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ABSTRACT
BACKGROUND: Threat biases are considered key factors in the development and maintenance of anxiety. However,
these biases are poorly operationalized and remain unquantified. Furthermore, it is unclear whether and how prior
knowledge of threat and its uncertainty induce these biases and how they manifest in anxiety.
METHOD: Participants (n = 55) used prestimulus cues to decide whether the subsequently presented stimuli were
threatening or neutral. The cues either provided no information about the probability (high uncertainty) or indicated
high probability (low uncertainty) of encountering threatening or neutral targets. We used signal detection theory and
hierarchical drift diffusion modeling to quantify bias.
RESULTS: High-uncertainty threat cues improved discrimination of subsequent threatening and neutral stimuli more
than neutral cues. However, anxiety was associated with worse discrimination of threatening versus neutral stimuli
following high-uncertainty threat cues. Using hierarchical drift diffusion modeling, we found that threat cues biased
decision making not only by shifting the starting point of evidence accumulation toward the threat decision but
also by increasing the efficiency with which sensory evidence was accumulated for both threat-related and neutral
decisions. However, higher anxiety was associated with a greater shift of starting point toward the threat decision
but not with the efficiency of evidence accumulation.
CONCLUSIONS: Using computational modeling, these results highlight the biases by which knowledge regarding
uncertain threat improves perceptual decision making but impairs it in case of anxiety.

https://doi.org/10.1016/j.bpsgos.2023.07.005
A vast and influential cognitive literature has focused on the
importance of perceptual and attentional biases toward
threatening stimuli that are heightened in anxiety. The view that
our sensory systems are biased to detect threatening stimuli is
based on evidence showing faster detection of threatening
compared with neutral stimuli in the general population, an
effect that is even more pronounced in anxiety (1,2). Additional
evidence of this bias is reflected by a tendency to interpret
neutral stimuli as being negative (3,4). Treatment strategies
such as attentional bias modification are believed to work by
ameliorating these attentional or perceptual biases in anxiety
(5). Despite the hypothesized importance of these threat biases
in anxiety, several questions remain unanswered. Below, we
highlight four key issues regarding threat biases in anxiety.
Then, we address these issues by quantifying bias through
computational modeling and examining how it is influenced by
prior knowledge regarding the relevance and uncertainty of
threatening stimuli. An understanding of these computational
mechanisms will help elucidate the downstream cognitive,
emotional, and social consequences of threat biases in anxiety
and guide points of intervention to refine anxiety treatments.
ª 2023 THE AUTHORS. Published by Elsevie
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First, according to several influential frameworks, anxiety is
clinically conceptualized as a response to potential future
threat emphasizing the importance of top-down factors such
as schemas, anticipation, and expectation of threat [see (6) for
review]. However, threat-related biases have typically been
examined using experimental paradigms in which threatening
stimuli capture attention in a relatively automatic and bottom-
up manner because they are presented peripherally or as
distractors and are irrelevant to task goals (1,2). This selective
focus in the literature has led to the view that threat biases in
anxiety are associated with greater capture of attention which
is automatic or involuntary in nature, and the role of top-down
voluntary guidance by threat-related information remains un-
examined. The mismatch between the clinical nature of anxiety
as an anticipatory top-down process and cognitive bias toward
threat as an involuntary bottom-up process may have
contributed to the limited success of therapies based on such
paradigms (7–9). Furthermore, anxiety is not a monolithic
construct and consists of 2 primary dimensions, namely
anxious arousal and anxious apprehension (i.e., worry) (10).
Anxious apprehension is defined as persistent and repetitive
r Inc on behalf of the Society of Biological Psychiatry. This is an
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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negative thought patterns about uncertain future negative
outcomes (11), and it indexes inflated expectations regarding
costs and undesirable outcomes (12). It is likely to involve al-
terations in anticipatory top-down processes. Therefore, high
expectations associated with elevated levels of anxious
apprehension may be associated with top-down anticipatory
threat bias in perceptual decision making.

Second, in real life, we do not encounter threatening or
neutral stimuli in a vacuum. Rather, top-down contextual cues
often provide us with information that conveys varying degrees
of certainty about what threatening or neutral stimuli are rele-
vant or likely in our environment. Perceptual decision making,
the basic process by which sensory inputs are collected and
integrated to identify a stimulus (13–15), involves a complex
process of integrating bottom-up sensory evidence arising
from the stimulus with top-down information such as the ob-
server’s perceptual set, attention, and expectations (16).
However, the mechanisms by which prior knowledge of threat
biases perceptual decisions compared with knowledge of
relatively safe or benign targets generally and in anxiety spe-
cifically remain unknown. For example, threat-related knowl-
edge could bias one’s tendency to endorse the presence of
threat irrespective of the stimulus or it could bias the way that
one acquires and interprets sensory information from the
stimulus (17).

Third, it is well established that prior knowledge regarding
which stimuli are relevant (involving attention) influences
case of NC (vNC/FF and vNC/NF), or 3) a combination of the two (right panel). (B) Dep
distributions for FF and NF, whereas in (C) red and blue lines indicate evidence a
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decision making differently than prior information regarding the
probability (involving expectation) of such stimuli (18,19).
Because uncertainty in the environment is aversive and linked
with exaggerated threat expectations (6,20,21), it is likely that
cues that indicate uncertain threat will influence decision
making differently than cues that indicate more probable
threat. Additionally, given that anxiety is characterized by
misestimation of uncertainty, exaggerated expectations (4,6),
and higher arousal for uncertain future threats (6,22,23), it is
critical to examine how prior knowledge regarding the uncer-
tainty of future threats influences perceptual decision making
differently than knowledge of more certain threats in anxiety.

