PHY335 Spring 2022 Lecture 1

Organization

- Professor: Jan C. Bernauer
- Syllabus:
https://you.stonybrook.edu/phy335spring2022/
- Classes:
- Group 1: Tuesday+Thursday
- Group 2: Monday+Wednesday
- TA:
- Group 1: James
- Group 2: Julia

How can you reach me

- Office hours: by appointment (zoom or in person). You can also come to the parallel section.
- Email: jan.bernauer@stonybrook.edu
- Phone: +1 6316328113

Why?

Gouman	FPGA Developer Goldman Sachs New York, NY via MetroNewYorkJobs.com
	(1) 4 days ago Full-fime
\% TOwn	FPGA Support Engineer Tower Research Capital, LLC. New York, NY via Ladders
	(1) Over 1 month ago Full-time
E	FPGA Developer eFinancialCareers New York, NY via Linkedln
	(1) 14 days ago fil Fulttime
jobsions	FPGA Developer JobServe New York, NY via JobServe
	(1) 9 days ago full-time
F	Senior VHDL/FPGA Developer Finance \& Investment Industry Company New York, NY via Velvet Jobs
	(4) 12 days ago Fulltime
1	FPGA Developer IJC Associates, Inc New York, NY via EFinancialCareers
	(1) 15 days ago Full-ime
H	FPGA Engineer Huxley Banking \& Financial Services United States

FPGA Developer

\square save $<$
Goldman Sachs
New York, NY
eFinancialCareers
New York, NY
via Linkedln

FPGA Developer

JobServe
via JobServe
(1) 9 days ago full-time

Huxley Banking \& Financial Services United States
JC Associates, Inc
New York, NY
via EFinancialCareers
(1) 15 days ago Full-ime

What you will be doing

- On web page: Unit description
- Prepare theory, make a game plan to do measurements
- Work in a group of 2 to perform measurements
- Make sure all of you contribute!
- Make notes and record results in your lab book.
- Leave your workspace clean!
- Write a lab report
- TA's will grade lab report AND lab book

Lab report

- Intro
- 1-2 pages
- All relevant theory
- Data
- Copy data from lab notebook to report
- Circuit diagrams
- Errors!
- Analysis
- Did the experiment work?
- Compare experiment with theory prediction
- Include error discussion!
- Short summary
- You can write it by hand, I recommend ${ }^{A} T_{E X}$ Xand Circuitikz
- Better write it yourself!

Intro

- You have to write this BEFORE the unit starts.
- When the unit starts, let a TA or me sign it.
- Will be part of the report grade!

Books

- Use the one you like.
- I really like Art of Electronics (AoE)
- Chapters on web page are in reference to AoE, 3rd edition

Timeline

UNIT	SUBJECT	LAB DATES	REPORT DUE ON	ADDITIONAL MATERIAL
0	Introduction	01/24+25		
1	Lab instruments, signals, resistors	01/26+27,01/31+02/01,02/02+03	02/9+10	AoE Chapter 1.1 to 1.3
2	Capacitors, Inductors, RC filters	02/07+08, 02/09+10,02/14+15	$02 / 21+22$	AoE: Chapter 1.4 to $1.5,1.7$ (6)
3	Diodes and DC power	02/16+17,02/21+22	02/18+19	AoE Chapter 1.61
4	Simulation and PCB design	02/23+24,02/28+03/01	03/07+08	(no lab book required)
5	Operational amplifiers	$\begin{aligned} & 03 / 02+03,03 / 07+08,03 / 07+08,03 / 09+10 \\ & 03 / 21+03 / 22 \end{aligned}$	03/30+31	AoE Chapter 4
Midterms	Midterms, units 1-5	03/23+24		
6	Transistors and Transistor circuits	$\begin{aligned} & 03 / 28+29,03 / 30+31,04 / 04+05,04 / 06+07 \\ & 04 / 11+12 \end{aligned}$	04/20+21	AoE Chapter 2,3
7	Digital electronics, TBD	$\begin{aligned} & 04 / 13+04 / 14,04 / 18+19,04 / 20+21,04 / 25+26 \\ & 04 / 27+28 \end{aligned}$	05/04+05	AoE Chapter 10,(11),12.1-12.3, 13.1-13.5 (13.5-13.14)
Finals	(Units 1-7, focus on 6-7))	05/04+05	Training on 05/02+03	

- Everybody has a laptop?

