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Organization

Professor: Jan C. Bernauer

Syllabus:
https://you.stonybrook.edu/phy335spring2022/

Classes:

Group 1: Tuesday+Thursday
Group 2: Monday+Wednesday

TA:

Group 1: James
Group 2: Julia
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How can you reach me

O�ce hours: by appointment (zoom or in person). You can
also come to the parallel section.

Email: jan.bernauer@stonybrook.edu

Phone: +1 631 632 8113
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Why?
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What you will be doing

On web page: Unit description

Prepare theory, make a game plan to do measurements

Work in a group of 2 to perform measurements

Make sure all of you contribute!
Make notes and record results in your lab book.

Leave your workspace clean!

Write a lab report

TA's will grade lab report AND lab book
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Lab report

Intro

1-2 pages
All relevant theory

Data

Copy data from lab notebook to report
Circuit diagrams
Errors!

Analysis

Did the experiment work?
Compare experiment with theory prediction
Include error discussion!

Short summary

You can write it by hand, I recommend LATEXand Circuitikz

Better write it yourself!
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Intro

You have to write this BEFORE the unit starts.

When the unit starts, let a TA or me sign it.

Will be part of the report grade!
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Books

Use the one you like.

I really like Art of Electronics (AoE)

Chapters on web page are in reference to AoE, 3rd edition
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Timeline

Everybody has a laptop?
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Safety

Do not put any component in a power outlet.

The voltages the power supply provides are generally safe. But
as a habit, do not touch powered electronics if you can avoid it.

Many components will release smoke when burning out. That
smoke is toxic.

Some components can explode when too much current �ows
through them. Beware of eye damage!

Wash your hands.
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Things in the lab: Breadboard

Base for your circuit

DO NOT FORCE THICK
WIRES INTO IT!

Each group has one. Put
a label on it and store
from lab-day to lab-day

11



Things in the lab: Jumper wires

Schematic symbols:

connected not connected

Please keep them sorted

Exist as �exible and sti�
variants
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Things in the lab: Resistor

Schematic symbol:

R1

1k5

Color coded with rings
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Resistor color codes

9-2-3 ×100 - 1% −→ 92,3 kOhm (92k3)
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Resistor color codes
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Things in the lab: Potentiometer

Schematic symbol:

R1

100k

3 connections = 3 poles!
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Things in the lab: Capacitors

Schematic symbols:

C1

1u

C2

10p

+

C3

100u
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Things in the lab: Diodes

Schematic symbol:

D1
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Things in the lab: Light Emitting Diodes

Schematic symbol:

D1

Long leg: Anode, +

Short leg: Cathode, -

NEVER WITHOUT A
CURRENT LIMITING
RESISTOR
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Things in the lab: Transistors

Schematic symbols:
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Things in the lab: ICs

For us most often OPAMPs:

−

+
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Things in the lab: DMM

Digital Multi-Meter

Measures Voltages, Currents, Resistance
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Things in the lab: Not a DMM
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Things in the lab: Power supply

Generates constant voltages (and 60 Hz sine waves)
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Things in the lab: Signal generator / Function generator

Generates time-varying voltage signals
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Things in the lab: Oscilloscope

Displays voltages as function of time
Or correlation between two voltages

27



Things in the lab: Oscilloscope
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Intro to error analysis

In physics, the error of a measurement is an estimate of the
uncertainty.

Any real measurement has limited precision, and limited
accuracy.
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Precision / accuracy example

Measure a mass with a scale
Precision (∼statistical error):

Repeated measurement: How well do the values agree?

But also: How many gradations/digits

Accuracy (∼systematic error):
How close is 1kg on the scale to real 1kg?

Average of repeated measurements will have better precision, but
unchanged accuracy.
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Uncertainty bands/ranges

The measurement process will give a measured value around
the true value, according to a probability distribution.

That makes a measured value an instance of a random
variable.

We can �nd a range which contains a speci�ed probability.

Turn it around: Make a statement about the true value being
inside a range around the measured value.
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Expected value

Expectation value of a function of a random variable:

E [f (X )] =

∫ ∞
−∞

p(X )f (X )

Expectation value of a random variable X = �mean�:

E [X ] =

∫ ∞
−∞

Xp(X )dX = µ

Variance = Standard deviation squared

Var(X ) = σ2 = E [(X − µ)2]

= E [X 2]− E [2µX ] + E [µ2]

= E [X 2]− 2µE [X ] + µ2

= E [X 2]− µ2
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Commonly used de�nition

Many error distributions are Gaussians (= normal distribution)

f(x) = 1√
2πσ2

e
(x−µ)2
2σ2

True value = µ

pr
ob

ab
ili

ty
de

ns
it
y

measured value

40



Commonly used de�nition

Many error distributions are Gaussians (= normal distribution)

f(x) = 1√
2πσ2

e
(x−µ)2
2σ2

True value = µ

pr
ob

ab
ili

ty
de

ns
it
y

measured value

41



Commonly used de�nition

Many error distributions are Gaussians (= normal distribution)

f(x) = 1√
2πσ2

e
(x−µ)2
2σ2

True value = µ

µ± 1σ −→ 68.27%

pr
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How do errors propagate?

