months later, r = .11 (p = .131) and MSE = .49 

(p = .240). Importantly, after accounting for the variance in depression symptoms due to 

within-circuit model, no additional variance in depression symptoms was accounted for by 

the additional edges in extended-circuit model for both concurrent depression symptoms 

(ΔR2 = −.01, p = .588) and depression symptoms 18 months later (ΔR2 = .03, p = .198) as 

well as by the additional edges in the whole-brain model for both concurrent depression 

symptoms (ΔR2 = −.00, p = .508) and depression symptoms 18 months later (ΔR2 = −.01, p 
= .64). The slight decrease in variance explained by the extended-circuit model and whole-
brain model, compared to the simpler within-circuit model, indicates that additional edges 

increased amount of noise in predictors and diluted the signal, which was revealed in testing. 

In sum, 10FCV analyses revealed significant association for the within-circuit model with 

concurrent depression symptoms and depression symptoms 18 months later. Expanding the 

RSFC space to include regions outside of the depression-circuit did not increase the 

correlation with depression symptoms.

Functional anatomy of RSFC profiles associated with adolescent depression symptoms

Next, we characterized the predictive model, i.e., the within-circuit model, anatomically by 

visualizing the specific edges that contributed most to the successful correlation with 

depression symptoms. It is important to note that due to the nature of cross-validation, a 
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slightly different set of edges may be selected in each iteration of the cross-validation. 

Hence, we took a conservative approach of visualizing edges that were selected in at least 

95% iterations of the analysis (i.e., the overlapping edges of 95% of the models derived in 

all iterations). As visualized in Figure 4, the node with the maximum contribution to 

correlating with concurrent depression symptoms in the within-circuit model was in right 

ACC (MNI coordinate: x = 7, y = 21, z = 32), with 7 connectivities originating from it. This 

node was followed by nodes contributing 3 connectivities, which were right vmPFC (MNI 

coordinate: x = 27, y = 18, z = −21), left vmPFC (MNI coordinate: x = −8, y = 40, z = −21), 

and left ACC (MNI coordinate: x = −5, y = 13, z = 29). The remaining nodes passed the 

threshold are shown in the corresponding figure with the region labels listed. Using a relaxed 

threshold of 90% overlapping edges revealed a similar anatomical profile, emphasizing the 

right ACC and vmPFC as being most contributive (Figure S2).

Discussion

In the present study, we used a well-established data-driven approach derived from 

connectome analyses (Shen et al., 2017, Finn et al., 2015, Hsu et al., 2018, Feng et al., 2018, 

Beaty et al., 2018, Rosenberg et al., 2016) to test whether a highly influential yet, untested 

neural network consisting of amygdala, striatum and PFC (Ernst et al., 2006, Casey, 2015) 

predicts adolescent depression symptoms. Specifically, we examined whether RSFC 1) 

within this network and 2) extending into the rest of cortical-subcortical areas is associated 

with depression symptoms in a community sample of adolescent females both concurrently 

and 18 months later. Our results demonstrated that intrinsic functional connectivity models 

involving this neural network were stable correlates of concurrent and future adolescent 

depression symptoms. These models were tested using a cross-validation approach and 

represent a significant step towards understanding the neural mechanisms of depression in 

adolescence.

Recent studies show that alterations in RSFC of amygdala (Callaghan et al., 2017), striatum 

(Pan et al., 2017), as well as ACC and medial frontal gyrus (Ho et al., 2017) individually are 

associated with adolescent depression; however, no studies to our knowledge have examined 

whether the entire neural circuit comprising these regions is associated with increased 

depression symptoms during adolescence. The present study is the first to demonstrate the 

use of RSFC models involving the network consisting of all three regions for successful out-

of-sample prediction of depression symptoms in adolescence. Importantly, neural network 

models that were associated with concurrent depression symptoms were also associated with 

future depression symptoms, indicating stability of the depression-related RSFC profile. 

