

NYS RISE Resiliency Institute for Storms & Emergencies

Research Work Unit 2.3 Flooding Impacts on Wastewater Infrastructure

Cornell University

Leader (NYU): Res. Asst. Prof: Collaborators:

Students:

Cornell

University

Haralambos (Bob) Vasiliadis, NYU-Poly Rouzbeh Nazari, NYU-Poly Thomas Dennis O'Rourke, Cornell Rae Zimmerman, NYU Carlos Restrepo, NYU Jeong Eun Ahn, Teng Zhang, Stanley Simon

Scope of Work

Inventory, mapping, and performance reviews of sewage treatment plants and pumping stations relative to storm surge levels, characteristics of plant damage, and loss of service at pump stations will be evaluated through a review of publicly available documents and information from government agencies and experts.

The most vulnerable treatment equipment and conveyance system components will be identified. Measures for plant protection and conveyance system improvements will be evaluated, and ranked on the basis of cost/benefit analysis. Temporal and spatial distributions of wastewater spills and dispersions in past storms.

Working with US-EPA, NYS-EFC, NYS-DOS, NYS-DEC and NYC-DEP to make recommendations on preventing future plant failures and mitigating environmental damages.

Cornel

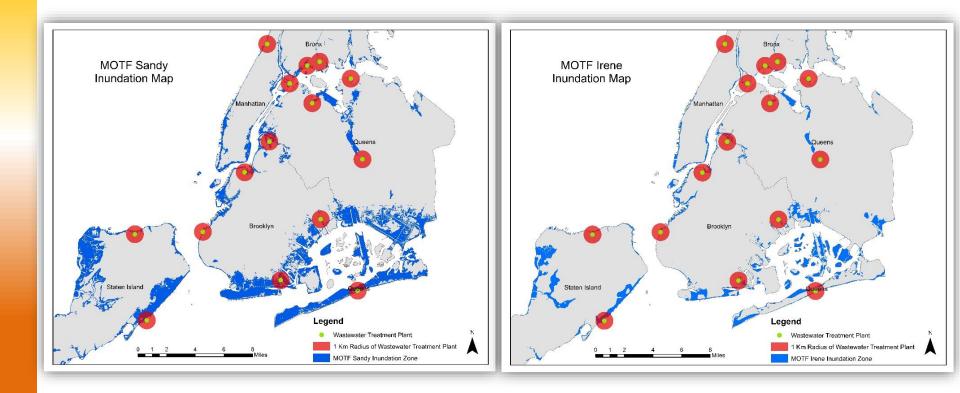
Iniversity

A. FEMA MOTF

- FEMA MOTF (Federal Emergency Management Agency Modelling Task Force), a group of modeling and risk analyst experts in support of disaster response operations that provides hazard, modeling and impact assessments information from a variety of information sources through coordination to develop:
 - a) estimates of impacts before, during, and after events, and
 - b) debris estimates
- Main purpose of FEMA MOTF is to develop raster data of disaster events which occur to do impact analysis
- For New York State (NYS) raster data is available for the following two Hurricane events:
 - 1. Hurricane Irene
 - 2. Hurricane Sandy

Cornell

University


FEMA MOTF OUTPUT NYC

Hurricane Event: Superstorm Sandy DEM: 1-meter resolution

Cornell

University

Hurricane Event: Tropical storm Irene DEM: 3-meter resolution

B. SLOSH

SLOSH: Sea, Lake, and Overland Surges from Hurricanes

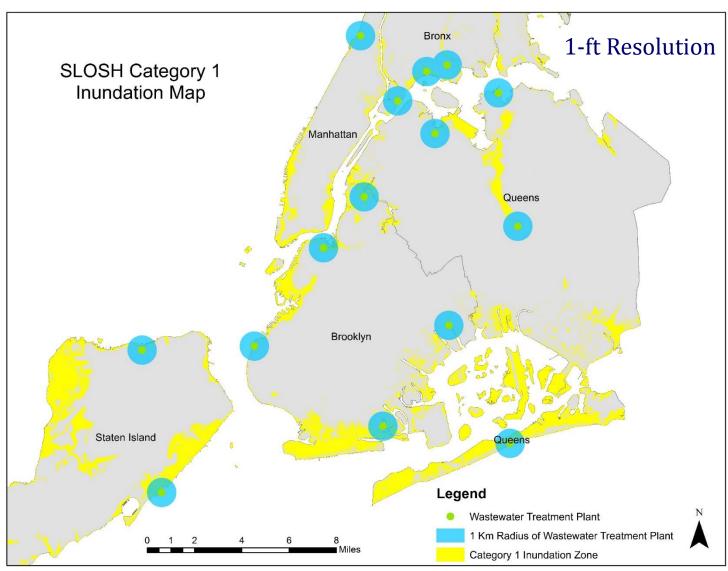
- SLOSH is a computerized model developed by the National Weather Service (NWS) to estimate storm surge heights and winds resulting from hurricanes.
- Advantages: SLOSH is computationally efficient resulting in fast computer runs which makes it an ideal operational system.
- Disadvantages: Considers only flood caused by storm surge, does not account for normal river flow or rain induced flooding.
- SLOSH modeling approach to estimate surge could be deterministic (solving physics equations), stochastic (statistical approach), or composite (maximum envelopes of water).

Cornel

Iniversity

SLOSH Inundation Map

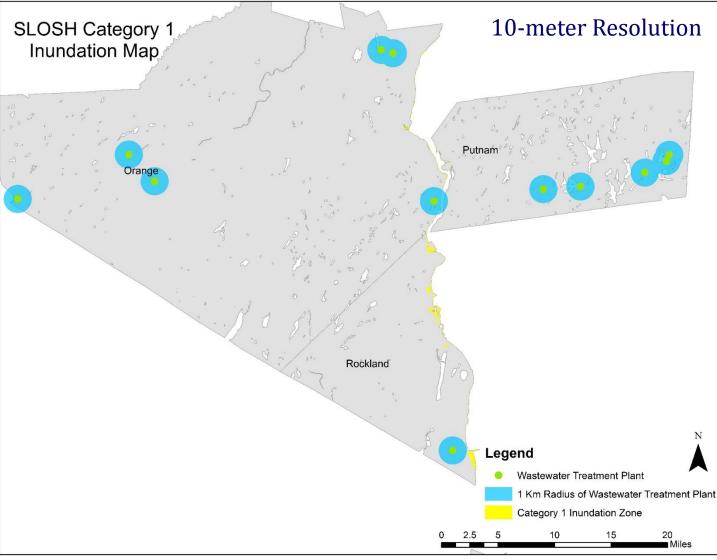
- **Data Sources:** Hurricanes could be historical, hypothetical or predicted
 - NY3 SLOSH MOM* from NOAA** National Hurricane Center
 - Digital Elevation Model (DEM) from NOAA's Ocean Service, Coastal Services Center
- Steps to get inundation map:
 - Using Inverse Distance Weighted (IDW) interpolation to generate surface of surge heights from point estimates of surge heights.
 Using Surface of surge heights to subtract DEM will get the flood depth.