Safety

- Do not put any component in a power outlet.
- The voltages the power supply provides are generally safe. But as a habit, do not touch powered electronics if you can avoid it.
- Many components will release smoke when burning out. That smoke is toxic.
- Some components can explode when too much current flows through them. Beware of eye damage!
- Wash your hands.

Things in the lab: Breadboard

- Base for your circuit
- DO NOT FORCE THICK WIRES INTO IT!
- Each group has one. Put a label on it and store from lab-day to lab-day

Things in the lab: Jumper wires

Schematic symbols:

connected

not connected

- Please keep them sorted
- Exist as flexible and stiff variants

Things in the lab: Resistor

Schematic symbol:

- Color coded with rings

Resistor color codes

5 Band color code resistor

Color	$1^{\text {st }}$ digit	$2^{\text {na }}$ digit	$3^{\text {rad }}$ digit	Multiplier	Tolerance
Black	0	0	0	10°	
Brown	1	1	1	10^{1}	1\% (F)
Red	2	2	2	10^{2}	2\% (G)
Orange	3	3	3	10^{3}	
Yellow	4	4	4	10^{4}	
Green	5	5	5	10^{5}	0.5\% (D)
Blue	6	6	6	10^{6}	0.25\% (C)
Violet	7	7	7	10^{7}	0.10\% (B)
Gray	8	8	8	10^{8}	0.05\%
White	9	9	9	10^{9}	
Gold				10^{-1}	5\% (J)
Silver				10^{-2}	10\% (K)

Resistor color codes

5 Band color code resistor

Color	$1^{\text {st }}$ digit	$2^{\text {nd }}$ digit	$3^{\text {rad }}$ digit	Multiplier	Tolerance
Black	0	0	0	10°	
Brown	1	1	1	10^{1}	1\% (F)
Red	2	2	2	10^{2}	2\% (C)
Orange	3	3	3	10^{3}	
Yellow	4	4	4	10^{4}	
Green	5	5	5	10^{5}	0.5\% (D)
Blue	6	6	6	10^{6}	0.25\% (C)
Violet	7	7	7	10^{7}	0.10\% (B)
Gray	8	8	8	10^{8}	0.05\%
White	9	9	9	10^{9}	
Gold				10^{-1}	5\% (J)
Silver				10^{-2}	10\% (K)

- 9-2-3 $\times 100-1 \% \longrightarrow 92,3 \mathrm{kOhm}(92 \mathrm{k} 3)$

Things in the lab: Potentiometer

Schematic symbol:

- 3 connections $=3$ poles!

Things in the lab: Capacitors

Schematic symbols:

Things in the lab: Diodes

Schematic symbol:

Things in the lab: Light Emitting Diodes

Schematic symbol:

D1

- Long leg: Anode, +
- Short leg: Cathode, -
- NEVER WITHOUT A CURRENT LIMITING RESISTOR

Things in the lab: Transistors

Schematic symbols:

Things in the lab: ICs

For us most often OPAMPs:

Things in the lab: DMM

- Digital Multi-Meter
- Measures Voltages, Currents, Resistance

Things in the lab: DMM

- Digital Multi-Meter
- Measures Voltages, Currents, Resistance

Things in the lab: Not a DMM

Things in the lab: Power supply

- Generates constant voltages (and 60 Hz sine waves)

Things in the lab: Signal generator / Function generator

- Generates time-varying voltage signals

Things in the lab: Oscilloscope

- Displays voltages as function of time
- Or correlation between two voltages

Things in the lab: Oscilloscope

Intro to error analysis

- In physics, the error of a measurement is an estimate of the uncertainty.

Intro to error analysis

- In physics, the error of a measurement is an estimate of the uncertainty.
- Any real measurement has limited precision, and limited accuracy.

Accurate	Not Accurate	Accurate	Not Accurate
Precise	Precise	Not Precise	Not Precise

Precision / accuracy example

Measure a mass with a scale Precision (\sim statistical error):

- Repeated measurement: How well do the values agree?
- But also: How many gradations/digits

Precision / accuracy example

Measure a mass with a scale Precision (\sim statistical error):

- Repeated measurement: How well do the values agree?
- But also: How many gradations/digits

Accuracy (\sim systematic error):

- How close is 1 kg on the scale to real 1 kg ?

Average of repeated measurements will have better precision, but unchanged accuracy.

Uncertainty bands/ranges

- The measurement process will give a measured value around the true value, according to a probability distribution.
- That makes a measured value an instance of a random variable.
- We can find a range which contains a specified probability.
- Turn it around: Make a statement about the true value being inside a range around the measured value.