Hence, our results demonstrate that rather than focusing solely on activity in striatum, 

amygdala or PFC, it is important to examine functional networks that connect these regions 

to each other to fully understand the mechanisms involved in adolescent depression 

symptoms. However, extending the network to include connections with the rest of the brain, 

or including RSFC of the whole-brain performed no better than the network consisting of 

striatum, amygdala and PFC only. These findings provide strong support for 

neurodevelopmental models proposing that striatum-based approach, amygdala-based 

avoidance and PFC-based regulatory components play a critical role in depression during 

adolescence (Casey, 2015, Ernst et al., 2006).
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When examining the anatomical localization of the depression-related RSFC, we visualized 

connectivity edges that were present across most of the cross-validation iterations, and 

thereby were the edges correlated with depression symptoms consistently across various 

sub-samples. The results revealed that nodes in ACC had the highest number of connectivity 

that contributed to the out-of-sample prediction of adolescent depression symptoms, 

followed by vmPFC. Studies show that the dorsal-caudal portions of ACC and medial PFC 

play an important role in monitoring difficulty arising from choice between competing 

alternatives (Shenhav and Buckner, 2014) including monitoring of emotion-related 

competition (Etkin et al., 2006) and making choices based on reward value (Bush et al., 

2002). The ventral-rostral portions of ACC and medial PFC, including vmPFC have been 

shown to be involved in regulating emotional conflict (Etkin et al., 2006), directing attention 

away from emotional information that is irrelevant to the task (Mohanty et al., 2007), and 

modulating emotional response via strategies such as reappraisal (Banks et al., 2007). The 

crucial role of ACC and vmPFC in regulation of affective and reward processing is also 

supported by evidence showing rich structural (Carmichael and Price, 1995) and functional 

(Etkin et al., 2006, Szekely et al., 2017) connectivity of ACC and vmPFC with limbic, 

striatal, and prefrontal regions. Finally, the ACC and vmPFC are core regions in the cortical-

limbic network, which have long been linked to depression (Drevets, 2000, Drevets et al., 

2008), and abnormal metabolic rate in ACC and vmPFC has been associated with baseline 

depression and treatment outcome (Drevets et al., 2002). Overall, our results highlight the 

importance of aberrant PFC-related regulatory mechanisms in explaining the increased rates 

of depression in adolescence

It is worthwhile to highlight that our findings of the association between RSFC profiles and 

depression symptoms were obtained using a well-established approach (Hsu et al., 2018, 

Feng et al., 2018, Beaty et al., 2018, Rosenberg et al., 2016) with cross-validation, following 

latest advancement in connectome methodology. We constructed RSFC models based on the 

correlation between the connectivity features and depression symptom scores in a subset of 

data, and estimated the predicted effect size in an independent testing subset (10fCV). In 

doing so, we ensured independence between feature selection and out-of-sample prediction, 

thus minimizing the chance that a significant association was driven by outliers, and 

increasing the chance of our results being generalizable in future data. These findings remain 

significant in 5-fold-cross-validation, and are robust to control of age, artifact-free volumes, 

and parental education, i.e., SES as well as using a subset of participants with more stringent 

motion control (see Appendix S1). Future work in which models are trained and tested on 

data from not only resting state, but also relevant tasks reflecting emotion processing, 

cognitive reappraisal, and reward learning, as well as various symptom dimensions, may 

help clarify the specificity and generalizability of the current model. For example, 

researchers can collaborate to identify edges that most consistently predict depression across 

tasks, settings, and comorbidities to reduce the risk of overfitting and improve 

generalizability. Furthermore, future work should examine the generalizability of these 

neural network models to depression in adolescent males. In addition, recent evidence has 

suggested that task-based connectivity models outperform resting-state connectivity models 

in predicting fluid intelligence (Greene et al., 2018), and resting-state connectivity models 

were associated with higher-order latent-factors stronger than lower-order cognitive task 
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scores (Dubois et al., 2018). This indicates that engaging networks in targeted domains can 

improve the predictability of individual differences. Relatedly, while the current 

investigation tests the association of a neurodevelopmental theory-driven network model 

with depression it may be useful to compare this model with normatively derived resting-

state functional connectivity networks (e.g., default mode or saliency networks) in future 

studies.