*MOM: Maximum of the Maximum

**NOAA: National Oceanic and Atmospheric Administration

SE SLOSH Inundation Map of NYC (various categories)

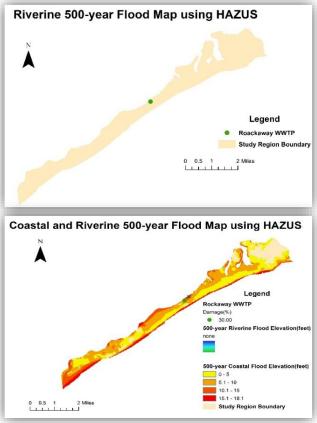
RESILIENCY INSTITUTE FOR STORMS AND EMERGENCIES



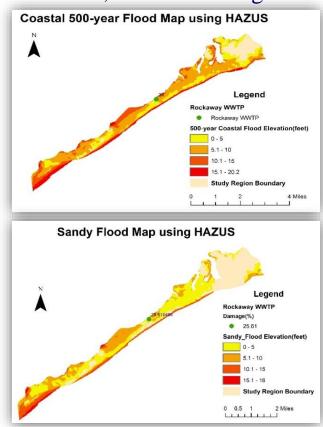
Cornell

University

SLOSH Inundation Map of Rockland and Putnam Counties (various categories)


Cornell

University

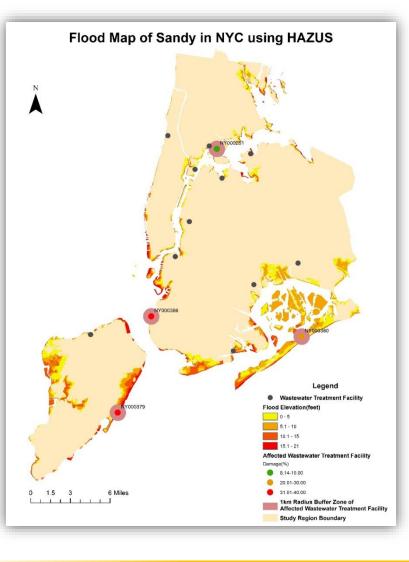

C. HazUS-MH

- HazUS (Hazards US Multi-Hazards) is a software developed by FEMA for estimating potential direct/indirect losses from floods, winds and earthquakes
- Uses Geographic Information Systems (GIS) technology to graphically depict economic losses, structural damages, etc. for various scenarios
- Hazard Type: Coastal, Riverine, Coastal & Riverine, or Coastal Surge & Hurricane

Cornell

Iniversity

Comparison of NYCDEP and HazUS-MH

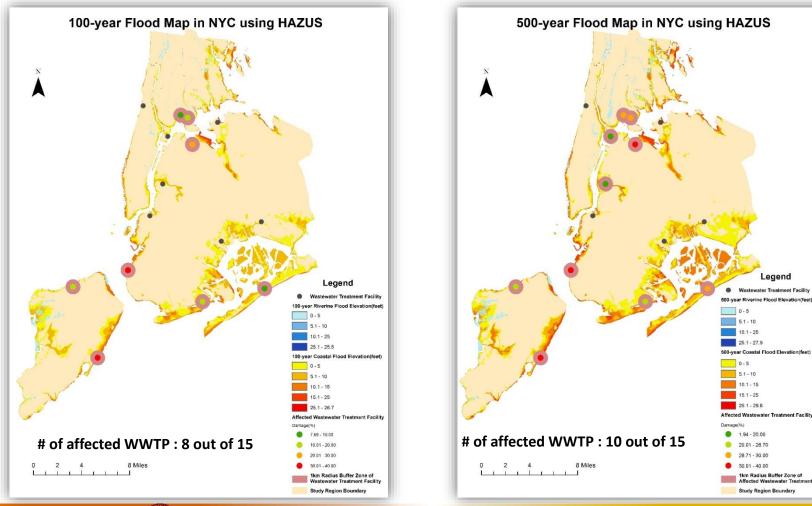

Flood Elevation (feet, NAVD88)				
100-ye	ear	Sandy		
DEP (+30 inches)	HAZUS	D	EP	HAZUS
13.5	N F	Major	12.6	NF
17.5	2.52	Minor	10.2	2.42
13.5	N F	Minor	N F	N F
16.5	13.25	Major	13.1	18.15
14.5	4.57	Major	11.4	13.20
15.5	5.36	Minor	11.6	N F
15.5	3.36	Major	10.1	N F
13.5	N F	Minor	10.0	N F
14.5	9.97	Major	13.5	15.89
14.5	5.01	Major	12.1	NF
M: 17.5 Bx: 14.5	N F	Minor	10.7	N F
14.5	N F	Minor	11.7	NF
12.5	N F	Major	9.7	NF
15.5	N F	Minor	10.1	N F
	100-ye DEP (+30 inches) 13.5 17.5 13.5 13.5 16.5 14.5 15.5 13.5 13.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14	100-yer DEP HAZUS 13.5 N F 13.5 N F 17.5 2.52 13.5 N F 13.5 N F 16.5 13.25 14.5 5.36 13.5 N F 14.5 9.97 14.5 5.01 14.5 S.01 14.5 N F 14.5 N F	IDDEP (+30 inches) HAZUS D DEP (+30 inches) HAZUS Major 13.5 N F Major 17.5 2.52 Minor 17.5 2.52 Minor 13.5 N F Minor 13.5 N F Minor 14.5 4.57 Major 15.5 5.36 Minor 13.5 N F Minor 14.5 9.97 Major 14.5 5.01 Major 14.5 N F Minor 14.5 N F Minor	Net Sandy DEP (+30 inches) HAZUS DEF 13.5 N F Major 12.6 13.5 N F Major 10.2 17.5 2.52 Minor 10.2 13.5 N F Minor 10.2 13.5 N F Minor 10.2 14.5 13.25 Major 13.1 14.5 4.57 Major 11.4 15.5 5.36 Minor 11.6 15.5 3.36 Major 10.1 14.5 9.97 Major 10.3 14.5 5.01 Major 12.1 M: 17.5 N F Minor 10.7 14.5 N F Minor 11.7 14.5 N F Minor 9.7