Expected value

Expectation value of a function of a random variable:

$$
E[f(X)]=\int_{-\infty}^{\infty} p(X) f(X)
$$

Expected value

Expectation value of a function of a random variable:

$$
E[f(X)]=\int_{-\infty}^{\infty} p(X) f(X)
$$

Expectation value of a random variable $\mathrm{X}=$ "mean":

$$
E[X]=\int_{-\infty}^{\infty} X p(X) d X=\mu
$$

Expected value

Expectation value of a function of a random variable:

$$
E[f(X)]=\int_{-\infty}^{\infty} p(X) f(X)
$$

Expectation value of a random variable $\mathrm{X}=$ "mean":

$$
E[X]=\int_{-\infty}^{\infty} X p(X) d X=\mu
$$

Variance $=$ Standard deviation squared

$$
\operatorname{Var}(X)=\sigma^{2}=E\left[(X-\mu)^{2}\right]
$$

Expected value

Expectation value of a function of a random variable:

$$
E[f(X)]=\int_{-\infty}^{\infty} p(X) f(X)
$$

Expectation value of a random variable $\mathrm{X}=$ "mean":

$$
E[X]=\int_{-\infty}^{\infty} X p(X) d X=\mu
$$

Variance $=$ Standard deviation squared

$$
\begin{aligned}
\operatorname{Var}(X)=\sigma^{2} & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}\right]-E[2 \mu X]+E\left[\mu^{2}\right]
\end{aligned}
$$

Expected value

Expectation value of a function of a random variable:

$$
E[f(X)]=\int_{-\infty}^{\infty} p(X) f(X)
$$

Expectation value of a random variable $\mathrm{X}=$ "mean":

$$
E[X]=\int_{-\infty}^{\infty} X p(X) d X=\mu
$$

Variance $=$ Standard deviation squared

$$
\begin{aligned}
\operatorname{Var}(X)=\sigma^{2} & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}\right]-E[2 \mu X]+E\left[\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2}
\end{aligned}
$$

Expected value

Expectation value of a function of a random variable:

$$
E[f(X)]=\int_{-\infty}^{\infty} p(X) f(X)
$$

Expectation value of a random variable $\mathrm{X}=$ "mean":

$$
E[X]=\int_{-\infty}^{\infty} X p(X) d X=\mu
$$

Variance $=$ Standard deviation squared

$$
\begin{aligned}
\operatorname{Var}(X)=\sigma^{2} & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}\right]-E[2 \mu X]+E\left[\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

Commonly used definition

- Many error distributions are Gaussians (= normal distribution)

Commonly used definition

- Many error distributions are Gaussians (= normal distribution)

Commonly used definition

- Many error distributions are Gaussians (= normal distribution)

How do errors propagate?

A general function of random variables $Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right)$

How do errors propagate?

A general function of random variables $Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ Taylor around the expected values for X_{i} :

$$
\begin{aligned}
& Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right) \\
& \approx f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots
\end{aligned}
$$

How do errors propagate?

A general function of random variables $Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right)$
Taylor around the expected values for X_{i} :

$$
\begin{aligned}
& Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right) \\
& \approx f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots
\end{aligned}
$$

Expected value:

$$
E(Z)=E\left(f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} E\left(X_{1}-\mu_{1}\right)+\ldots
$$

How do errors propagate?

A general function of random variables $Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right)$
Taylor around the expected values for X_{i} :

$$
\begin{aligned}
& Z=f\left(X_{1}, X_{2}, X_{3}, \ldots\right) \\
& \approx f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots
\end{aligned}
$$

Expected value:

$$
E(Z)=E\left(f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} E\left(X_{1}-\mu_{1}\right)+\ldots
$$

$$
E(Z)=f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)
$$

How do errors propagate? II

$Z \approx f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots$

Variance:

How do errors propagate? II

$$
Z \approx f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots
$$

Variance:

$$
\begin{aligned}
\operatorname{Var}(Z) & =E\left((Z-E(Z))^{2}\right) \\
& =E\left(\left(\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots\right)^{2}\right)
\end{aligned}
$$

How do errors propagate? II

$$
Z \approx f\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)+\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots
$$

Variance:

$$
\begin{aligned}
\operatorname{Var}(Z) & =E\left((Z-E(Z))^{2}\right) \\
& =E\left(\left(\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots\right)^{2}\right)
\end{aligned}
$$