Finally, threat biases in anxiety are largely inferred from re-
action time (RT) differences for threatening and neutral stimuli
and are not well operationalized or quantified. Here, we oper-
ationalize threat-related biases within the context of signal
detection theory (SDT) and drift diffusion modeling (DDM)
(Figure 1B, C). SDT provides one common framework for
operationalizing how a decision maker samples the sensory
evidence arising from stimuli and/or how top-down information
biases their decision (24). When deciding whether a stimulus is
threatening or neutral, SDT can be used to examine how top-
down threat-related information biases perceptual sensitivity
or d 0 (i.e., the degree to which threatening and neutral stimuli
can be discriminated) and criterion shift or c (i.e., the tendency
to report whether a threatening or neutral signal is present or
absent). Although SDT is suitable for quantifying decision bias,
Figure 1. (A) In the perceptual decision-
making tasks, participants viewed a fearful cue
(FC) (top) which was the letter “F” and indicated
that they would decide whether the subsequent
face was fearful or not. FC was followed by a
fixation cross followed by a perceptually
degraded fearful face (FF) or neutral face (NF).
The face was followed by a perceptual mask after
which the participant responded about whether
the face was fearful or not. In a similar timeline,
participants viewed a neutral cue (NC) which was
the letter “N” (bottom) which indicated that they
would be deciding whether the subsequent face
was neutral or not. (B) Signal detection theory
(SDT) provides a means for measuring the ob-
server’s ability to differentiate FF (red) from NF
(blue) signal distributions via d 0 and c. Compared
with an unbiased observer (left panel), an FC can
bias decision making by shifting the decision
criterion to the left (cfear-biased line), manifesting as
a bias favoring the fearful decision (middle panel).
Additionally, an FC can reduce the overlapping
area between the FF and NF signal distributions,
resulting in an increased d 0 (right panel). (C) FC-
related bias can be modeled via drift diffusion
model as 1) a shift in the starting point (zFC red
line, left panel) of FF-related evidence accumu-
lation closer to the fearful decision boundary
reducing the amount of evidence needed to
decide that the face is fearful, more than zNC
shifts toward corresponding boundary, 2) more
efficient evidence accumulation (steeper slope for
drift rate v, middle panel) for subsequently pre-
sented FFs (vFC/FF) and NFs (vFC/NF) than in the

icts an illustration of the FC condition. In (B), the red and blue curves indicate
ccumulation following FC and NC.
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it does not make claims about any underlying psychological
processes and provides static rather than dynamic de-
scriptions of the decision maker’s performance. Alternatively,
sequential sampling models, such as the DDM, are a family of
race models which assume that sensory evidence for
competing decisions is accumulated over time until a decision
boundary is reached (25,26). Within the DDM framework,
anticipatory threat-related bias can be conceptualized either as
a 1) shift in the starting point or z of the evidence accumulation
process toward a threat decision, irrespective of stimulus, and/
or 2) enhancing the rate of evidence accumulation (drift rate or
v) once the stimulus is encountered (26–29). Overall, SDT and
DDM provide ways of quantifying bias (27,30,31) (Figure 1B, C)
that can be used to determine how prior knowledge of threat
can guide perceptual decision making or misguide it in anxiety.

Here, we draw from research in basic visual-perceptual
decision making to examine how prior knowledge regarding
future threatening targets and their uncertainty can (mis)guide
perceptual decision making in individuals with anxiety. This
research shows that cues indicating the relevance of targets
improve d 0, while cues indicating the probability of targets in-
fluence c measured via SDT (19). Furthermore, probabilistic
cues can bias decision making by influencing either the z, v, or
both in DDM (27,28). Based on this literature, we hypothesized
that cues indicating uncertain threatening stimuli would bias
decision making by improving d 0 and increasing v for following
stimuli while cues indicating highly probable threatening stimuli
would shift c and z toward the threat decision boundary.
Because anxiety is associated with exaggerated expectations
regarding uncertain threat and misinterpretation of neutral
stimuli as threatening (4,6), we hypothesized that anxious
apprehension would be associated with worse d 0, greater false
alarms for neutral stimuli, greater shift in z toward threat de-
cisions, and lower v for neutral stimuli following uncertain
threat cues. Overall, by quantifying different kinds of biases
and examining how they are impacted by threat relevance and
probability, these hypotheses will help elucidate the compu-
tational mechanisms of threat-related perceptual decision
making in anxiety.

METHODS AND MATERIALS

Participants

Fifty-nine participants were recruited through the undergrad-
uate participant pool at Stony Brook University. After
completing an online screening, participants were invited to
complete the in-person portion of the experiment, which
consisted of 3 behavioral tasks and a battery of individual
difference measures, all of which were conducted on a com-
puter. Four participants in total were excluded due to outlier
behavioral performance (defined as larger than 62 standard
deviations of the mean d 0 for threat and neutral cues [NCs]) in
either one of the tasks. Of the 55 participants (36 female, 19
male) included in the final sample, 67.3% identified as Asian,
followed by Caucasian (18.2%), Hispanic/Latinx (9.1%), and
African American (5.5%). The age range was between 18 and
21 years. Six of these participants did not complete either one
of the experimental tasks. The study was approved by Stony
Brook University’s Institutional Review Board. All participants
provided written informed consent.
Biological Psychiatry:
Anxiety Measure

The Penn State Worry Questionnaire (PSWQ) (24) was used to
measure an individual’s degree of anxious apprehension,
which is considered a trait-like transdiagnostic dimension of
anxiety (10). The PSWQ is a widely used and extensively
validated 16-item self-report questionnaire that assesses
subjective feelings of worry. Compared with other trait mea-
sures of anxiety (like the State-Trait Anxiety Inventory-Trait
version) that are more generic measures of negative affect,
general distress, or general vulnerability to psychopathology
(32–35), the PSWQ specifically measures anxious apprehen-
sion (10). It has excellent test-retest reliability (36) and good
convergent validity (37). It is rated on a 5-point Likert scale
ranging from “not at all typical of me” to “very typical of me,”
with a focus on overall (lifetime) levels of worry.

Stimuli

Following a previously established paradigm (38), 32 female
(16 fearful faces [FFs] and 16 neutral faces [NFs]) and 32 male
(16 FFs and 16 NFs) face stimuli were obtained from the
NimStim set (39). Perceptual masks were created by averaging
4 randomly selected face images (2 FFs and 2 NFs). See
Supplemental Methods for details regarding creation of stimuli
and perceptual masks.

Behavioral Tasks

Perceptual Thresholding Task. Prior to the 2 experi-
mental conditions, all participants first completed a thresh-
olding task, with the aim of determining each participant’s
individual perceptual thresholds (75% accuracy) for FFs and
NFs independently (40). The task involved 16 blocks of 16 trials
(8 FFs and 8 NFs), totaling 128 FF trials and 128 NF trials. At
the trial onset, a fixation cross was presented for 3 to 5 sec-
onds. Subsequently, a degraded FF or NF was displayed
(100 ms), followed by a mask (300 ms). At the end of each trial,
participants were asked to identify the facial stimulus as fearful
or neutral using 2 adjacent keys (left and down arrows) on a
keyboard. An adaptive staircasing procedure was used to
estimate the perceptual threshold of FFs and NFs for each
participant (41). See Supplemental Methods for details
regarding adaptive staircasing. PsychoPy 2 was used for data
collection and task presentation (42).