Cornell

University

S E

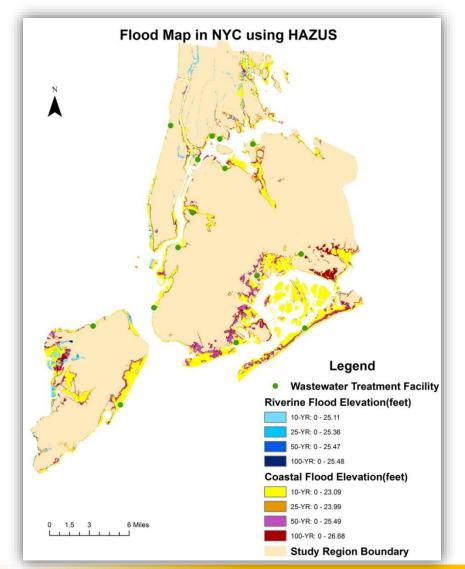
RESILIENCY INSTITUTE FOR STORMS AND EMERGENCIES



N F: not flooded

Case Study : NYC

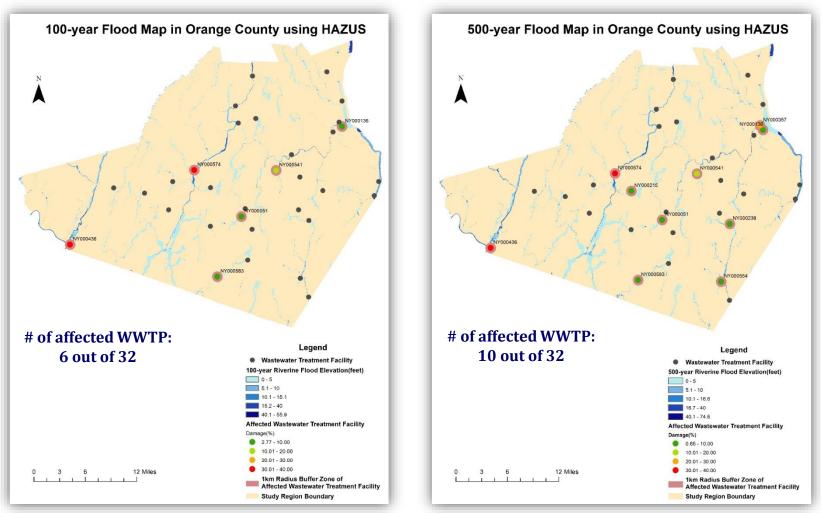
DEM: 1 arc second resolution (~30 meters)
 Develop Network: 0.5 mi² of drainage area
 Hazard Type: Riverine and Coastal


Cornell

University

NYC Damage Analysis based on a 100-year event

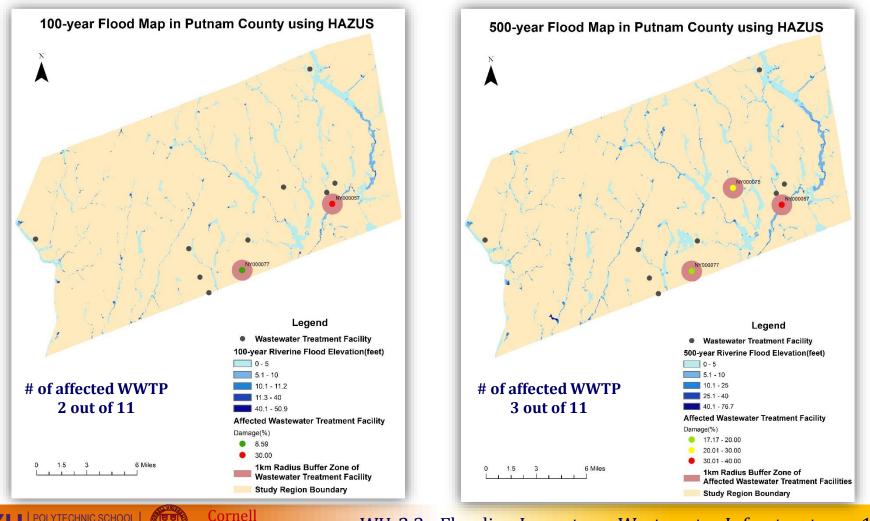
Facility Name	Damage %	Flood Elevation (ft)	Economic Loss (\$)
Hunts Point	10.16	2.52	7,981,096
Oakwood Beach	40.00	13.25	31,435,200
Rockaway	7.69	4.57	6,045,222
Bowery Bay	26.80	5.36	21,066,258
Coney Island	15.42	3.36	12,115,576
Owls Head	39.76	9.97	31,245,402
Port Richmond	11.75	5.01	9,236,918
NY Organic Fertilizer Co.	9.46	2.73	7,436,224



Cornell University

Case Study: Orange County

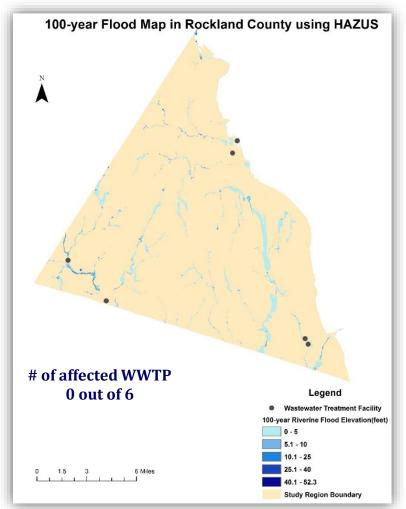
DEM: 1 arc second resolution (~30 meters) Develop Network: 2 mi² of drainage area Hazard Type: Riverine only


Cornell

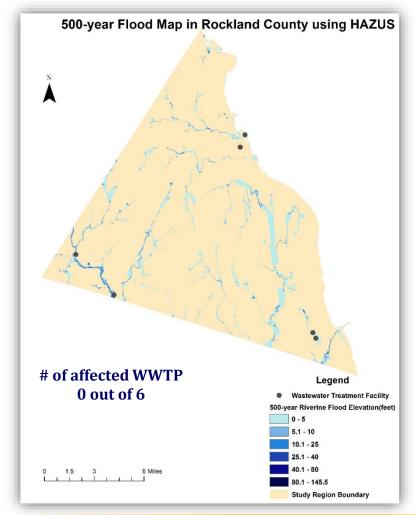
Universitv

Case Study: Putnam County

DEM: 1 arc second resolution (~30 meters) Develop Network: 0.5 mi² of drainage area Hazard Type: Riverine only