Multiply out:

$$
\operatorname{Var}(Z)=E\left(\left(\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)\right)^{2}\right)+E\left(\left(\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)\right)^{2}\right)+\ldots
$$

How do errors propagate? III

$$
\operatorname{Var}(Z)=E\left(\left(\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)\right)^{2}\right)+E\left(\left(\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)\right)^{2}\right)+. .
$$

How do errors propagate? III

$$
\begin{aligned}
& \operatorname{Var}(Z)=E\left(\left(\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)\right)^{2}\right)+E\left(\left(\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)\right)^{2}\right)+. . \\
& \operatorname{Var}(Z)=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} E\left(\left(X_{1}-\mu_{1}\right)^{2}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} E\left(\left(X_{2}-\mu_{2}\right)^{2}\right) \ldots+\text { mix. T. }
\end{aligned}
$$

How do errors propagate? III

$$
\begin{gathered}
\operatorname{Var}(Z)=E\left(\left(\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right)\right)^{2}\right)+E\left(\left(\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)\right)^{2}\right)+\ldots \\
\operatorname{Var}(Z)=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} E\left(\left(X_{1}-\mu_{1}\right)^{2}\right)+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} E\left(\left(X_{2}-\mu_{2}\right)^{2}\right) \ldots+\text { mix. T. } \\
\operatorname{Var}(Z)=\sigma_{Z}^{2}=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} \sigma_{X_{1}}^{2}+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} \sigma_{X_{2}}^{2}+\ldots+\text { mix.T. }
\end{gathered}
$$

The mixed terms: Covariance

Let's look close at the mixed terms:

$$
\text { mix. T. }=E\left(\left.\left.2 \frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right) \frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots\right)=
$$

The mixed terms: Covariance

Let's look close at the mixed terms:

$$
\begin{gathered}
\text { mix. T. }=E\left(\left.\left.2 \frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right) \frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots\right)= \\
\text { mix.T. }=\left.\left.2 \frac{\partial f}{\partial X_{1}}\right|_{\mu} \frac{\partial f}{\partial X_{2}}\right|_{\mu} E\left(\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right)+\ldots
\end{gathered}
$$

The mixed terms: Covariance

Let's look close at the mixed terms:

$$
\begin{gathered}
\text { mix. T. }=E\left(\left.\left.2 \frac{\partial f}{\partial X_{1}}\right|_{\mu}\left(X_{1}-\mu_{1}\right) \frac{\partial f}{\partial X_{2}}\right|_{\mu}\left(X_{2}-\mu_{2}\right)+\ldots\right)= \\
\text { mix.T. }=\left.\left.2 \frac{\partial f}{\partial X_{1}}\right|_{\mu} \frac{\partial f}{\partial X_{2}}\right|_{\mu} E\left(\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right)+\ldots
\end{gathered}
$$

Covariance, a measure how two random variables correlate:

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right)
$$

Independent random variables $\longrightarrow \operatorname{cov}\left(X_{1}, X_{2}\right)=0$

Error propagation for independent variables

$$
\begin{gathered}
\operatorname{Var}(Z)=\sigma_{Z}^{2}=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} \sigma_{X_{1}}^{2}+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} \sigma_{X_{2}}^{2}+\ldots \\
\sigma_{z}=\sqrt{\left(\frac{\partial f}{\partial X_{1}} \sigma_{X_{1}}\right)^{2}+\left(\frac{\partial f}{\partial X_{2}} \sigma_{X_{2}}\right)^{2}+\ldots}
\end{gathered}
$$

Error propagation for independent variables

$$
\begin{gathered}
\operatorname{Var}(Z)=\sigma_{Z}^{2}=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} \sigma_{X_{1}}^{2}+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} \sigma_{X_{2}}^{2}+\ldots \\
\sigma_{z}=\sqrt{\left(\frac{\partial f}{\partial X_{1}} \sigma_{X_{1}}\right)^{2}+\left(\frac{\partial f}{\partial X_{2}} \sigma_{X_{2}}\right)^{2}+\ldots}
\end{gathered}
$$

Examples:

- $Z=X+Y \longrightarrow \sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$