Cued Perceptual Discrimination Tasks. Upon deter-
mining individual perceptual thresholds, participants
completed 2 tasks: low-uncertainty task (LUT) and high-
uncertainty task (HUT) (Figure 1A). Both tasks were iden-
tical to the thresholding task above, except for 2 important
differences. First, face stimuli were presented with the
contrast level ranging from 26% to 18% of each partici-
pant’s predetermined perceptual threshold (38,43). For
example, if a participant’s threshold for FFs was 0.1 using
the thresholding task above, then FFs in the discrimination
task were subsequently shown with a contrast level ranging
from 0.094 to 0.108. The stimuli were presented at a range
of contrast levels to prevent practice effects. Second, a fear
cue (FC) or NC was presented prior to each facial stimulus
(FF or NF). An FC indicated that the participant would be
making a “fearful face or not decision” on encountering the
Global Open Science - -, 2023; -:-–- www.sobp.org/GOS 3
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Table 1. Hierarchical Drift Diffusion Modeling Models and
Model Fit

HDDM Models Cue Stimulus DIC for HUT DIC for LUT

Model 1 – v 15,518.91 11,027.23

Model 2 z v 13,126.38 8755.37

Model 3 z and v v 12,094.32a 8573.97a

Three models (Model 1–3) were tested. Drift rate, v, represents the speed or
efficiency of evidence accumulation in reaching either of the 2 decision
boundaries. Starting point bias, z, represents the initial amount of bias in favor
of each of the 2 decision choices. Across 3 models, cue and/or stimulus were
allowed to vary by either starting point (z) or drift rate (v). The 2 columns on the
right display DIC for both tasks as a measure of model fit.

DIC, deviance information criterion; HDDM, Hierarchical Drift Diffusion
Modeling; HUT, high-uncertainty task; LUT, low-uncertainty task.

aValues indicate better model fit.
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FF or NF while NC indicated that they would make a
“neutral face or not” decision on encountering the subse-
quent FF or NF.

Thus, in both the LUT and HUT, the cues indicated the
nature of the subsequent decision (Figure 1A for task details
and timeline). In the HUT, by indicating that a fearful or neutral
face was relevant to the upcoming decision, the cues
encouraged participants to use a FF- or NF-related perceptual
set but provided no information regarding the probability of
encountering these faces. Unbeknownst to the participants,
there was a 50% probability of an FF or NF following FC and
NC. In contrast, in the LUT, participants were explicitly
informed that cues also indicated that the target stimulus (FFs
for FC and NFs for NC) was “highly likely.” There was a 75%
probability that FC was followed by a FF and NC was followed
by a NF. To ensure that the participants did not confuse the 2
types of cues across the 2 tasks, the cues were blue in HUT
but light gray in the LUT. Both tasks included a total of 160
trials (80 FCs and 80 NCs), wherein 128 trials (64 FFs and 64
NFs) were followed by presentation of degraded face stimuli.
The remaining 32 trials were catch trials, where cues were not
followed by targets. The trials were divided into 4 blocks of 40
trials (20 FC and 20 NC). Participants first completed the
thresholding task, followed by HUT and then LUT. This order
remained fixed across participants. The reason we did not
counterbalance HUT and LUT was that administering HUT
after LUT would require participants to unlearn the
Table 2. Descriptive Statistics for Signal Detection Theory Pa
Cues in the High- and Low-Uncertainty Tasks

SDT Parameters Fear Cue Neutra

High-Uncertainty Task

False alarms 0.148 (0.144) [7] 0.235 (0

Hit rate 0.86 (0.088) [56] 0.733 (0

Perceptual sensitivity (d 0) 2.126 (0.903) 1.761 (0

Criterion shift (c) 0.06 (0.396) 0.034 (0

Low-Uncertainty Task

False alarms 0.233 (0.214) [8] 0.253 (0

Hit rate 0.86 (0.118) [54] 0.798 (0

Perceptual sensitivity (d 0) 2.093 (0.879) 1.739 (0

Criterion shift (c) 20.111 (0.502) 20.107 (0

Values under Fear Cue and Neutral Cue columns are presented as mean (SD) [med
SDT, signal detection theory.
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contingencies between cues and stimuli in the LUT, which
would involve a fundamentally different process than the one
under examination in the current study.

Data Analyses

SDT Measures. For each participant, 2 SDT measures
(Figure 1B), d 0 and c, were computed using hit rate and false
alarm rate (FAR) under the equal-variance Gaussian assump-
tions (24) for each of the cues (FC and NC) and each of the
tasks (LUT and HUT) (41). d 0 measured the ability to discrimi-
nate between 2 different stimulus distributions, FFs and NFs. c
quantified the position of the decision criterion, which can
indicate a more liberal or conservative decision bias. A liberal
bias (a more negative value) would indicate a higher likelihood
of making a threat decision following FC or a higher likelihood
of making a neutral decision following NC, whereas a con-
servative bias (a more positive value) would be the opposite.
See Figure 1B for details about how d 0 and c index bias in
decision making in tasks used in the current study.

Hierarchical DDM. DDM (44–46) was applied to the
behavioral data choice and RT to examine the decision-making
components that are influenced by FC and NC in each task
(Figure 1C). In DDM, stochastically sampled perceptual evi-
dence accumulating over (a short period of) time is represented
by a single decision variable. The accumulation begins from a
starting point (denoted as z) between the 2 decision bound-
aries (with the distance between these boundaries denoted as
a), each of which represents a choice alternative (i.e., fearful
and neutral decisions in our task). The speed at which evi-
dence is accumulated is reflected by the drift rate (denoted as
v). There is also a nondecision (sensory encoding and motor
execution) component (denoted as t). The parameters (z, a, v,
and t) can be estimated based on the shape of the RT distri-
butions for fearful and neutral decisions. Based on an earlier
literature showing that cues can bias decision making by
influencing the z and v (27,28), we examined whether FC and
NC impact these decision-making components toward a
fearful or neutral decision boundary (Figure 1C). DDMmodeling
was conducted using an open-source Python package that
estimates the parameters of the DDM using a hierarchical
Bayesian approach (hierarchical DDM) (47). For details
regarding DDM, see Table 1 and Supplemental Methods.
rameters Calculated Separately for Fear Cues and Neutral