A general function of random variables Z = f (X1,X2,X3, . . .)

Taylor around the expected values for Xi :

Z = f (X1,X2,X3, . . .)

≈f (µ1, µ2, µ3, . . .) +
∂f

∂X1

∣∣∣∣
µ

(X1 − µ1) +
∂f

∂X2

∣∣∣∣
µ

(X2 − µ2) + . . .

Expected value:

E (Z ) = E (f (µ1, µ2, µ3, . . .)) +
∂f

∂X1

∣∣∣∣
µ

E (X1 − µ1) + . . .

E (Z ) = f (µ1, µ2, µ3, . . .)
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How do errors propagate? II

Z ≈ f (µ1, µ2, µ3, . . .) +
∂f

∂X1

∣∣∣∣
µ

(X1 − µ1) +
∂f

∂X2

∣∣∣∣
µ

(X2 − µ2) + . . .

Variance:

Var(Z ) = E
(
(Z − E (Z )) 2

)
= E

( ∂f

∂X1

∣∣∣∣
µ

(X1 − µ1) +
∂f

∂X2

∣∣∣∣
µ

(X2 − µ2) + . . .

)2


Multiply out:

Var(Z ) = E

( ∂f

∂X1

∣∣∣∣
µ

(X1 − µ1)

)2
+E

( ∂f

∂X2

∣∣∣∣
µ

(X2 − µ2)

)2
+. . .+mix. T.
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How do errors propagate? III

Var(Z ) = E

( ∂f

∂X1

∣∣∣∣
µ

(X1 − µ1)

)2
+E

( ∂f

∂X2

∣∣∣∣
µ

(X2 − µ2)

)2
+. . .+mix.T.

Var(Z ) =
∂f

∂X1

∣∣∣∣2
µ

E
(

(X1 − µ1)2
)

+
∂f

∂X2

∣∣∣∣2
µ

E
(

(X2 − µ2)2
)
. . .+mix. T.

Var(Z ) = σ2Z =
∂f

∂X1

∣∣∣∣2
µ

σ2X1
+

∂f

∂X2

∣∣∣∣2
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How do errors propagate? III
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The mixed terms: Covariance

Let's look close at the mixed terms:

mix. T. = E

(
2
∂f

∂X1

∣∣∣∣
µ

(X1 − µ1)
∂f

∂X2

∣∣∣∣
µ

(X2 − µ2) + . . .

)
=

mix.T. = 2
∂f

∂X1

∣∣∣∣
µ

∂f

∂X2

∣∣∣∣
µ

E ((X1 − µ1)(X2 − µ2)) + . . .

Covariance, a measure how two random variables correlate:

cov(X1,X2) = E ((X1 − µ1)(X2 − µ2))

Independent random variables −→cov(X1,X2) = 0
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Error propagation for independent variables

Var(Z ) = σ2Z =
∂f

∂X1

∣∣∣∣2
µ

σ2X1
+

∂f

∂X2

∣∣∣∣2
µ

σ2X2
+ . . .

σz =

√(
∂f

∂X1

σX1

)2

+

(
∂f

∂X2

σX2

)2

+ . . .

Examples:

Z = X + Y−→ σ2Z = σ2X + σ2Y
Z = 3X−→ σZ = 3σX

Z = X × Y−→ σ2Z = (µY σX )2 + (µXσY )2
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Electricity: Voltage and Current

To understand a circuit, we need to understand the behavior of two
physical quantities:

Voltage: Formula symbols U,V, rarely E. Voltage is the
electrical potential di�erence between two points. Moving one
coulomb (1C) electrical charge to a potential which is 1 Volt
(1V) higher requires 1 Joule energy.

Current: Formula symbol I. Current is the rate of �ow of
electric charge. If 1C charge per second is one ampere (one
amp, 1 A).

N.B.: Technical current direction = positive current �ows from
higher potential to lower potential (electrons the other way)
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Voltage and Current II

We say:

We have x Volts voltage drop across this component

There are x V between point A and B

At point A, the voltage is x. Here, the second point is
�Ground�

Through component A �ows x amps.

Into that pin �ow x amps.