Error propagation for independent variables

$$
\begin{gathered}
\operatorname{Var}(Z)=\sigma_{Z}^{2}=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} \sigma_{X_{1}}^{2}+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} \sigma_{X_{2}}^{2}+\ldots \\
\sigma_{z}=\sqrt{\left(\frac{\partial f}{\partial X_{1}} \sigma_{X_{1}}\right)^{2}+\left(\frac{\partial f}{\partial X_{2}} \sigma_{X_{2}}\right)^{2}+\ldots}
\end{gathered}
$$

Examples:

- $Z=X+Y \longrightarrow \sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$
- $Z=3 X \longrightarrow \sigma_{Z}=3 \sigma_{X}$

Error propagation for independent variables

$$
\begin{gathered}
\operatorname{Var}(Z)=\sigma_{Z}^{2}=\left.\frac{\partial f}{\partial X_{1}}\right|_{\mu} ^{2} \sigma_{X_{1}}^{2}+\left.\frac{\partial f}{\partial X_{2}}\right|_{\mu} ^{2} \sigma_{X_{2}}^{2}+\ldots \\
\sigma_{z}=\sqrt{\left(\frac{\partial f}{\partial X_{1}} \sigma_{X_{1}}\right)^{2}+\left(\frac{\partial f}{\partial X_{2}} \sigma_{X_{2}}\right)^{2}+\ldots}
\end{gathered}
$$

Examples:

- $Z=X+Y \longrightarrow \sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$
- $Z=3 X \longrightarrow \sigma_{Z}=3 \sigma_{X}$
- $Z=X \times Y \longrightarrow \sigma_{Z}^{2}=\left(\mu_{Y} \sigma_{X}\right)^{2}+\left(\mu_{X} \sigma_{Y}\right)^{2}$

Electricity: Voltage and Current

To understand a circuit, we need to understand the behavior of two physical quantities:

- Voltage: Formula symbols U,V, rarely E. Voltage is the electrical potential difference between two points. Moving one coulomb (1C) electrical charge to a potential which is 1 Volt (1V) higher requires 1 Joule energy.

Electricity: Voltage and Current

To understand a circuit, we need to understand the behavior of two physical quantities:

- Voltage: Formula symbols U,V, rarely E. Voltage is the electrical potential difference between two points. Moving one coulomb (1C) electrical charge to a potential which is 1 Volt (1V) higher requires 1 Joule energy.
- Current: Formula symbol I. Current is the rate of flow of electric charge. If 1 C charge per second is one ampere (one amp, 1 A).

Electricity: Voltage and Current

To understand a circuit, we need to understand the behavior of two physical quantities:

- Voltage: Formula symbols U,V, rarely E. Voltage is the electrical potential difference between two points. Moving one coulomb (1C) electrical charge to a potential which is 1 Volt (1V) higher requires 1 Joule energy.
- Current: Formula symbol I. Current is the rate of flow of electric charge. If 1 C charge per second is one ampere (one amp, 1 A).
N.B.: Technical current direction $=$ positive current flows from higher potential to lower potential (electrons the other way)

Voltage and Current II

We say:

- We have x Volts voltage drop across this component
- There are $\times V$ between point A and B
- At point A, the voltage is x. Here, the second point is "Ground"

Voltage and Current II

We say:

- We have x Volts voltage drop across this component
- There are $\times V$ between point A and B
- At point A, the voltage is x. Here, the second point is "Ground"
- Through component A flows x amps.
- Into that pin flow x amps.
- Out of that other pin flows y amps.

Energy and Power

- We know: $U=\frac{E}{Q}$

Energy and Power

- We know: $U=\frac{E}{Q}$
- And: $Q=l \cdot t$

Energy and Power

- We know: $U=\frac{E}{Q}$
- And: $Q=l \cdot t$
- So $E=U l t$, or $P=E / t=U I$

Kirchhoff's laws

- The sum of all currents into a point is zero.

Or: The sum of all currents into a point is equal to the sum of all currents out of a point. (KCL)

- The sum of voltage drops in a loop is zero. Or: Things hooked up in parallel have the same voltage. (KVL)

Resistors: Coupling U and I

Materials have a specific resistance, or resistivity ρ.
We can calculate the Resistance of a homogeneous piece as

$$
R=I / A \times \rho
$$

(N.B.: In general, R and ρ can be functions of time, temperature etc.)

