
PHY335 Spring 2022 Lecture 2

Jan C. Bernauer

January/February 2022



Linear passive components

There are exactly three linear passive components.

Resistors

Capacitors

Inductors
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Capacitors

Two pole

Two large area �plates� with some insulator between

A voltage across will charge up the plates:

Q = C · V

Simple parallel plate:

C = ε
A

d
= kε0

A

d

Unit of capacitance (Farad):

[C ] = 1F =
1C

1V
=

1As

1V
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Capacitors and signals

Q = C · V −→ I = C
dV

dt

Typical values are pF to µF

Example: A 10ms long current pulse of 1 mA into a 1µF will
change the voltage by:

∆V =
1mA · 10ms

1 · 10−6F = 10V
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Capacitors = energy storage

Power:

P = VI = VC
dV

dt

Stored energy:

E =

∫ Vmax

0

VCdV =
1

2
CV 2

The power into a resistor ends up as heat. The power into a
capacitor is stored in the electrical �eld!
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Capacitors in parallel

CtotalV = Qtotal = Q1 + Q2

= C1V + C2V

Ctotal = C1 + C2
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Capacitors in series

Idt = C1dV1 = C2dV2 = CtotaldVtotal

dV1 + dV2 = dVtotal

dVtotal =
Idt

Ctotal
=

Idt

C1

+
Idt

C2

Ctotal =
1

1

C1
+ 1

C2

=
C1C2

C1 + C2 1

17



Capacitors in series

Idt = C1dV1 = C2dV2 = CtotaldVtotal

dV1 + dV2 = dVtotal

dVtotal =
Idt

Ctotal
=

Idt

C1

+
Idt

C2

Ctotal =
1

1

C1
+ 1

C2

=
C1C2

C1 + C2 1

18



Capacitors in series

Idt = C1dV1 = C2dV2 = CtotaldVtotal

dV1 + dV2 = dVtotal

dVtotal =
Idt

Ctotal
=

Idt

C1

+
Idt

C2

Ctotal =
1

1

C1
+ 1

C2

=
C1C2

C1 + C2 1

19



Capacitors in series

Idt = C1dV1 = C2dV2 = CtotaldVtotal

dV1 + dV2 = dVtotal

dVtotal =
Idt

Ctotal
=

Idt

C1

+
Idt

C2

Ctotal =
1

1

C1
+ 1

C2

=
C1C2

C1 + C2 1

20



RC Circuits: V and I vs time

C

I

RV

I =
V

R
= −C dV

dt
−→ V = −RC dV

dt

Assume capacitor is charged to V0 at t = 0:

V = V0e
−t/RC

[RC ] =
V

A
· C
V

=
As

A
= s
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Meaning of RC
V V
0

t

1/e ≈ 37%

V V
0

t

1/e ≈ 37%

RC

V V
0

t

RC is the time in which the signal closes in to the T =∞ value by
63%.
We say: RC is the time constant of the circuit!
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Another example

−
+Vcharge

R

Vout

C

The capacitor is not charged. We close the switch at t = 0.

I = C
dVout

dt
=

Vcharge − Vout

R

Vout = Vcharge

(
1− e−t/RC

)
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Integrator

Vin(t)

R

Vout(t)

C

What happens if we replace Vcharge with a time dependent Vin(t)?

Vout(t) =
1

RC

∫ t

∞
Vin(τ)e−

t−τ
RC dτ

For large RC: Integration!
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Di�erentiator

Vin(t)

C

Vout(t)
R

Let's �ip R and C.

I =
Vout(t)

R

= C
d

dt
(Vin(t)− Vout(t))

Vout(t) = RC
d

dt
(Vin(t)− Vout(t))

For small RC:

Vout(t) ≈ RC
d

dt
Vin(t)
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Inductors

The voltage over a coil depends on the rate of change of the
current:

V = L
dI

dt

A coil stores energy in the magnetic �eld.

E =
1

2
LI 2

Unit of inductance (Henry):

[L] =
Vs

A
= H
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Linear devices

R, L, and C are linear devices.