Out of that other pin �ows y amps.
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Energy and Power

We know: U = E
Q

And: Q = I · t
So E = UIt, or P = E/t = UI
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Kirchho�'s laws

The sum of all currents into a point is zero.
Or: The sum of all currents into a point is equal to the sum of
all currents out of a point. (KCL)

The sum of voltage drops in a loop is zero.
Or: Things hooked up in parallel have the same voltage.
(KVL)
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Resistors: Coupling U and I

Materials have a speci�c resistance, or resistivity ρ.
We can calculate the Resistance of a homogeneous piece as

R = l/A× ρ
(N.B.: In general, R and ρ can be functions of time, temperature
etc.)

We can also de�ne a conductivity σ = 1/ρ and a conductance
G = 1/R
Units: [R] = 1Ω = 1Ohm, [ρ] = 1Ωm, [G ] = 1S = 1Siemens
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Ohm's law

The ideal resistor is �ohmic�, that is, R is constant, and voltage and
current are following Ohm's law:

U = RI

This means

P = RI 2 = U2/R

This is the power which is converted to heat inside the resistor.
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Resistors in series and parallel

R1 R2

R1

U1

I1
R2

U2

I2

KCL: Current in both resistors is the
same: I1 = I2 = I
Voltage across both resistors is
US . = U1 + U2 = R1I + R2I
Equivalent resistance is
RS = US/I = R1 + R2

R1

R2

R1

U1

I1

IP

R2

U2

I2

KVL: Voltage across both resistors is
the same: U1 = U2 = U
Total current is the sum:
Ip = I1 + I2 = U/R1 + U/R2

Equivalent resistance is
Req = U/IP = 1

1/R1+1/R2

Or: Gp = G1 + G2
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Resistors in series and parallel
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Resistors in series and parallel
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Resistors in series and parallel

R1 R2

R1

U1

I1
R2

U2

I2

KCL: Current in both resistors is the
same: I1 = I2 = I
Voltage across both resistors is
US . = U1 + U2 = R1I + R2I
Equivalent resistance is
RS = US/I = R1 + R2

R1

R2

R1

U1

I1

IP

R2

U2

I2

KVL: Voltage across both resistors is
the same: U1 = U2 = U
Total current is the sum:
Ip = I1 + I2 = U/R1 + U/R2

Equivalent resistance is
Req = U/IP = 1

1/R1+1/R2

Or: Gp = G1 + G2

78



Resistors in series and parallel

R1 R2
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U1
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Voltage divider

R1

R2 Vout

Vin

What is Vout as function of Vin?

Series resistance: I = Vin/(R1 + R2)
Ohms law: Vout = R2I = Vin

R2

R1+R2

Vout

Vin
=

R2

R1 + R2
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Voltage divider

R1

R2 Vout

Vin

What is Vout as function of Vin?
Series resistance: I = Vin/(R1 + R2)
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DMM and internal resistance: Voltage measurement

V

An ideal voltmeter

In�nite resistance

Therefore no current through
voltmeter

Will not in�uence a circuit under
test

V

Rinternal

A real voltmeter

will a�ect circuit

like a very large resistor
(Rinternal > 1MΩ)

This value can depend on the
range!
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DMM and internal resistance: Current measurement

A

An ideal ammeter

Zero resistance

Therefore no voltage drop

Will not in�uence a circuit under
test

A

Rinternal

A real ammeter

will a�ect circuit

like a very small resistor
(Rinternal < 1Ω)

This value can depend on the
range!
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DMM and internal resistance: Current measurement

A

An ideal ammeter

Zero resistance

Therefore no voltage drop

Will not in�uence a circuit under
test

A

Rinternal

A real ammeter

will a�ect circuit

like a very small resistor
(Rinternal < 1Ω)

This value can depend on the
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Periodic signals

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25

U
[V

]

t [s]

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25

U
[V

]

t [s]

A signal is periodic if it repeats itself after a �xed time T , the
period

Here, T = 0.05s.

The signal has a frequency f = 1/T = 20Hz (Hertz)
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Periodic signals
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Phase

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

U
[V

]

t [s]

Vin
Vout

−1.5
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0

0.5

1

1.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

∆T

U
[V

]

t [s]

Vin
Vout

Two signals of the same shape and frequency will have a phase
between them.

Here, ∆T = 0.01s. The phase is 360◦ 0.01
0.05 = 72◦
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Amplitudes
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Amplitude: A = max(|U(t)|)
peak-to-peak voltage Vpp = max(U(t))−min(U(t))

root-mean-square voltage Vrms =
√

1
T

∫ T
0

U2(t)dt
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Sine waves

General sine wave:

U(t) = A · sin(2πft + φ)

Frequency f

Phase φ (and the phase di�erence between two sines is
φ2 − φ1)
Amplitude A, Vpp = 2A

Vrms =
√
1/T

∫ T
0

A2 sin2(2πt/T + φ)dt =
√

1
2
A
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Why root mean squared?