The advantage of using a community sample in the present study was to provide information 

that is broadly generalizable and largely uncontaminated by medications; however, a 

limitation is that only some participants had clinically significant depression. While 

examining low severity depression symptoms is informative because there is clear evidence 

of etiologic continuity between clinical and subthreshold depression (eg., (Ruscio, 2019)), 

our models need to be replicated in treatment-seeking samples. Hence, it is important to 

conduct future studies to examine whether adolescents with concurrent MDD diagnoses 

show a similar connectivity pattern as revealed in this study. It is possible that the 

association between RSFC and symptom severity may not be linear, such that there exists a 

steeper, flatter, or even reverse relationship in individuals above the clinical threshold of 

MDD. Furthermore, because male depression has been shown to have a distinct etiology 

(Kendler et al., 2006, Kendler et al., 2002) we sought to reduce heterogeneity in this study 

by testing our neural models in females only. Thus, future research is needed to determine 

whether these models perform equally well in male samples. Although to our knowledge, 

the current study has the largest adolescent female sample size to date examining depression 

symptom-relevant neural circuit concurrently and prospectively using cross-validation 

approach, it is still relatively a small sample. This challenge was partially addressed by using 

the cross-validation approach, however it is critical to test the current findings in larger 

samples in the future. Also, the role of these models in predicting pre-puberty and 

childhood-onset depression remains to be investigated. Analytically, while studies have 

conducted analyses using different thresholds for feature detection, for e.g., (Finn et al., 

2015, Greene et al., 2018), these studies typically involve much larger sample sizes than ours 

and examine traits that are known to have approximately normal distribution, allowing them 

to overcome low power-related constraints that arise when the feature selection thresholds 

are high. Furthermore, the current findings were based on relatively short length of scanning 

time. The optimal scan time depends on multiple factors, including the metrics of RSFC, the 

scope of the connectivity (ranging from voxel-wise to whole-brain connectivity), the tradeoff 

between the quantity of data and participant-related factors such as fatigue, motion, 

sleepiness, etc. (Tomasi et al., 2017). Studies have recommended a single scan session 

between 7 (Tomasi et al., 2017) to 13 min (Bessette et al., 2018, Birn et al., 2013) for 

obtaining reliable resting state data.

In sum, by combining neurobiological models and a cross-validation analytical approach, 

the current study demonstrated the importance of intrinsic functional connectivity based on 

PFC, amygdala, and striatum in adolescent depression. The association was evident both 

concurrently and 18 months later. These intrinsic functional connectivity profiles not only 

contain information about connectivity between large-scale anatomical regions, but also 

connectivity between finer grained sub-regions. Furthermore, it is important that 

interconnections between the amygdala, striatum and PFC were critical in predicting 
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adolescent depression symptoms and that extended connections of these regions or the 

whole brain circuit did not add additional variance. Finally, within this circuitry, connections 

within prefrontal regions and from prefrontal to subcortical regions were found to contribute 

the most to current and future depression symptoms, highlighting the importance of this 

circuitry in the etiology of depression in adolescence. These results advance our 

understanding of the neural mechanisms of depression in adolescence and demonstrate that 

neural measures derived from the basic developmental neuroscience literature can predict 

depression symptoms. Present findings also emphasize the importance of the neural circuitry 

connecting amygdala, striatum and PFC as potential target for early identification and 

treatment of depression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• Several influential neurobiological models of normative development attribute 

affective and cognitive changes in adolescence to changes in amygdala, 

striatum and PFC functioning.

• Using machine learning strategies, we demonstrate that the strength of 

resting-state functional connectivity in the network connecting these regions 

predicts future depression symptoms in a community sample of adolescent 

females.

• Large-scale networks that include the whole brain do not account for 

additional variance in predicting depression.

• These results advance our understanding of the neural mechanisms of 

depression in adolescence and demonstrate that neural measures derived from 

the basic developmental neuroscience literature can predict depression 

symptoms.