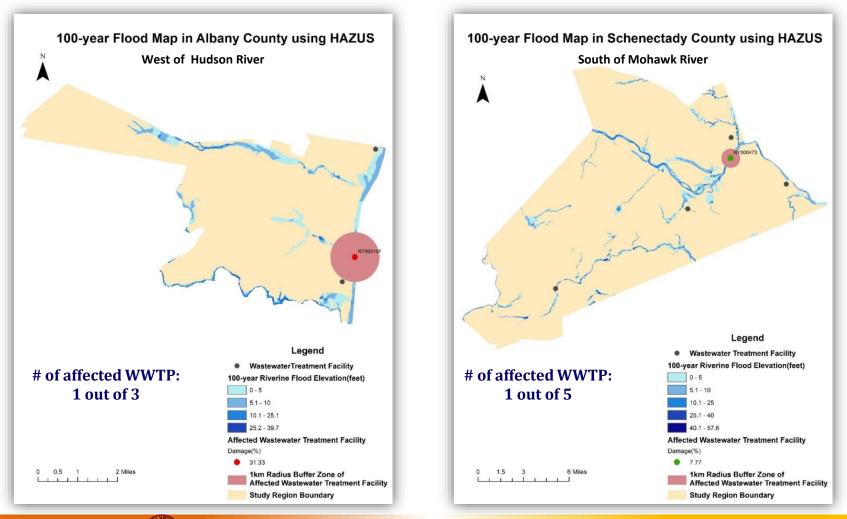
University


Case Study: Rockland County

DEM: 1 arc second resolution (~30 meters) Develop Network: 0.5 mi² of drainage area Hazard Type: Riverine only

Cornell

Universitv



Case Study: Albany and Schenectady Counties

S E

RESILIENCY INSTITUTE FOR STORMS AND EMERGENCIES

DEM: 1 arc second resolution (~30 meters) Develop Network: 2 mi² of drainage area Hazard Type: Riverine only

Cornell

University

Ŷ

Results

	Country		Damage(%)							
	County		10-year	25-year	50-year	100-year	Sandy	500-year		
	NYC	Owls Head WPCP	30	30	30	39.76	40	40		
		Bowery Bay WPCP	8.34	9.91	18.87	26.81	No flooded	37.63		
	0	PORT JERVIS STP	27.21	30	38.76	40	-	40		
0-10% 10.01-20%	Orange	TAPPAN HOMES SD	8.85	9.56	10.03	11.87	-	18.99		
20.01-30%	Putnam	BREWSTER WWTP	28.41	30	30	30	-	40		
30.01-40%		CARMEL SD#7 - COUNTRY MANOR	6.77	7.64	8.18	8.59	-	17.17		

Cornell

University

Research Results To Date

• Literature review has been completed

Cornell

Jniversitv

- Inventory and mapping has been completed
- Performance review of Wastewater Treatment Plants (WWTPs) and Pumping Stations (PSs) is in progress
- Gathering of technical information and data from all associated NYS and NYC agencies has been initiated
- WWTPs performance and vulnerability evaluation is in progress
- Over 80% of WWTPs plants review has been completed

WWTP/PS-Specific Data Gathering

Facility:	
Leading agency: Address:	Coordinates
	°"N
City State Zip code	°"E

Wastewater Treatment or Water Pollution Control Plant (WWTP/WPCP)

Pumping Station (PS)

		0						
Description and physical characteristics								
	Activated sludge		Combined					
WWT P/WPCP type:		PS type:	Stormwater					
			🖵 Municipal					
Dewatering facilities:	🗅 Yes - 🗅 No	Pump type:	Submersible -					
Local grade:	fee	t Local grade:	feet					
Elevation of the lowest electrical control:	fee	t Elevation of the lowest electrical control:	feet					
Elevation of the lowest mechanical device:	fee	t Elevation of the lowest mechanical device:	feet					

Hydraulic characteristics								
Design dry weather flow:	MGD	Operating capacity:	MGD					
Maximum wet weather flow:	MGD	Maximum allowable capacity:	MGD					
Discharge waterbody:		Connected to other stations:	🗖 Yes - 🗖 No					
Critical flood elevation:	feet	Critical flood elevation:	feet					
Hurricane Sandy:	feet	Hurricane Sandy:	feet					
Contributing area:	acres	Affected area:	acres					

	Historical information					
Hurricane Sandyflood elevation:	feet					
Hurricane Sandyflood damage:	Catastrophic - Catastrophic - Significant/Noticeable - Minor/Limited - None					
Historic flooding:	Yes - No, if yes, describe:					
Historic loss of power:	☐ Yes - ☐ No, if yes, describe:					
Affected by Hurricane Sandy:	Yes - No, if yes, describe:					
Beach affected:	Yes - No, if yes, describe:					

Deliverables

- A final report will be produced that summarizes the most important causes of damage and component vulnerability during a storm in the wastewater treatment systems in the study region. Analysis of the design, operation and capacity characteristics of the existing wastewater infrastructure system will be performed based on historical data, drawings and characteristics of the wastewater infrastructure. The limitations, deficiencies, potentials and dynamics of each component of the system will be determined and analyzed.
- Recommendations for protection of each system component and improved service (in terms of improvement of the efficiency and capacity of each component) will be developed and ranked on the basis of cost/benefit assessment. Studies of wastewater treatment infrastructure systems in NYC, Long Island (both Nassau and Suffolk Counties), Westchester County, Orange County, Rockland County, and Putnam County will be conducted, the lessons from which can be implemented in the flood prone locations of other counties of New York State, as needed.