l Cue t Test p Value Cohen’s d

.157) [12] t54 = 23.9 ,.001 20.53

.23) [52] t54 = 4.46 ,.001 0.6

.936) t54 = 6.26 ,.001 0.84

.394) t54 = 0.37 .716 0.05

.161) [14] t52 = 20.84 .406 0.12

.171) [53] t52 = 3.18 ,.001 0.44

.936) t52 = 17.76 ,.001 0.88

.417) t52 = 21.51 .138 0.51

ian # of trials] or mean (SD).
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Figure 2. Signal detection theory results. (A) Higher perceptual sensitivity
or d 0 for fear cue (FC) vs. neutral cue (NC) for both the high-uncertainty task
(HUT) (left panel) and the low-uncertainty task (LUT) (right panel) (B). Greater
hit rate and smaller false alarm rate for FC (red) vs. NC (blue) in both the HUT
(left panel) and the LUT (right panel). (C). Detection of fearful faces was faster
than neutral faces following FC compared with NC in both the HUT (left
panel) and LUT (right panel).

Table 3. Speed of Perceptual Decision Making

Effects
Mean
Square F Test p Value hp

2

HUT

RT cue 0.554 F1,50 = 80.99 ,.001 #0.618

Error 0.007

RT stimulus 0.264 F1,50 = 19.04 ,.001 #0.276

Error 0.014

Cue 3 stimulus interaction 0.358 F1,50 = 53.14 ,.001 #0.515

Error 0.007

LUT

RT cue 0.642 F1,48 = 77.431 ,.001 #0.617

Error 0.008

RT stimulus 0.203 F1,48 = 9.598 .003 #0.167

Error 0.021

Cue 3 stimulus interaction 0.675 F1,48 = 77.44 ,.001 #0.601

Error 0.009

Mean RT for fearful (HUT = 1.079 6 0.200; LUT = 1.014 6 0.212) and neutral
(HUT = 1.240 6 0.202; LUT = 1.188 6 0.222) faces following fearful cue as well as
fearful (HUT = 1.274 6 0.204; LUT = 1.256 6 0.278) and neutral (HUT = 1.237 6

0.228; LUT = 1.1866 0.224) faces following neutral cue was compared via a 23 2
repeated measures analysis of variance with cue (fearful and neutral) and stimulus
(fearful and neutral) as factors.

HUT, high-uncertainty task; LUT, low-uncertainty task; RT, reaction time.
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Analyses Strategy. In our analytic strategy, we first
demonstrated task effects and then examined their relation-
ships with individual differences in anxiety. See Supplemental
Methods for details regarding the strategy we used for
analyses.

RESULTS

Anxiety Measures

The variance of PSWQ scores in the current sample was
similar to that of other samples of individuals with and without
anxiety disorders (see Supplemental Results).

Threat Cues Enhance the Sensitivity of Perceptual
Decision Making

Our SDT results, depicted in Table 2, show that FC led to
better d 0 (Figure 2A), higher hit rate, and lower FAR (Figure 2B)
Biological Psychiatry:
than NC in HUT, but there was no difference in c. In the case of
LUT, d 0 (Figure 2A) and hit rate (Figure 2B) were higher for FC
than NC, but there was no difference in FAR or c. Comparison
of the 2 tasks showed that FC improved d 0 more than NC,
more so in HUT and LUT, whereas c was higher for LUT than
HUT, irrespective of cue (see Supplemental Results).

Threat Cues Improve Speed of Decision Making

In HUT, results demonstrated that FC led to significantly faster
detection of FFs than of NFs while no difference in speed was
noted following NC. In the LUT, FC led to significantly faster
detection of FFs versus NFs while NC led to faster detection of
NFs versus FFs (Table 3). Comparison of the tasks showed
that FC led to significantly faster RTs than NC in HUT
compared with LUT (see Supplemental Results).

Threat Cues Bias the Starting Point and Efficiency
of Sensory Evidence Accumulation

Examination of DDM parameters with model comparison
showed that, based on deviance information criteria, the best-
fitting model was model 3 for both HUT and LUT (Table 1),
meaning that cues impacted both starting point and drift rate.
Model 3 also performed better than a control model with the
same number of parameters (see Supplemental Results). For
model 3, visual inspection of parameter convergence and
Gelman-Rubin convergence statistic both suggested adequate
model convergence. The posterior predictive check repro-
duced key aspects of the behavioral findings (see
Supplemental Results).

Next, for model 3, we examined how cues impacted z and v
for HUT and LUT. In the case of HUT, inspection of the pos-
terior distribution of the group level means of the parameter
estimates showed that FC shifted z closer to the fearful deci-
sion boundary (posterior probability of z . 0.50 was q . .99).
Global Open Science - -, 2023; -:-–- www.sobp.org/GOS 5
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Interestingly, NC also shifted z slightly toward the fearful de-
cision boundary (posterior probability of z . 0.50 was q = .98)
(Figure 3A). However, FC shifted z closer to the fearful decision
boundary than NC did to the corresponding boundary (q .

.99). An examination of v showed that, compared with NC, FC
led to a higher v for FFs (posterior probability of vFC/FF . vNC/FF
was q. .99) and NFs (posterior probabilities of vFC/NF . vNC/NF
were q = .99), but the increase for FFs was greater than the
increase for NFs (posterior probabilities of vFC/FF . vFC/NF were
q = .93) (Figure 3B).

In the case of LUT, the posterior probability distribution
showed that FC shifted z closer to the fearful decision
boundary (posterior probability of z . 0.50 was q . .99);
however, NC did not shift z too far from the midline (posterior
probability of z . 0.50 was q = .83). Furthermore, FC shifted z
closer to the fearful decision boundary than NC did toward the
corresponding boundary (q . .99) (Figure 3A). Compared with
NC, FC led to a higher v for FFs (posterior probability of vFC/FF
. vNC/FF was q = .99) and NFs (posterior probabilities of vFC/NF
. vNC/NF were q = .99 and q = .97, respectively) with no dif-
ference between FFs and NFs (posterior probabilities of vFC/FF
. vFC/NF was q = .12) (Figure 3B).