One consequence: For given waveform, output amplitude and
input amplitude have �xed ratio.

But not necessarily same shape!

Sine waves stay sine waves, but with a phase:

R produces (generally) no phase shift
L and C do, because
d
dt sin(ωt) = ω cos(ωt) = ω sin(2πft + 90◦)
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Let's go complex

Instead of keeping track of phases, we can express a signal as a
complex value, with complex amplitudes, and (later) only look at
the real part.

e jωt = cosωt + j sinωt

Example:

V (t) = A sinωt = <[−jAe jωt ] = A<[−j cosωt + sinωt]

We can encode Amplitude + phase into a complex amplitude A.
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Real amplitude and phase from complex amplitude:

<[Ae jωt ] = <[A] cosωt −=[A] sinωt

=
√
<[A]2 + =[A]2 cos(ωt + φ)

φ = atan2(=[A],<[A])
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Some tricks with complex numbers

1

a + jb
=

a− jb

a2 + b2

| 1

a + jb
| =

√
a− jb

a2 + b2
· a + jb

a2 + b2
=

√
a2 + b2

(a2 + b2)2
=

1√
a2 + b2
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Impedance: Complex resistance

We can now introduce the complex resistance Z, called Impedance

Z = R + jX

Impedance = Resistance + Reactance
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Recovering Ohm's law: Capacitor

Let's assume we have a (co)sine wave with an angular frequency ω
and (real) amplitude A:

V (t) = Ae jωt

For a capacitor, we know that:

I (t) = C
dV

dt
= CAjωe jωt = jωCV (t)

So we �nd an impedance of

ZC =
V (t)

I (t)
=

1

jωC
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Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency ω
and (real) amplitude A:

I (t) = Ae jωt

For a capacitor, we know that:

V (t) = L
dI

dt
= KAjωe jωt = jωLI (t)

So we �nd an impedance of

ZL =
V (t)

I (t)
= jωL

60



Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency ω
and (real) amplitude A:

I (t) = Ae jωt

For a capacitor, we know that:

V (t) = L
dI

dt
= KAjωe jωt = jωLI (t)

So we �nd an impedance of

ZL =
V (t)

I (t)
= jωL

61



Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency ω
and (real) amplitude A:

I (t) = Ae jωt

For a capacitor, we know that:

V (t) = L
dI

dt
= KAjωe jωt = jωLI (t)

So we �nd an impedance of

ZL =
V (t)

I (t)
= jωL

62



Low-pass �lter

Vin

R
Vout

C

V in

ZR = R
V out

ZC = 1

jωC

Voltage divider!

G (ω) =
V out

V in
=

1

jωC

R + 1

jωC

=
1

1 + jωRC
=

1

1 + jω/ω0

Amplitude ratio:
Vout

Vin
=

1√
1 + ω2R2C 2

=
1√

1 + (ω/ω0)2

Phase shift:
φ = − tan−1 ωRC = − tan−1

ω

ω0
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Frequency response of a low pass �lter (Bode plots)
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Frequency response of a low pass �lter (Bode plots)
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Frequency response of a low pass �lter (Bode plots)
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Frequency response of a low pass �lter (Bode plots)
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High-pass �lter
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Frequency response of a high pass �lter (Bode plots)
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Phasers
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Phas/eors

At the -3db point, f = 1

2πRC , the reactance of the capacitor is
equal to the resistance of the resistor

Sounds like a 1:2 voltage divider!

But why is the output -3dB, i.e
√
1/2, and not -6dB, i.e. 1/2

of the input?

Phasors are a visual way to handle complex numbers.

Draw vectors in complex plane

Addition is vector addition

Multiplication is

Multiplication of length
Addition of angle
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Phasors

ω

I

1/jωC

R
V in = ZR+C I

V out = ZC I
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Power in L and C circuits

R C L

Vin ∝ sinωt

IR ∝ sinωt

IC ∝
dV

dt
∝ cosωt

IL ∝
∫

Vdt ∝ − cosωt
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Instantaneous power
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Instantaneous power
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Instantaneous power
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Average power

So while
PR = VR,rms IR,rms

PL = PC = 0

The actual delivered power is called active power, measured in
Watts. PA = Vrms Irms is the �apparent power�, often VA instead of
Watts.