Cornell

University

Actual/Projected Assessment of Base Plan

ABP												
WU 2.3 Assessment of Base Plans		2013			2014							
Tasks	Budget	10/2013	11/2013	12/2013	01/2014	02/2014	03/2014	04/2014	05/2014	06/2014	07/2014	08/2014
Work unit technical management	\$4,774.61	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	
Literature review	\$4,774.61	10%	10%	20%	40%	20%						
Inventory, mapping, and performance review of WWTPs	\$19,098.45			10%	20%	30%	40%					
Working with NYS EFC, DOS, DEC and NYC DEP	\$14,323.84					20%	50%	30%				
Select sample Counties	\$4,774.61					50%	50%					
WWTP performance and vulnerability evaluation	\$23,873.07					20%	20%	20%	20%	20%		
Draft report preparation & submission	\$14,323.84					30%		70%				
Recommendations and ranking on the basis of cost/benefit analysis	\$4,774.61							50%	50%			
Final report	\$4,774.61								20%	30%	50%	
TOTAL	\$95,492.26											
Projected	Earned Value	\$954.92	\$954.92	\$3,342.23	\$6,207.00	\$21,485.76	\$22,440.68	\$21,963.22	\$8,594.30	\$6,684.46	\$2,864.77	
	%	1%	1%	4%	7%	23%	24%	23%	9%	7%	3%	
	BCWS	1%	2%	6%	12%	35%	58%	81%	90%	97%	100%	
	BCWP	1%	2%	4%	9%	20%	45%	53%	63%	82%	93%	
	%	1%	1%	2%	5%	12%	25%	8%	11%	19%	12%	0%
Actual	Earned Value	\$954.92	\$954.92	\$1,432.38	\$4,774.61	\$10,981.61	\$23,873.07	\$7,161.92	\$10,026.69	\$17,666.07	\$10,981.61	
Tasks	Budget	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Work unit technical management	\$4,774.61	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	
Literature review	\$4,774.61	10%	10%	20%	40%	10%	10%					
Inventory, mapping, and performance review of WWTPs	\$19,098.45					20%	30%		30%	10%	10%	
Working with NYS EFC, DOS, DEC and NYC DEP	\$14,323.84					10%	50%	20%			10%	
Select sample Counties	\$4,774.61					20%	30%	20%	20%		10%	
WWTP performance and vulnerability evaluation	\$23,873.07				10%	10%	30%			30%	10%	
Draft report preparation & submission	\$14,323.84					10%	10%	20%	20%	30%		
Recommendations and ranking on the basis of cost/benefit analysis	\$4,774.61									40%	45%	
Final report	\$4,774.61									40%	45%	
TOTAL	\$95,492.26											

Cornell

University

NYS RISE RESILIENCY INSTITUTE FOR STORMS AND EMERGENCIES

Ŷ

Actual/Projected Status of WU 2.3

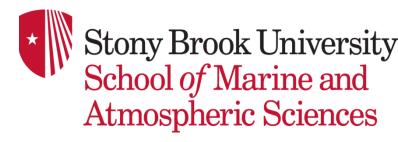
University

References (selected)

- NYC Wastewater Resiliency Plan (Climate Risks Assessment and Adaptation Study), NYC Environmental Protection, October 2013
- HazUS-MH Flood Technical Manual", Department of Homeland Security Federal Emergency Management Agency Mitigation Division, Washington, D.C
- HAZUS-MH MR4 User Manual", Department of Homeland Security Federal Emergency Management Agency Mitigation Division, Washington, D.C
- "HazUS-MH Coastal Flood Model FEMA Region IV Standard Operating Procedure", Coastal Flood Hazard and Loss Analysis SOP, August 2012
- "FEMA Modeling Task Force (MOTF) Sandy Impact Analysis." [http://www.arcgis.com/home/item.html]

Cornell

University


Flooding Impacts on Wastewater Infrastructure

R. Lawrence Swanson, Robert Wilson, Bruce Brownawell, Kaitlin Willig, Park Ng, Tesia Moore

Cornell

Jniversitv

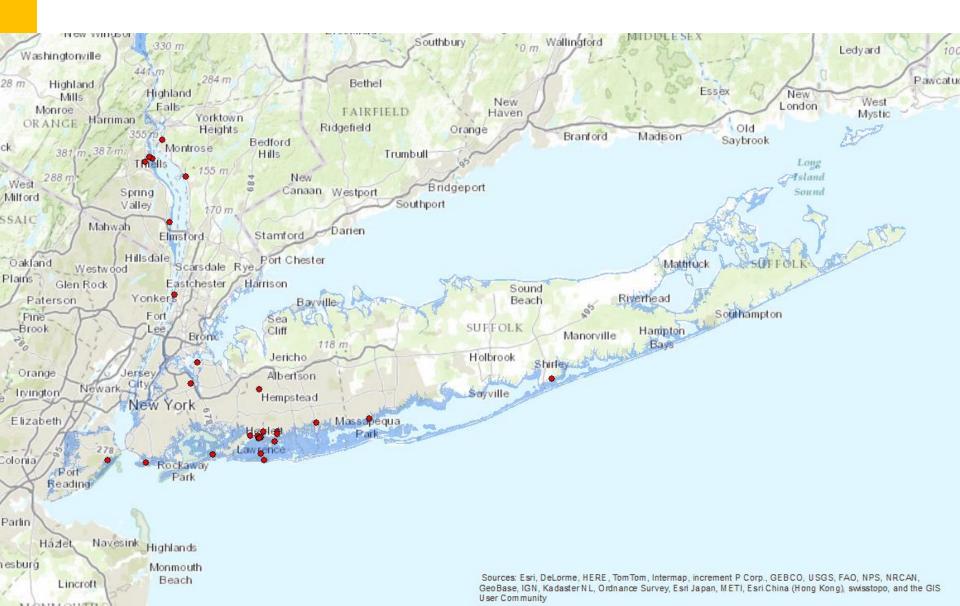
Objectives

- Examine causes of damage and component vulnerability in wastewater treatment systems in select areas of Long Island, including the analysis of the design, operation and capacity characteristics of the existing wastewater infrastructure system and the limitations, deficiencies, potentials and dynamics of each component of the system.
- Assess performance of specific facilities during Superstorm Sandy including increases in loadings of chemical contaminants.

Cornel

Iniversity

Deliverables


- Report on damage and component vulnerability in wastewater treatment systems in the study region caused by Superstorm Sandy and other storms.
- Computer code for hydrodynamic modeling of dilution patterns from the outfall in Reynolds Channel and relief discharge in East Rockaway Channel associated with the flooding at the Bay Park Publicly Owned Treatment Works (POTW), including a map and an interpretation of distribution of sewage tracers in sediments.