In summary, FC shifted z more toward the fearful decision
boundary than NC did to the corresponding boundary in both
HUT and LUT. Furthermore, FC increased v for both FFs and
NFs but more so for FFs in HUT.

Anxiety Worsens Threat Cue–Related Perceptual
Sensitivity

Linear regression analysis showed that only in HUT, lower FC
d 0 (i.e., worse discrimination of FFs and NFs) was associated
with higher PSWQ scores, while such a relationship was not
6 Biological Psychiatry: Global Open Science - -, 2023; -:-–- ww
seen for NC (Table 4; Figure 4A). Follow-up regression ana-
lyses showed that higher FAR following FC, but not NC
(Figure 4B), was associated with higher PSWQ scores. In
contrast, c in HUT and both c and d 0 in LUT were not asso-
ciated with PSWQ scores (all ps. .05). For comparisons of the
strengths of these relationships across different tasks, see
Supplemental Results.

Anxiety Biases Threat Cue–Related Starting Point
of Evidence Accumulation

Linear regression analyses showed that in HUT, a greater shift
in z toward the fearful decision boundary following FC (Table 4;
Figure 4C) and a lower shift in z toward the neutral decision
boundary following NC were associated with higher PSWQ
scores. In contrast, we did not observe a significant relation-
ship of v following FC or NC for any of the stimulus types with
PSWQ scores. In LUT, individual differences in anxiety were
not associated with either z or v (all ps . .05).

DISCUSSION

Prioritized perception of threat is often attributed to threat-
related biases in the general population, which are accentu-
ated in anxiety. Our study breaks new ground with regard to
the examination of these biases in several ways. First, our
investigation demonstrated the role of top-down biases in
perceptual decision making in anxiety. These biases have been
overlooked in favor of experimental designs that highlight
bottom-up processing (1,2) despite the hallmark of anxiety
being negative anticipatory cognitions. Even in experiments in
which threat anticipation has been examined, its effect on
perception has not been explored (43,48,49). Second, this
project utilized novel paradigms from cognitive neuroscience
Figure 3. Group-level means of the drift
diffusion model parameter estimates from model
3. (A) For both the high-uncertainty task (HUT)
(left panel) and low-uncertainty task (LUT) (right
panel), fear cues (red line) shifted the starting
point (z) of evidence accumulation away from
the midpoint (denoted by black dashed line) and
closer to the fearful decision boundary, whereas
neutral cues (blue line) did not shift the starting
point away from the midpoint and closer to
neutral decision boundary. (B) In both the high
(left panel) and low (right panel) uncertainty
tasks, fear cues (in red) facilitated the rate of
evidence accumulation (v) for subsequently
presented fearful faces (solid line) and neutral
faces (dashed line) compared with neutral cues
(in blue). More extreme values indicate faster
drift rate, with a positive sign denoting drifting
toward the fearful decision boundary and a
negative sign denoting drifting toward the
neutral decision boundary.
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Table 4. Multiple Regression Results For Signal Detection
Theory And Drift Diffusion Model Parameters as
Independent Variables Predicting Anxious Apprehension
(Penn State Worry Questionnaire Scores) as Dependent
Variable in the High- and Low-Uncertainty Tasks

Regression Results p Value b R2

High-Uncertainty Task

Perceptual Sensitivity (d 0)

FC .0018a,b 20.369 0.104

NC .156 0.305

False Alarms (FAR)

FC .033 0.317 0.094

NC .113 20.233

Starting Point (z)

FC .026b,c 0.283 0.199

NC .02b,c 20.298

Drift Rate (v)

FC/FF .635 20.067 0.085

FC/NF .064 0.389

NC/FF .112 0.351

NC/NF .216 0.194

Low-Uncertainty Task

Perceptual Sensitivity (d 0)

FC .196 0.255 0.034

NC .287 20.21

False Alarms (FAR)

FC .524 20.114 0.01

NC .868 0.03

Starting Point (z)

FC .424 0.14 0.019

NC .465 20.128

Drift Rate (v)

FC/FF .939 0.016 0.024

FC/NF .684 0.091

NC/FF .589 0.116

NC/NF .574 0.119

FAR, false alarm rate; FC, fear cue; FF, fearful face; NC, neutral cue; NF, neutral
face.

ap , .01.
bIndicates the statistic is significant following correction for multiple

comparisons at a false discovery rate of 0.1 using Benjamini-Hochberg procedure.
cp , .05.

Figure 4. Relationship between anxious apprehension measured via
Penn State Worry Questionnaire (PSWQ) and biases in decision making in
the high-uncertainty task. Higher PSWQ scores were associated with (A)
worse perceptual sensitivity, i.e., lower perceptual sensitivity (d 0) following
fear cues (left panel) but not neutral cues (right panel); (B) more false alarms
following fear cues (left panel) but not neutral cues (right panel); and (C)
greater fear cue–induced shift in the starting point (z) of evidence accumu-
lation toward the fearful decision boundary (left panel) and lesser neutral
cue–induced shift in the starting point (z) of evidence accumulation toward
the neutral decision boundary (right panel).
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GOS
in which anticipatory cues provide information about the rele-
vance and probability of upcoming threatening stimuli, allow-
ing us to examine threat biases in ways that align with
anticipatory conceptualizations of anxiety. These paradigms
also align with perceptual decision making in real life where
cues and contexts often provide us information with varying
degrees of certainty about threats that are relevant or likely.
Finally, our study used SDT and DDM to quantify threat cue–
related biases that have so far only been inferred from faster
detection of threats (1,2).

We showed that cues indicating that threat is relevant (on
the HUT) or highly probable (on the LUT) both facilitated
perceptual sensitivity, yielding more hits and fewer false alarms
Biological Psychiatry:
than NCs. While this facilitating effect of threat cues was seen
for both tasks, it was greater in the HUT than in the LUT. This
may be because adding probabilistic information to NCs in the
LUT makes them as effective as threat cues, thereby reducing
any differences in subsequent decision making. Consistent
with earlier studies (18,19), high-probability cues in the LUT
biased participants to adopt a more liberal decision criterion
(i.e., to make decisions congruent with prestimulus cues);
however, this criterion did not differ for threatening cues versus
NCs. This insensitivity to probability variations in threatening
cues versus NCs may occur because once the probability of an
aversive outcome crosses the 0 threshold, subsequent
Global Open Science - -, 2023; -:-–- www.sobp.org/GOS 7
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increases in probability appear to have little additional impact
on emotions and thereby decision making (50).