Resistors: Coupling U and I

Materials have a specific resistance, or resistivity ρ.
We can calculate the Resistance of a homogeneous piece as

$$
R=I / A \times \rho
$$

(N.B.: In general, R and ρ can be functions of time, temperature etc.)
We can also define a conductivity $\sigma=1 / \rho$ and a conductance $G=1 / R$
Units: $[R]=1 \Omega=1$ Ohm, $[\rho]=1 \Omega m,[G]=1 S=1$ Siemens

Ohm's law

The ideal resistor is "ohmic", that is, R is constant, and voltage and current are following Ohm's law:

$$
U=R I
$$

Ohm's law

The ideal resistor is "ohmic", that is, R is constant, and voltage and current are following Ohm's law:

$$
U=R I
$$

This means

$$
P=R I^{2}=U^{2} / R
$$

This is the power which is converted to heat inside the resistor.

Resistors in series and parallel

Resistors in series and parallel

KCL: Current in both resistors is the same: $I_{1}=I_{2}=I$

Resistors in series and parallel

KCL: Current in both resistors is the same: $I_{1}=I_{2}=1$
Voltage across both resistors is $U_{S .}=U_{1}+U_{2}=R_{1} I+R_{2} I$

Resistors in series and parallel

KCL: Current in both resistors is the same: $I_{1}=I_{2}=I$
Voltage across both resistors is $U_{S .}=U_{1}+U_{2}=R_{1} I+R_{2} I$
Equivalent resistance is
$R_{S}=U_{S} / I=R_{1}+R_{2}$

Resistors in series and parallel

KCL: Current in both resistors is the same: $I_{1}=I_{2}=1$
Voltage across both resistors is $U_{S .}=U_{1}+U_{2}=R_{1} I+R_{2} I$ Equivalent resistance is $R_{S}=U_{S} / I=R_{1}+R_{2}$

KVL: Voltage across both resistors is the same: $U_{1}=U_{2}=U$

Resistors in series and parallel

KCL: Current in both resistors is the same: $I_{1}=I_{2}=I$
Voltage across both resistors is $U_{S .}=U_{1}+U_{2}=R_{1} I+R_{2} I$
Equivalent resistance is
$R_{S}=U_{S} / I=R_{1}+R_{2}$

KVL: Voltage across both resistors is the same: $U_{1}=U_{2}=U$
Total current is the sum:
$I_{p}=I_{1}+I_{2}=U / R_{1}+U / R_{2}$

Resistors in series and parallel

KCL: Current in both resistors is the same: $I_{1}=I_{2}=I$
Voltage across both resistors is $U_{S .}=U_{1}+U_{2}=R_{1} I+R_{2} I$
Equivalent resistance is $R_{S}=U_{S} / I=R_{1}+R_{2}$

KVL: Voltage across both resistors is the same: $U_{1}=U_{2}=U$
Total current is the sum:
$I_{p}=I_{1}+I_{2}=U / R_{1}+U / R_{2}$
Equivalent resistance is
$R_{e q}=U / I_{P}=\frac{1}{1 / R_{1}+1 / R_{2}}$
Or: $G_{p}=G_{1}+G_{2}$

Voltage divider

What is $V_{\text {out }}$ as function of $V_{\text {in }}$?

Voltage divider

What is $V_{\text {out }}$ as function of $V_{\text {in }}$?
Series resistance: $I=V_{i n} /\left(R_{1}+R_{2}\right)$

Voltage divider

What is $V_{\text {out }}$ as function of $V_{\text {in }}$?
Series resistance: $I=V_{i n} /\left(R_{1}+R_{2}\right)$
Ohms law: $V_{\text {out }}=R_{2} I=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{2}}{R_{1}+R_{2}}
$$

DMM and internal resistance: Voltage measurement

An ideal voltmeter

- Infinite resistance
- Therefore no current through voltmeter
- Will not influence a circuit under test

DMM and internal resistance: Voltage measurement

An ideal voltmeter

- Infinite resistance
- Therefore no current through voltmeter
- Will not influence a circuit under test

A real voltmeter

- will affect circuit
- like a very large resistor $\left(R_{\text {internal }}>1 M \Omega\right)$
- This value can depend on the range!

DMM and internal resistance: Current measurement

An ideal ammeter

- Zero resistance
- Therefore no voltage drop
- Will not influence a circuit under test

DMM and internal resistance: Current measurement

An ideal ammeter

- Zero resistance
- Therefore no voltage drop
- Will not influence a circuit under test

A real ammeter

- will affect circuit
- like a very small resistor ($R_{\text {internal }}<1 \Omega$)
- This value can depend on the range!

Periodic signals

- A signal is periodic if it repeats itself after a fixed time T, the period

Periodic signals

- A signal is periodic if it repeats itself after a fixed time T, the period
- Here, $T=0.05 s$.