Cornel

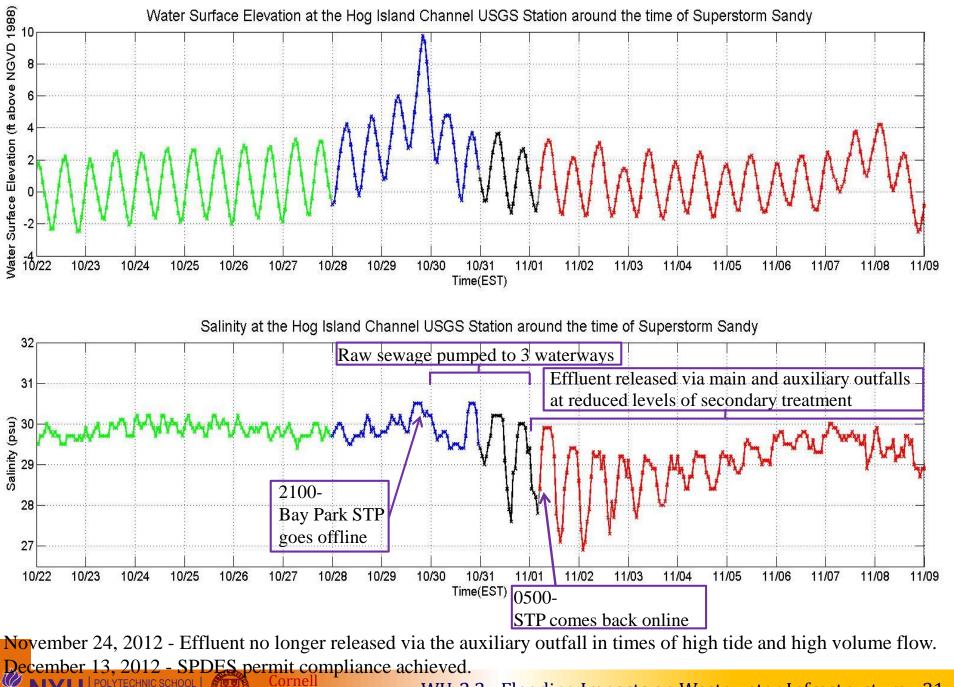
Iniversity

NYDEC Reports of Raw Sewage Spills - 14 out of 32 Located in Western Bays Watershed

Wastewater Treatment Facilities Whose Addresses Lie Within Sandy (blue) and Slosh Model Category 3 (orange) Inundation Zones – Nassau County more Susceptible

- Slosh Cat 3 Hurricane
- Sandy Inundation

			# Facilities	Sandy	Category 3
		Region-wide	161	27	54
		Nassau	22	8	17
N YA		Suffolk	56	2	5
Ŷ	NYU POLYTECHNIC SCHOOL Cornell	WU-2. Westchester	10	1	4


Treatment Plants Contacted- Nassau NYSRISE

County	Facility	Treatment Level	Flow Design (MGD)	Ave. Flow (MGD, 2010)	Pop. Served	Interviewed	Visited	Damaged During Sandy	Looking to Upgrade
Nassau	Bay Park	Secondary	70.0	49.9	532,400	Х	Х	Х	Х
Nassau	Glen Cove	Tertiary	5.5	3.0	28,000				
Nassau	Cedar Creek	Secondary	72.0	58.6	569,000	Х			
Nassau	Long Beach	Secondary	7.5	5.0	37,000	Х		Х	
Nassau	Lawrence	Secondary	1.5	1.3	5,500	Х		Х	Х
Nassau	Greater Atlantic Beach	Secondary	1.5	0.6	2,000	Х		Х	Χ*
Nassau	Great Neck	Secondary	3.8	2.5	>15,000				
Nassau	Great Neck Village	Secondary	1.5	0.9	9,000				
Nassau	Port Washington	Secondary	4.0	2.8	35,000				
Nassau	Belgrave	Secondary	2.0	1.5	14,000				
Nassau	Oyster Bay	Tertiary	1.8	1.3	8,500	X		Х	X**

Niver perinted as a pump station to Bay Park STP based on current proposals for upgrades Dependent on funding availability with WU-2.3 - Flooding Impacts on Wast

University

From the Bay Park STP:

Normal and Post Sandy Estimated Sewage flows past Hog Island Site and their impact on Salinity

	Normal Discharge MG/tidal day	Normal Flow up Hog Island Channel MG/tidal day	Post Sandy Discharge MG/tidal day	Post Sandy Flow in Hog Island Channel MG/tidal day
The Block	51.7	21	70	56
Auxiliary Outfall	-	-	33	27
Total	51.7	21	103	83*

* Observed decline in salinity = 1.2 Estimated from dilution by increased sewage flow = 1.5

Cornell

Iniversitv

CBOD

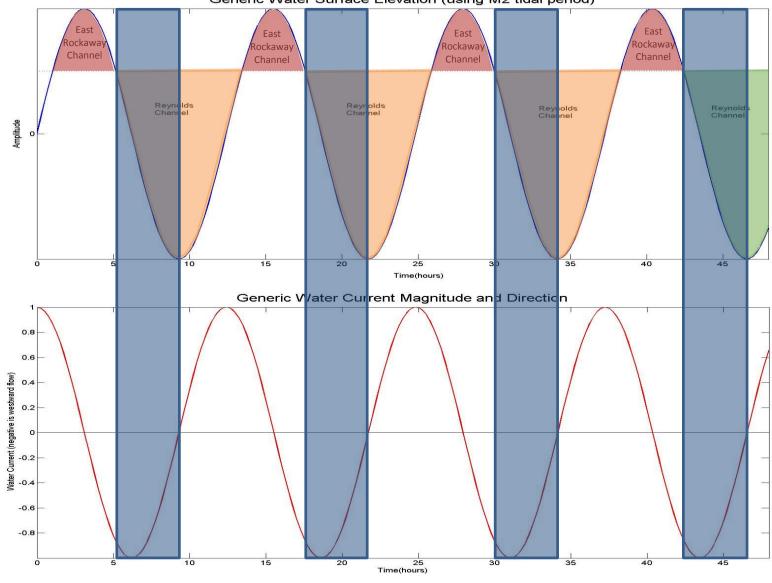
	Average Influent CBOD ₅ mg/L		Average Effluent CBOD₅ Load ton/d	Weighted Average Effluent CBOD ₅ ton/d	Weighted Average Effluent Nov 1-6 CBOD ₅ ton/d
Oct	225	9	1.8		
Nov	213	98	29.7	28.7	27.4

Bay Park STP. Influent and effluent CBOD₅ concentration and average effluent loads to West Bay during October and November 2012.