Using hierarchical DDM, we next examined the computa-
tional mechanisms contributing to the facilitative effect of
threat cues on the sensitivity of decision making. Threat cues
shifted the starting point of evidence accumulation closer to
the decision boundary for endorsing the presence of a
threatening target, allowing participants to reach this decision
efficiently with less evidence. These findings are consistent
with earlier studies that used model-based approaches to
investigate how prior knowledge biases choice behavior
(30,51–53), but they extend the literature by showing the
unique effect of threat cues. Furthermore, the greater shift in
starting point toward a threat response boundary following
threat cues may be the computational mechanism by which
factors such as alertness or hypervigilance (54–56) aid faster
detection of threats. However, the starting point bias toward
endorsing threat irrespective of stimulus characteristics may
actually compromise discrimination between subsequent
threatening versus neutral stimuli. Indeed, our results showed
that threat cues also influenced the drift rate or accumulation
process itself such that evidence was accumulated more effi-
ciently not only for threatening but for also neutral stimuli. This
indicates that attention to threat may involve facilitated
encoding of the attended stimulus such that threatening sig-
nals are better differentiated from nonthreat signals, thus
resulting in enhanced decision making (57). Computationally,
these findings can also be understood as the threat cues
yielding more precise estimates of the incoming sensory sig-
nals and their causes (58).

Overall, our findings suggest that cues and contexts that
signal threat may bias decision making in an adaptive manner,
more so when threat is relevant but uncertain than when it is
highly probable. While the starting point of evidence accu-
mulation shifts toward threat to allow for a faster decision, this
is balanced with more efficient extraction of evidence from
threatening as well as neutral stimuli, allowing for better
discrimination of these stimuli. However, the same pattern of
results was not seen in individuals with higher levels of anxiety.
Rather, following threatening cues on the HUT, higher anxious
apprehension was associated with worse discrimination be-
tween threat and neutral stimuli and more false alarms. DDM
showed that for these cues, higher anxious apprehension was
associated with a greater shift in the starting point of evidence
accumulation toward the threat decision boundary but no
change in efficiency of evidence accumulation for subsequent
stimuli. This relationship was not seen when the cues indicated
more certain threats. Interestingly, higher anxious apprehen-
sion was also associated with a greater shift in the starting
point of decision making toward the threat decision boundary
following NCs. These effects in anxiety may be due to hyper-
vigilance regarding the probability of encountering threatening
stimuli irrespective of what the cues indicate, especially under
uncertain conditions (6,59).

Theoretical frameworks regarding threat biases in anxiety
have differentiated between selective attention to threat and
hypervigilance for threat (60). Hypervigilance involves moni-
toring for potential threats by broadening attention to scan the
environment for whether an actual threatening stimulus is
present or not. Not only does hypervigilance for threat lead to
8 Biological Psychiatry: Global Open Science - -, 2023; -:-–- ww
faster detection of threats but it also leads to increased arousal
and misinterpretation of neutral stimuli (61). On the other hand,
selective attention involves narrowing of attention onto the
threatening stimulus, thereby allowing for increased process-
ing of these stimuli. Our modeling results showing a greater
threat cue–related shift of the starting point of evidence
accumulation toward a threat response (before arrival of the
stimulus) with increasing anxiety provide evidence for the role
of hypervigilance in anxiety.

Despite limitations (see Supplemental Discussion), our
findings conceptually advance the field by highlighting
top-down biases to threat in anxiety, the importance of un-
certainty in inducing these biases, and the computational
mechanisms underlying them. At the neural level, our findings
indicate the need to examine threat cue–related anticipatory or
prestimulus neural activity in visual sensory and prefrontal re-
gions (25,29,40,62,63) in threat-related perceptual biases in
anxiety. Our research also points to the importance of exam-
ining how anxiety-related threat biases that impact perception
can have downstream consequences on attention and
behavior. Clinically, the findings highlight the importance of
transdiagnostic symptoms of anxious apprehension and their
relationships with top-down threat biases in perceptual deci-
sion making. Our findings are relevant for the area of psychosis
because dimensions such as paranoia and hallucinations are
associated with overreliance on Bayesian priors on perception
(64,65); however, the influence of threat-related priors remains
relatively understudied. Additionally, novel cognitive para-
digms that are ecologically valid and modeling approaches like
ours can help identify quantifiable targets for intervention
research and implementation. For example, in the case of
anxious apprehension, training strategies could be used that
are more proactive and are implemented prior to the arrival of
threatening stimuli. These strategies could focus on reducing
the response bias toward threat as well as more accurate
prediction of threat as amendments to attentional bias modi-
fication, which relies largely on altering bottom-up capture by
threat (66). Overall, comprehensive approaches such as those
used in the current study can help advance the field toward
more ecologically valid cognitive models of anxiety that align
with the experiential aspects of anxiety.
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9. Mogoaşe C, David D, Koster EH (2014): Clinical efficacy of attentional
bias modification procedures: An updated meta-analysis. J Clin Psy-
chol 70:1133–1157.

10. Sharp PB, Miller GA, Heller W (2015): Transdiagnostic dimensions of
anxiety: Neural mechanisms, executive functions, and new directions.
Int J Psychophysiol 98:365–377.

11. Sibrava NJ, Borkovec TD (2006): The cognitive avoidance theory of
worry. In: Worry and Its Psychological Disorders: Theory, Assessment
and Treatment. Hoboken, NJ: Wiley Publishing, 239–256.

12. Bredemeier K, Berenbaum H, Spielberg JM (2012): Worry and
perceived threat of proximal and distal undesirable outcomes.
J Anxiety Disord 26:425–429.

13. Sterzer P (2016): Moving forward in perceptual decision making. Proc
Natl Acad Sci USA 113:5771–5773.

14. Heekeren HR, Marrett S, Ungerleider LG (2008): The neural systems
that mediate human perceptual decision making. Nat Rev Neurosci
9:467–479.

15. Shadlen MN, Kiani R (2013): Decision making as a window on
cognition. Neuron 80:791–806.

16. Summerfield C, de Lange FP (2014): Expectation in perceptual deci-
sion making: Neural and computational mechanisms. Nat Rev Neu-
rosci 15:745–756.