Periodic signals

- A signal is periodic if it repeats itself after a fixed time T, the period
- Here, $T=0.05$ s.
- The signal has a frequency $f=1 / T=20 \mathrm{~Hz}$ (Hertz)

Phase

- Two signals of the same shape and frequency will have a phase between them.

Phase

- Two signals of the same shape and frequency will have a phase between them.
- Here, $\Delta T=0.01 \mathrm{~s}$. The phase is $360^{\circ} \frac{0.01}{0.05}=72^{\circ}$

Amplitudes

Amplitudes

- Amplitude: $A=\max (|U(t)|)$

Amplitudes

- Amplitude: $A=\max (|U(t)|)$
- peak-to-peak voltage $V_{p p}=\max (U(t))-\min (U(t))$

Amplitudes

- Amplitude: $A=\max (|U(t)|)$
- peak-to-peak voltage $V_{p p}=\max (U(t))-\min (U(t))$
- root-mean-square voltage $V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} U^{2}(t) d t}$

Sine waves

General sine wave:

$$
U(t)=A \cdot \sin (2 \pi f t+\phi)
$$

- Frequency f
- Phase ϕ (and the phase difference between two sines is $\phi_{2}-\phi_{1}$)
- Amplitude A, $V_{p p}=2 A$
- $V_{r m s}=\sqrt{1 / T \int_{0}^{T} A^{2} \sin ^{2}(2 \pi t / T+\phi) d t}=\sqrt{\frac{1}{2}} A$

Why root mean squared?

What is the average power of a signal into a ohmic load?

Why root mean squared?

What is the average power of a signal into a ohmic load?

$$
P=R U^{2}
$$

Why root mean squared?

What is the average power of a signal into a ohmic load?

$$
\begin{gathered}
P=R U^{2} \\
\bar{P}=\frac{1}{T} \int_{0}^{T} R U^{2}(t) d t=R V_{r m s}^{2}
\end{gathered}
$$

Decibels

- We often compare signals of widely different power(/amplitude)

Decibels

- We often compare signals of widely different power(/amplitude)
- Logarithmic scale is useful. 10 dB is 1 bel (from Bell), which is a power ratio of 10 :

$$
10 \log _{10} \frac{\bar{P}_{2}}{\bar{P}_{1}}
$$

Decibels

- We often compare signals of widely different power(/amplitude)
- Logarithmic scale is useful. 10 dB is 1 bel (from Bell), which is a power ratio of 10 :

$$
10 \log _{10} \frac{\bar{P}_{2}}{\bar{P}_{1}}
$$

- For amplitudes (or $V_{r m s}$), it's 20 dB for a ratio of 10 :

$$
20 \log _{10} \frac{A_{2}}{A_{1}}
$$

Decibels

- We often compare signals of widely different power(/amplitude)
- Logarithmic scale is useful. 10 dB is 1 bel (from Bell), which is a power ratio of 10 :

$$
10 \log _{10} \frac{\bar{P}_{2}}{\bar{P}_{1}}
$$

- For amplitudes (or $V_{r m s}$), it's 20 dB for a ratio of 10 :

$$
20 \log _{10} \frac{A_{2}}{A_{1}}
$$

- Sometimes used as absolute measurements:
- $0 \mathrm{dBm}=1 \mathrm{~mW}$ (in a specified load, 50Ω or 600Ω)
- $0 \mathrm{dBV}=1 \mathrm{~V}(\mathrm{rms})$

Loaded voltage divider

Loaded voltage divider

Loaded voltage divider

- Calculate

$$
R_{2} \| R_{L}=\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{L}}}=\frac{R_{L} R_{2}}{R_{L}+R_{2}}
$$

Loaded voltage divider

- Calculate

$$
R_{2} \| R_{L}=\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{L}}}=\frac{R_{L} R_{2}}{R_{L}+R_{2}}
$$

- Put into formula for divider:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\frac{R_{L} R_{2}}{R_{L}+R_{2}}}{R_{1}+\frac{R_{L} R_{2}}{R_{L}+R_{2}}}
$$

Loaded voltage divider II

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{\frac{R_{L} R_{2}}{R_{L}+R_{2}}}{R_{1}+\frac{R_{L} R_{2}}{R_{L}+R_{2}}} \\
& =\frac{R_{2}}{R_{1}+R_{2}} \frac{R_{L}}{R_{L}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}} \\
& =\frac{R_{2}}{R_{1}+R_{2}} \frac{R_{L}}{R_{L}+R_{1} \| R_{2}}
\end{aligned}
$$