What is the average power of a signal into a ohmic load?

P = RU2

P =
1

T

∫ T

0

RU2(t)dt = RV 2
rms
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Decibels

We often compare signals of widely di�erent
power(/amplitude)

Logarithmic scale is useful. 10 dB is 1 bel (from Bell), which is
a power ratio of 10:

10 log10
P2

P1

For amplitudes (or Vrms), it's 20dB for a ratio of 10:

20 log10
A2

A1

Sometimes used as absolute measurements:

0 dBm = 1 mW (in a speci�ed load, 50Ω or 600Ω)
0 dBV = 1 V(rms)
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Loaded voltage divider

R1

R2 Vout

Vin

RL

R1

R2 ‖ RL Vout

Vin

Calculate

R2 ‖ RL =
1

1
R2

+ 1
RL

=
RLR2

RL + R2

Put into formula for divider:

Vout

Vin
=

RLR2

RL+R2

R1 + RLR2

RL+R2
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Loaded voltage divider
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Loaded voltage divider II

Vout

Vin
=

RLR2

RL+R2

R1 + RLR2

RL+R2

=
R2

R1 + R2

RL

RL + R1R2

R1+R2

=
R2

R1 + R2

RL

RL + R1 ‖ R2

If RL � R1 ‖ R2, Voltage divider will look like a voltage source
with Vout given by unloaded divider
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Loaded voltage divider II

Vout

Vin
=

RLR2

RL+R2

R1 + RLR2

RL+R2

=
R2

R1 + R2

RL

RL + R1R2

R1+R2

=
R2

R1 + R2

RL

RL + R1 ‖ R2

If RL � R1 ‖ R2, Voltage divider will look like a voltage source
with Vout given by unloaded divider
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Thévenin theorem

Any two-terminal network of resistors and voltage resources is
equivalent to single resistor RTh in series with a single voltage
source VTh.

How can me measure/calculate them?
Let's assume we have a black box with two connections. We know
that there are only batteries and resistors inside. So we can assume
there is only one ideal voltage source and one series resistor inside:

−
+VTh

RTh
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Thévenin theorem II

−
+VTh

RTh

VA

We can get the voltage by measuring the unloaded voltage.
No current �ows, so there is no drop over RTh, so
Vmeasured = VTh = V (open circuit)

We can measure the current when we short the two poles.
Then, VTh = VRth

and Imeasured is IRTh
, so RTh = V (open circuit)

I (short circuit)
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Thévenin theorem II

−
+VTh

RTh

V

A

We can get the voltage by measuring the unloaded voltage.
No current �ows, so there is no drop over RTh, so
Vmeasured = VTh = V (open circuit)

We can measure the current when we short the two poles.
Then, VTh = VRth

and Imeasured is IRTh
, so RTh = V (open circuit)

I (short circuit)
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Let's try: Thévenin theorem and the voltage divider I

R1

R2 Vout

Vin

−
+ Vin

R2

R1+R2

R1 ‖ R2

We already know the open circuit voltage:

VTh = Vout = Vin
R2

R1 + R2

Short circuit current: R2 is shorted out, so we have I = Vin
R1
.

RTh =
R1R2

R1 + R2

= R1 ‖ R2
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Let's try: Thévenin theorem and the voltage divider II

−
+VTh

RTh

RL

−
+Vin

R2

R1+R2

R1 ‖ R2

RL

This is a voltage divider:

VL = VTh
RL

RTh + RL

VL = Vin
R2

R1 + R2

RL

RL + R1 ‖ R2
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R1 + R2

RL

RL + R1 ‖ R2
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Let's try: Thévenin theorem and the voltage divider II

−
+VTh

RTh
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R2

R1+R2

R1 ‖ R2

RL

This is a voltage divider:

VL = VTh
RL

RTh + RL

VL = Vin
R2

R1 + R2

RL

RL + R1 ‖ R2
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Norton's theorem

We can also transform a voltage source with a series resistance to a
current source with a parallel resistance:

−
+VTh

RTh

IN RN

IN = I (short circuit), RN=RTh=
U(open circuit)

I (short circuit)

Every two-pole network of resistors, voltage and current sources can
be converted to a network of either

Voltage source + series resistor

Current source + parallel resistor
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Norton's theorem
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Alternative way to �nd RTh

Replace all voltage sources with shorts

Replace all current sources with open connections

The network is now purely made from resistors. Use the
formulas for parallel and serial resistors to �nd RTh
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