17. Mohanty A, Jin F, Sussman T (2023): What do we know about threat-
related perceptual decision making? Curr Dir Psychol Sci 32:18–25.

18. Lu ZL, Dosher BA (2008): Characterizing observers using external
noise and observer models: Assessing internal representations with
external noise. Psychol Rev 115:44–82.

19. Wyart V, Nobre AC, Summerfield C (2012): Dissociable prior influences
of signal probability and relevance on visual contrast sensitivity. Proc
Natl Acad Sci USA 109:3593–3598.

20. Bar-Anan Y, Wilson TD, Gilbert DT (2009): The feeling of uncertainty
intensifies affective reactions. Emotion 9:123–127.

21. Carleton RN (2016): Into the unknown: A review and synthesis
of contemporary models involving uncertainty. J Anxiety Disord
39:30–43.

22. Pulcu E, Browning M (2019): The misestimation of uncertainty in af-
fective disorders. Trends Cogn Sci 23:865–875.
Biological Psychiatry:
23. Grillon C (2008): Models and mechanisms of anxiety: Evidence from
startle studies. Psychopharmacology 199:421–437.

24. Green DM, Swets JA (1966): Signal Detection Theory and Psycho-
physics. New York: Wiley.

25. Gold JI, Shadlen MN (2007): The neural basis of decision making. Annu
Rev Neurosci 30:535–574.

26. Ratcliff R, McKoon G (2008): The diffusion decision model: The-
ory and data for two-choice decision tasks. Neural Comput
20:873–922.

27. Dunovan KE, Tremel JJ, Wheeler ME (2014): Prior probability and
feature predictability interactively bias perceptual decisions. Neuro-
psychologia 61:210–221.

28. Dunovan K, Wheeler ME (2018): Computational and neural signatures
of pre and post-sensory expectation bias in inferior temporal cortex.
Sci Rep 8:13256.

29. Kloosterman NA, de Gee JW, Werkle-Bergner M, Lindenberger U,
Garrett DD, Fahrenfort JJ (2019): Humans strategically shift decision
bias by flexibly adjusting sensory evidence accumulation. eLife 8:
e37321.

30. Mulder MJ, Wagenmakers EJ, Ratcliff R, Boekel W, Forstmann BU
(2012): Bias in the brain: A diffusion model analysis of prior probability
and potential payoff. J Neurosci 32:2335–2343.

31. Cravo AM, Rohenkohl G, Wyart V, Nobre AC (2011): Endogenous
modulation of low frequency oscillations by temporal expectations.
J Neurophysiol 106:2964–2972.

32. Nordahl H, Hjemdal O, Hagen R, Nordahl HM, Wells A (2019): What lies
beneath trait-anxiety? Testing the self-regulatory executive function
model of vulnerability. Front Psychol 10:122.

33. Nitschke JB, Heller W, Imig JC, McDonald RP, Miller GA (2001): Dis-
tinguishing dimensions of anxiety and depression. Cognit Ther Res
25:1–22.

34. Bados A, Gómez-Benito J, Balaguer G (2010): The State-Trait Anxiety
Inventory, trait version: Does it really measure anxiety? J Pers Assess
92:560–567.

35. Donzuso G, Cerasa A, Gioia MC, Caracciolo M, Quattrone A (2014):
The neuroanatomical correlates of anxiety in a healthy population:
Differences between the State-Trait Anxiety Inventory and the Hamil-
ton Anxiety Rating Scale. Brain Behav 4:504–514.

36. Meyer TJ, Miller ML, Metzger RL, Borkovec TD (1990): Development
and validation of the Penn State Worry Questionnaire. Behav Res Ther
28:487–495.

37. Behar E, Alcaine O, Zuellig AR, Borkovec TD (2003): Screening for
generalized anxiety disorder using the Penn State Worry Question-
naire: A receiver operating characteristic analysis. J Behav Ther Exp
Psychiatry 34:25–43.

38. Sussman TJ, Weinberg A, Szekely A, Hajcak G, Mohanty A (2017):
Here comes trouble: Prestimulus brain activity predicts enhanced
perception of threat. Cereb Cortex 27:2695–2707.

39. Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA,
et al. (2009): The NimStim set of facial expressions: Judgments from
untrained research participants. Psychiatry Res 168:242–249.

40. Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J
(2006): Predictive codes for forthcoming perception in the frontal
cortex. Science 314:1311–1314.

41. Watson AB, Pelli DG (1983): QUEST: A Bayesian adaptive psycho-
metric method. Percept Psychophys 33:113–120.

42. Peirce JW (2007): PsychoPy–Psychophysics software in python.
J Neurosci Methods 162:8–13.

43. Adini Y, Wilkonsky A, Haspel R, Tsodyks M, Sagi D (2004): Perceptual
learning in contrast discrimination: The effect of contrast uncertainty.
J Vis 4:993–1005.

44. Ratcliff R (1978): A theory of memory retrieval. Psychol Rev 85:59–108.
45. Ratcliff R, Smith PL, Brown SD, McKoon G (2016): Diffusion

decision model: Current issues and history. Trends Cogn Sci
20:260–281.

46. Wiecki TV, Sofer I, Frank MJ (2013): HDDM: Hierarchical Bayesian
estimation of the Drift-Diffusion Model in Python. Front Neuroinform
7:14.
Global Open Science - -, 2023; -:-–- www.sobp.org/GOS 9

https://doi.org/10.1016/j.bpsgos.2023.07.005
https://doi.org/10.1016/j.bpsgos.2023.07.005
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref1
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref1
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref1
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref1
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref2
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref2
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref2
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref3
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref3
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref4
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref4
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref5
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref5
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref5
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref5
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref6
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref6
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref6
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref7
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref7
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref7
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref7
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref8
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref8
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref8
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref9
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref9
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref9
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref9
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref10
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref10
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref10
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref11
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref11
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref11
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref12
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref12
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref12
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref13
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref13
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref14
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref14
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref14
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref15
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref15
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref16
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref16
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref16
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref17
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref17
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref18
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref18
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref18
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref19
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref19
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref19
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref20
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref20
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref21
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref21
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref21
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref22
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref22
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref23
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref23
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref24
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref24
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref25
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref25
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref26
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref26
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref26
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref27
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref27
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref27
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref28
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref28
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref28
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref29
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref29
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref29
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref29
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref30
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref30
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref30
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref31
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref31
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref31
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref32
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref32
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref32
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref33
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref33
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref33
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref34
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref34
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref34
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref35
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref35
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref35
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref35
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref36
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref36
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref36
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref37
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref37
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref37
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref37
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref38
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref38
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref38
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref39
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref39
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref39
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref40
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref40
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref40
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref41
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref41
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref42
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref42
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref43
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref43
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref43
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref44
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref45
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref45
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref45
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref46
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref46
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref46
http://www.sobp.org/GOS