Loaded voltage divider II

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{\frac{R_{L} R_{2}}{R_{L}+R_{2}}}{R_{1}+\frac{R_{L} R_{2}}{R_{L}+R_{2}}} \\
& =\frac{R_{2}}{R_{1}+R_{2}} \frac{R_{L}}{R_{L}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}} \\
& =\frac{R_{2}}{R_{1}+R_{2}} \frac{R_{L}}{R_{L}+R_{1} \| R_{2}}
\end{aligned}
$$

- If $R_{L} \gg R_{1} \| R_{2}$, Voltage divider will look like a voltage source with $V_{\text {out }}$ given by unloaded divider

Thévenin theorem

Any two-terminal network of resistors and voltage resources is equivalent to single resistor $R_{T h}$ in series with a single voltage source $V_{T h}$.

Thévenin theorem

Any two-terminal network of resistors and voltage resources is equivalent to single resistor $R_{T h}$ in series with a single voltage source $V_{T h}$.
How can me measure/calculate them?

Thévenin theorem

Any two-terminal network of resistors and voltage resources is equivalent to single resistor $R_{T h}$ in series with a single voltage source $V_{T h}$.
How can me measure/calculate them?
Let's assume we have a black box with two connections. We know that there are only batteries and resistors inside. So we can assume there is only one ideal voltage source and one series resistor inside:

Thévenin theorem II

Thévenin theorem II

- We can get the voltage by measuring the unloaded voltage.

No current flows, so there is no drop over $R_{T h}$, so $V_{\text {measured }}=V_{T h}=V$ (open circuit)

Thévenin theorem II

- We can get the voltage by measuring the unloaded voltage.

No current flows, so there is no drop over $R_{T h}$, so $V_{\text {measured }}=V_{T h}=V$ (open circuit)

- We can measure the current when we short the two poles. Then, $V_{T h}=V_{R_{t h}}$ and $I_{\text {measured }}$ is $I_{R_{T h}}$, so $R_{T h}=\frac{V \text { (open circuit) }}{I(\text { short circuit) }}$

Let's try: Thévenin theorem and the voltage divider I

- We already know the open circuit voltage:

$$
V_{T h}=V_{\text {out }}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}
$$

Let's try: Thévenin theorem and the voltage divider I

- We already know the open circuit voltage:

$$
V_{T h}=V_{\text {out }}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}
$$

- Short circuit current: R_{2} is shorted out, so we have $I=\frac{V_{\text {in }}}{R_{1}}$.

$$
R_{T h}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=R_{1} \| R_{2}
$$

Let's try: Thévenin theorem and the voltage divider II

Let's try: Thévenin theorem and the voltage divider II

- This is a voltage divider:

$$
V_{L}=V_{T h} \frac{R_{L}}{R_{T h}+R_{L}}
$$

Let's try: Thévenin theorem and the voltage divider II

- This is a voltage divider:

$$
V_{L}=V_{T h} \frac{R_{L}}{R_{T h}+R_{L}}
$$

-

$$
V_{L}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}} \frac{R_{L}}{R_{L}+R_{1} \| R_{2}}
$$

Norton's theorem

We can also transform a voltage source with a series resistance to a current source with a parallel resistance:

Norton's theorem

We can also transform a voltage source with a series resistance to a current source with a parallel resistance:

$$
I_{N}=I\left(\text { short circuit) }, \quad R_{N}=R_{T h}=\frac{U(\text { open circuit })}{I \text { (short circuit) }}\right.
$$

Norton's theorem

We can also transform a voltage source with a series resistance to a current source with a parallel resistance:

$$
I_{N}=I(\text { short circuit }), \quad R_{N}=R_{T h}=\frac{U(\text { open circuit })}{I(\text { short circuit })}
$$

Every two-pole network of resistors, voltage and current sources can be converted to a network of either

- Voltage source + series resistor
- Current source + parallel resistor

Alternative way to find $R_{T h}$

- Replace all voltage sources with shorts

Alternative way to find $R_{T h}$

- Replace all voltage sources with shorts
- Replace all current sources with open connections

Alternative way to find $R_{T h}$

- Replace all voltage sources with shorts
- Replace all current sources with open connections
- The network is now purely made from resistors. Use the formulas for parallel and serial resistors to find $R_{T h}$

