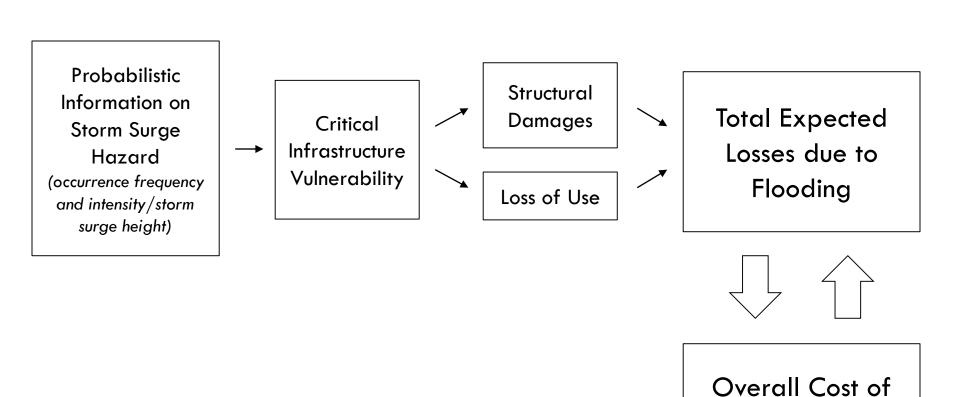
CRITICAL FACILITY VULNERABILITIES AND BENEFIT-COST ANALYSIS

Lucas Oliver, Lizbeth Peña, Ezra Teferra, Jihoo Woo, Madeleine Lopeman, George Deodatis


March 12, 2015

RESEARCH OBJECTIVE

- Determine optimal mitigation strategies <u>under</u> <u>budget constraints</u> to protect critical infrastructure
- Mitigation strategies may evolve dynamically over time

RESEARCH METHODOLOGY

Mitigation

Measures in Time

CRITICAL FACILITIES

Facility Type	Lower Manhattan (below 34 th Street)	Rockaways
Schools	121	40
Hospitals	5	1
Fire Stations	15	2
Police Stations	5	2
Waste Management	4	0
Correctional Facilities	2	0
EMS	1	0
Toxic Waste Facilities	1	4

HOSPITALS - LOSS OF USE METHODOLOGY

Cost Analysis Includes:

- Decreased functionality due to flooding
- Evacuations to other hospitals
- Loss of revenue while hospital is closed

Assumptions:

- Decreased hospital functionality is the cause for increased mortality during floods
- One year of life is worth \$95,000 (this input variable can be modified)
- Deaths in hospitals during hurricanes occur an average of 10 years before expectancy of natural death

HOSPITALS - LOSS OF USE ESTIMATES

Lower Manhattan Hospital	\$103 million
Bellevue Hospital Center	\$533 million
Saint John's Episcopal Center	\$406 million
Mount Sinai Beth Israel	\$1,300 million
NYU Langone Medical Center	\$1,000 million

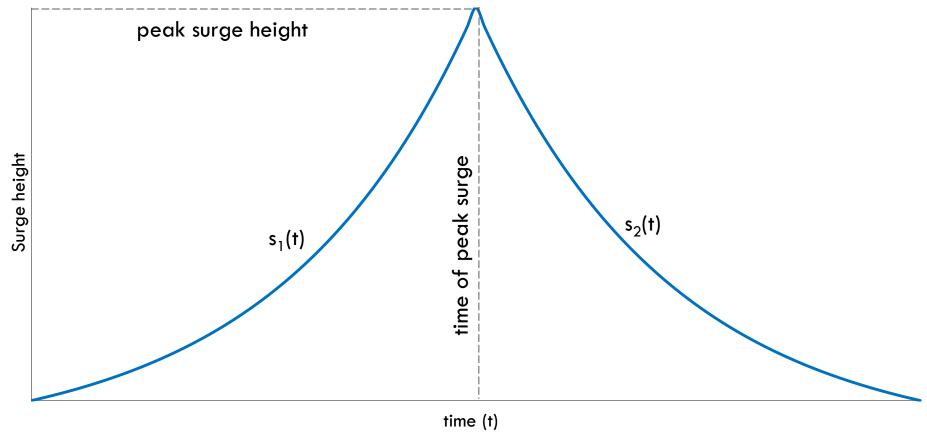
TOTAL DAMAGE (COST) IF A HOSPITAL IS CLOSED FOR 30 DAYS

FIRE STATIONS— LOSS OF USE METHODOLOGY

Cost Analysis Includes:

- Loss of firemen's wages drawn from state averages
- Monetary value of structural damages caused by fires not fought by fire department