Knowledge of Threat Biases Perception in Anxiety
Biological
Psychiatry:
GOS
47. Schmitz A, Grillon C (2012): Assessing fear and anxiety in humans
using the threat of predictable and unpredictable aversive events (the
NPU-threat test). Nat Protoc 7:527–532.

48. Grillon C, Baas JP, Lissek S, Smith K, Milstein J (2004): Anxious re-
sponses to predictable and unpredictable aversive events. Behav
Neurosci 118:916–924.

49. Grillon C, Lissek S, Rabin S, McDowell D, Dvir S, Pine DS (2008):
Increased anxiety during anticipation of unpredictable but not pre-
dictable aversive stimuli as a psychophysiologic marker of panic dis-
order. Am J Psychiatry 165:898–904.

50. Loewenstein GF, Weber EU, Hsee CK, Welch N (2001): Risk as feel-
ings. Psychol Bull 127:267–286.

51. Forstmann BU, Brown S, Dutilh G, Neumann J, Wagenmakers EJ
(2010): The neural substrate of prior information in perceptual decision
making: A model-based analysis. Front Hum Neurosci 4:40.

52. Summerfield C, Koechlin E (2010): Economic value biases uncertain
perceptual choices in the parietal and prefrontal cortices. Front Hum
Neurosci 4:208.

53. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006): The
physics of optimal decision making: A formal analysis of models of
performance in two-alternative forced-choice tasks. Psychol Rev
113:700–765.

54. Beck AT, Clark DA (1997): An information processing model of anxiety:
Automatic and strategic processes. Behav Res Ther 35:49–58.

55. Dolan RJ, Vuilleumier P (2003): Amygdala automaticity in emotional
processing. Ann N Y Acad Sci 985:348–355.

56. Posner MI, Petersen SE (1990): The attention system of the human
brain. Annu Rev Neurosci 13:25–42.
10 Biological Psychiatry: Global Open Science - -, 2023; -:-–- ww
57. Smith PL, Ratcliff R (2009): An integrated theory of attention and de-
cision making in visual signal detection. Psychol Rev 116:283–317.

58. Feldman H, Friston KJ (2010): Attention, uncertainty, and free-energy.
Front Hum Neurosci 4:215.

59. Stöber J (1997): Trait anxiety and pessimistic appraisal of risk and
chance. Pers Individ Dif 22:465–476.

60. Richards HJ, Benson V, Donnelly N, Hadwin JA (2014): Exploring the
function of selective attention and hypervigilance for threat in anxiety.
Clin Psychol Rev 34:1–13.

61. Kimble M, Boxwala M, Bean W, Maletsky K, Halper J, Spollen K,
Fleming K (2014): The impact of hypervigilance: Evidence for a forward
feedback loop. J Anxiety Disord 28:241–245.

62. Rahnev D (2017): Top-down control of perceptual decision making by
the prefrontal cortex. Curr Dir Psychol Sci 26:464–469.

63. Bell AH, Summerfield C, Morin EL, Malecek NJ, Ungerleider LG (2016):
Encoding of stimulus probability in macaque inferior temporal cortex.
Curr Biol 26:2280–2290.

64. Powers AR, Mathys C, Corlett PR (2017): Pavlovian conditioning-
induced hallucinations result from overweighting of perceptual
priors. Science 357:596–600.

65. Kafadar E, Fisher VL, Quagan B, Hammer A, Jaeger H, Mourgues C,
et al. (2022): Conditioned hallucinations and prior overweighting are
state-sensitive markers of hallucination susceptibility. Biol Psychiatry
92:772–780.

66. Hakamata Y, Lissek S, Bar-Haim Y, Britton JC, Fox NA, Leibenluft E,
et al. (2010): Attention bias modification treatment: A meta-analysis
toward the establishment of novel treatment for anxiety. Biol Psychi-
atry 68:982–990.
w.sobp.org/GOS

http://refhub.elsevier.com/S2667-1743(23)00086-1/sref47
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref47
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref47
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref48
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref48
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref48
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref49
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref49
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref49
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref49
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref50
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref50
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref51
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref51
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref51
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref52
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref52
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref52
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref53
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref53
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref53
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref53
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref54
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref54
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref55
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref55
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref56
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref56
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref57
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref57
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref58
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref58
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref59
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref59
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref60
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref60
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref60
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref61
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref61
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref61
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref62
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref62
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref63
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref63
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref63
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref64
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref64
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref64
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref65
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref65
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref65
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref65
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref66
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref66
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref66
http://refhub.elsevier.com/S2667-1743(23)00086-1/sref66
http://www.sobp.org/GOS

	Knowledge of Threat Biases Perceptual Decision Making in Anxiety: Evidence From Signal Detection Theory and Drift Diffusion ...
	Methods and Materials
	Participants
	Anxiety Measure
	Stimuli
	Behavioral Tasks
	Perceptual Thresholding Task
	Cued Perceptual Discrimination Tasks

	Data Analyses
	SDT Measures
	Hierarchical DDM
	Analyses Strategy


	Results
	Anxiety Measures
	Threat Cues Enhance the Sensitivity of Perceptual Decision Making
	Threat Cues Improve Speed of Decision Making
	Threat Cues Bias the Starting Point and Efficiency of Sensory Evidence Accumulation
	Anxiety Worsens Threat Cue–Related Perceptual Sensitivity
	Anxiety Biases Threat Cue–Related Starting Point of Evidence Accumulation

	Discussion
	References