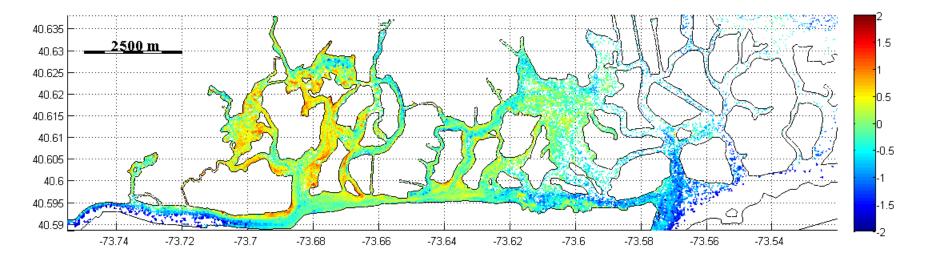
Cornell

University

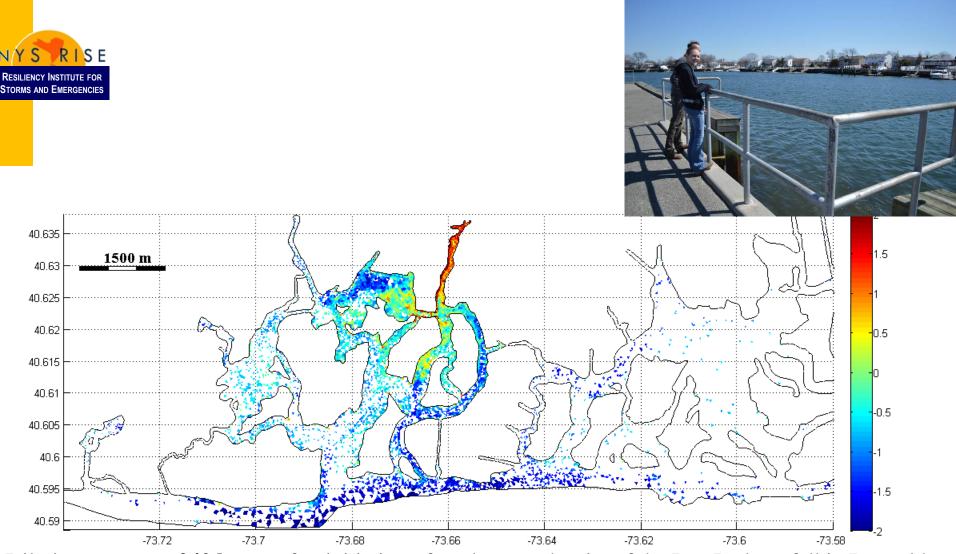
RESILIENCY INSTITUTE FOR STORMS AND EMERGENCIES


Dissolved oxygen concentrations, saturation concentrations, and percent saturation at select times pre- and post-Sandy at the USGS Water Quality Station in Hog Island Channel.

Date/Time EDT	т °С	S	DO Obs mg/L	% Sat	DO Sat mg/L
1300 10/24	15.6	29.8	6.8	81.93	8.30
1300 10/25	15.5	30.0	6.5	78.22	8.31
1300 10/26	15.9	29.8	7.2	87.27	8.25
1300 10/27	15.9	29.7	7.0	84.85	8.25
0100 10/29	15.3	29.8	7.4	88.62	8.34
2112 10/29	14.8	30.3	7.6	90.37	8.41
0100 11/1	13.5	29.4	6.5	74.88	8.68
2224 high tide 11/1	12.9	29.4	6.9	78.50	8.79
0354 low tide 11/2	12.3	27.5	4.6	51.05	9.01
1300 11/6	11.2	29.7	6.5	71.43	9.10


Cornell

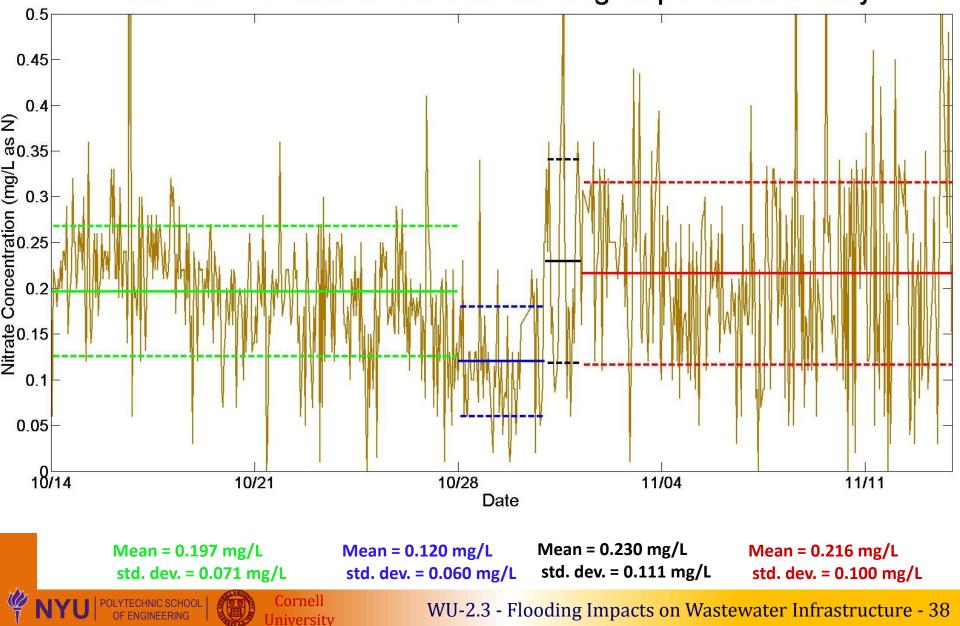
University


Generic Water Surface Elevation (using M2 tidal period)

Dilution pattern at **240 hours** after initiation of a release at the site of the Bay Park outfall in Reynolds channel. Dilution defined as particle concentration in an element divided by concentration in the source element; presented as **log to the base 10 of the percent dilution**. Results are from Lagrangian particle tracking simulations; the release was maintained during that part of the tidal cycle when water level in Reynolds Channel **was below MTL**.