• Present findings emphasize the importance of the neural circuitry connecting 

amygdala, striatum and PFC as potential target for early identification and 

treatment of depression.
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Figure 1. Nodal definition and circuit coverage.
A. Nodal definition. Whole-brain nodes based on a resting-state functional connectivity 

derived (Shen et al., 2013) atlas, which parcellated the brain into 268 regions. After 

removing nodes in the brain stem and cerebellum, 217 nodes were retained for the current 

study. B. Anatomical coverage of the depression-related circuit. From the nodes depicted 

in Figure 1 A, we selected all nodes whose centers fall within the anatomical boundaries of 

prefrontal cortex (PFC) including bilateral dorsolateral and ventromedial PFC and anterior 

cingulate cortex, as well as bilateral amygdala (AMY), and striatum (STR) including 

bilateral caudate, putamen, and pallidum.
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Figure 2. Illustration of the three anatomical models.
For each participant, the pairwise connectivity between the 217 nodes across the whole brain 

consisted of the 217 × 217 RSFC matrix symmetric about the diagonal. This matrix formed 

the initial connectivity feature space, with each cell of the matrix representing the 

connectivity strength between two nodes (i.e., an edge).The first two anatomical models 

involved a subsection of this connectivity space, and the third model covered the entire 

connectivity space. A. The within-circuit model. All possible pairs of connections between 

the PFC, and AMY nodes formed the RSFC connectivity space, resulting in 780 edges. B. 
The extended-circuit model. Connectivity between each of the nodes included in the 

within-circuit model (cyan) and of these within-circuit nodes to the rest of the brain 

(magenta), resulting in 7,080 additional edges. C. The whole-brain model. Connectivity 

between each of the nodes involved in the within-circuit model (cyan) and of these nodes to 

the rest of the RSFC connectivity space (magenta) were included, resulting in 22,656 

additional edges compared to the within-circuit model. The bottom panel depicts these 

models using nodes and edges. For visual display clarity, not all possible nodes and edges 

were drawn.
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Figure 3. Circuit-based RSFC profiles explain concurrent and future depression.
Results of 10-fold-cross-validation (10fCV) shows correlation between observed depression 

scores and depression scores predicted by within-circuit model for A. concurrent and B. 
future depression. The score distributions of Pearson’s correlation coefficients are shown in 

cyan, with the solid blue line indicating the mean. The distribution of the correlation 

coefficients under the null hypothesis is shown in gray, with the dashed black line showing 

the 95th percentile of this distribution. The mean of the actual correlation coefficients 

exceeds the 95th percentile of null distribution establishing statistical significance in A and 
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B. Results for extended-circuit model (C-D) and whole-brain model (E-F) show that these 

models do not account for additional variance after the variance accounted for by within-

circuit model (see results for significance testing).
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Figure 4. Key connectivity edges associated with adolescent depression.
A. circular plot organizes the 268 nodes (inner circle) from the original atlas into 10 

anatomical regions (outer circle). These regions were organized roughly from anterior to 

posterior (top to bottom), with the right and left hemisphere in split halves. The color of the 

nodes and edges indicates positive (magenta) and negative (cyan) correlation with 

depression scores surviving the 95% thresholds. Regions between which the depicted edges 

connect were listed in the table under the circular plot. B. The same edges shown in A are 

shown on the glass brain. The size of the nodes indicates the number of edges connected 

with the corresponding node. C. The edge distribution showing the high-connectivity (>=3 

connectivity) nodes with their edges in the glass brain. The Yale Connectivity Viewer, an 

online visualization tool was used to generate the corresponding figures (http://

bisweb.yale.edu/build/connviewer.html).
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Table 1.

Demographic information.

Age at fMRI
(mean and SD)

IDAS-II
General

Depression at
fMRI

(mean and SD)
and

(percentile
ranks)

IDAS-II
General

Depression 18
months later

(mean and SD)
and

(percentile
ranks)

Parental
Education

(frequency)

Parental
Marital
Status

Resting-state fMRI 
sample

15.29 (.65) 1.59 (.58)
1.16 (25th)
1.42 (50th)
1.80 (75th)
3.59 (99th)

1.66 (.68)
1.16 (25th)
1.42 (50th)
2.00 (75th)
4.23 (99th)

7.5% neither parent attended college 86.2% living 
together

27.6% one parent at least attended 
college

13.6% not living 
together

64.4% both parents at least attended 
college
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