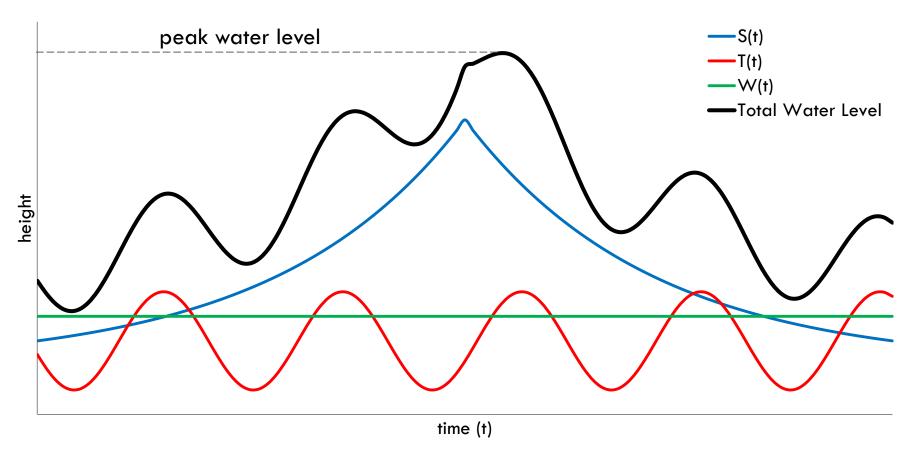
Assumptions:


- There is no statistically significant increase in ignition of fires during a hurricane
- The revenue lost from transportation costs (fire trucks) is minimal

FIRE STATIONS - LOSS OF USE ESTIMATES

Structural Cost	\$700,000/day
Loss from Potential Wages	\$200,000/day
Total Cost	\$900,000/day

ESTIMATED DAILY COST IF ALL FIRE STATIONS
IN LOWER MANHATTAN WERE TO CLOSE DOWN


TIME EVOLUTION MODELS (STORM SURGE)

The rise and fall of storm surges are each modeled as a shifted exponential function:

$$s_1(t) = Ae^{\alpha t}$$
 and $s_2(t) = Be^{\beta(t-t_p)}$

TIME EVOLUTION MODELS (TOTAL WATER LEVEL)

Three contributors add together to yield total water level Y(t):

- S(t) Storm surge's exponential rise and fall
- T(t) Tidal height (harmonic analysis)
- W(t) Mean water level (rising due to sea level rise)

$$Y(t) = S(t) + T(t) + W(t)$$

VIABILITY OF MITIGATION MEASURES

Measures Considered:

- Building removal & relocation
- Individual building retrofit
- Enhanced flood warning and evacuation plan
- Land use, zoning and flood insurance
- Deployable floodwalls
- Floodwalls and Levees
- Shoreline stabilization
- Storm surge barriers
- Barrier island preservation
- Beach restorations & breakwaters
- Beach restorations and groins
- Drainage improvements
- Living shorelines

Viable Measures:

- Individual building retrofit
- Floodwalls and levees
- Beach restoration & breakwaters

COST OF MITIGATION MEASURES

Building Retrofit (Elevation Increase)	\$8,200 total cost annually
Building Retrofit (Industrial Ring Wall)	\$206,319 total cost annually
Structural Floodwalls	\$237 per linear foot annually
Levee Systems	\$77 per linear foot annually
Beach Restoration	\$488 per linear foot annually

PARAMETRIC COSTS OF FLOOD MITIGATION MEASURES

^{*}Figures are obtained from the North Atlantic Coast Comprehensive Study (NACCS) by United States Army Corps of Engineers. Project life is assumed to be 50 years.

ONGOING RESEARCH WORK

- Obtaining exact elevations of critical facilities (through surveys and topographic models of NYC)
- Developing precise Loss of Use estimates by verifying with hospitals and fire departments
- Incorporating models of time evolution of storm surge with Loss of Use estimates
- Finalizing accurate cost estimates for mitigation measures by:
 - Translating NACCS estimates to New York State valuations
 - Analyzing current flood mitigation efforts such as The Big U (Rebuild by Design)
 - Coordinating with US Army Corps of Engineers
 - Collaborating with two consulting firms in NYC

ONGOING RESEARCH WORK (CONTINUED)

- Estimating overall cost of various mitigation measures/strategies as a function of time
- Using Monte Carlo Simulation, estimate expected values of overall losses of above mitigation measures/ strategies as a function of time by combining:
 - Probabilistic information on storm surge hazard (occurrence frequency, intensity, duration, time evolution, intensification with sea level rise)
 - Structural losses
 - Loss of use
- Comparing cost versus expected losses of various mitigation measures/strategies as a function of time