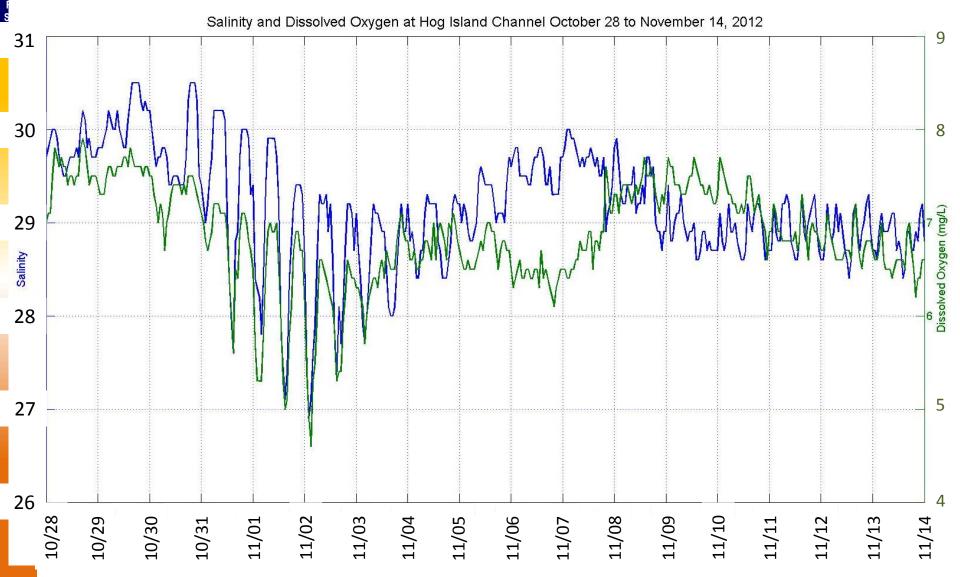
Cornell

University



Dilution pattern at **240 hours** after initiation of a release at the site of the Bay Park outfall in Reynolds channel. Dilution defined as particle concentration in an element divided by concentration in the source element; presented as **log to the base 10 of the percent dilution**. Results are from Lagrangian particle tracking simulations; the release was maintained during that part of the tidal cycle when water level in Reynolds Channel **was below MTL**.

Jniversitv

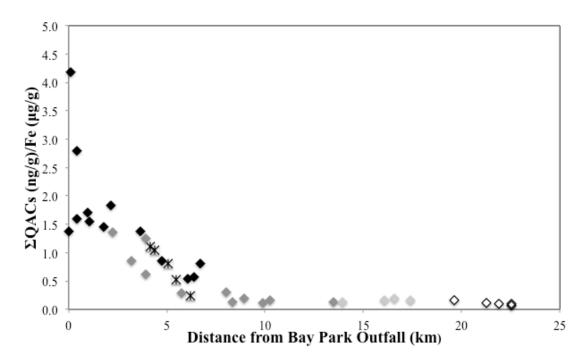

NYSRISE

Nitrate Concentrations Surrounding Superstorm Sandy

Ŷ

Cornell

University


Impacts of Sandy on the Distributions and Inputs of Sewage Derived Contaminants in Hempstead Bay Sediments

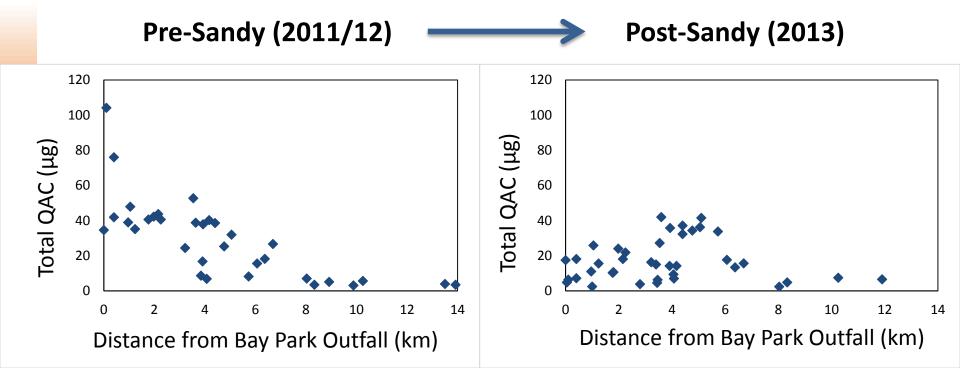
Pre-Sandy (2011/2012) analysis of quaternary ammonium compound sewage tracers and other contaminants in sediments of Hempstead Bay (60 sites and 4 dated sediment cores)

- Levels of QACs nearly as high as most sewagecontaminated areas of Jamaica Bay
- Decreases of QACs from the Bay Park Outfall, especially when comparing similar sediment types.

iornel

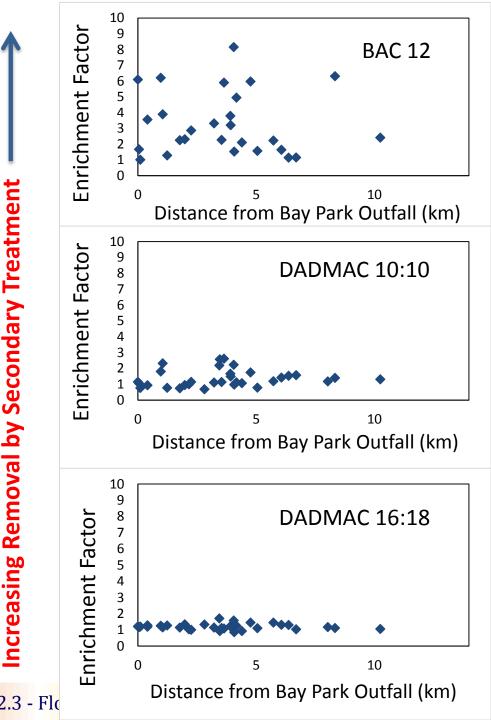
Iniversity

Post-Sandy sampling indicated:


- All types of sediments were eroded during Sandy
- A new layer of fine grain sediment was deposited in most formerly muddy areas
- Grain size and organic matter changed at sites nearer to Reynolds Channel

ΣQAC are reduced in concentration in areas near the outfall (dilution with a source of cleaner fine grain sediment) but are much more similar in areas away from Reynolds Channel– without prior data, the Post-Sandy distributions might suggest a source from East Rockaway Channel inputs of sewage while Bay Park Plant was not pumping all sewage to Reynold's Channel – however, we conclude this is not the primary explanation for observed patterns

AND EMERGENCIES



NYSRISE RESILIENCY INSTITUTE FOR STORMS AND EMERGENCIES QAC specific variations in degree of average enrichment (Post/Pre levels at same Stations) match expectations for increased inputs during period of less effective sewage treatment (e.g., same order near CSOs (Li and Brownawell, 2010)

Also observed for pharmaceuticals in Jamaica Bay (Benotti and Brownawell, 2007) - less treated sewage will lead to greatest enrichment of wastewater contaminants normally well removed by treatment (e.g., consider pathogens without disinfections)

Cornell

University

WU-2.3 - Flo

Bay Park STP Impacts in West Bay following Sandy

- Short Term- Water Column
 - Decreased salinity
 - Increased BOD
 - Decreased DO
 - Increased Nitrate
 - Decreased pH
- Long Term- Water Column and Sediments
 - Redistributed sewage contaminated sediments
 - Contributed to impaired status

University

Bay Park STP Remediation

- Constructing an 18ft berm around the facility
- Elevating electrical supply
- Installing check valves and slide gates on two stormwater outfalls
- Eliminating need for auxiliary outfall
- Implementing seasonal dissolved nitrogen removal*