Residential customers pay for active power

Commerical customers often for apparent power.

97



Average power

So while
PR = VR,rms IR,rms

PL = PC = 0

The actual delivered power is called active power, measured in
Watts. PA = Vrms Irms is the �apparent power�, often VA instead of
Watts.

Residential customers pay for active power

Commerical customers often for apparent power.

98



LC circuits I: Tank circuit

Vin

R
Vout

L C

ZLC =
1

1

jωL + jωC
=

j

( 1

ωL − ωC )

G (ω) =
ZLC

R + ZLC

(
1

ωCL
− ωCC ) = 0 −→ ωC =

√
1

LC
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Frequency response of a tank circuit
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LC circuits II: Notch �lter
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Frequency response of a notch �lter
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Transmission lines / cables

We often want to transfer signals from one location to another. For
that we need cables. These are mostly coaxial cables.

A coax cable has an inner conductor, which is surrounded by an
isolator, surrounded by a shield.

Lsdx Rsdx

Cpdx Rpdx

108



Transmission lines / cables

We often want to transfer signals from one location to another. For
that we need cables. These are mostly coaxial cables.
A coax cable has an inner conductor, which is surrounded by an
isolator, surrounded by a shield.

Lsdx Rsdx

Cpdx Rpdx

109



Coax cable (simpli�ed)

We can assume that Rs is small, and Rp is large.

V (x , t)
Lsdx

I (x ,t)

I (x + dx ,t)
V (x + dx , t)

Cpdx

Cpdx
dV (x + dx , t)

dt
= I (x , t)− I (x + dx , t)

Cpdx
d(V (x , t) + dV

dx (x , t)dx)

dt
= I (x , t)− I (x + dx , t)

Cp
dV (x , t)

dt
= −dI (x , t)

dx
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Coax cable II
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Coax cable III

Cp
dV (x , t)

dt
= −dI (x , t)

dx

Ls
dI (x , t)

dt
= −dV (x , t)

dx

Di�erentiate the �rst with regard to dt, the second with regard to
dx

Cp
d2V (x , t)

dt2
= −d2I (x , t)

dxdt

Ls
d2I (x , t)

dtdx
= −d2V (x , t)

dx2
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Coax cable IV

Cp
d2V (x , t)

dt2
=

1

Ls

d2V (x , t)

dx2

LSCp
d2V (x , t)

dt2
=

d2V (x , t)

dx2

We can guess a solution: V (x , t) = A cos(ω(t − 1

c x))

−LCω2V (x , t) = − 1

c2
ω2V (x , t)

c =

√
1

LC

The propagation speed in a coax cable is c =
√
1/LC ≈ 20cm

ns
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Coax cable IV
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Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-in�nite cable.
What is the impedance Z 0?

Ldx

Cdx Z 0

Z 0 = jωLdx +
1

jωCdx + 1

Z0

Z 0 = jωLdx +
Z 0

jωCdxZ 0 + 1

Z 0(jωCdxZ 0 + 1) = jωLdx(jωCdxZ 0 + 1) + Z 0
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Ldx

Cdx Z 0

Z 0 = jωLdx +
1

jωCdx + 1

Z0

Z 0 = jωLdx +
Z 0

jωCdxZ 0 + 1

Z 0(jωCdxZ 0 + 1) = jωLdx(jωCdxZ 0 + 1) + Z 0

125



Characteristic Impedance of a coax cable

Z
2

0jωCdx + Z 0 = −ω2LCdx2Z 0 + jωLdx + Z 0

Z
2

0jωCdx = jωLdx

Z 0 =

√
L

C

The cable impedance is fully resistive!
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Characteristic Impedance of a coax cable

Z
2

0jωCdx + Z 0 = −ω2LCdx2Z 0 + jωLdx + Z 0

Z
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0jωCdx = jωLdx

Z 0 =

√
L

C

The cable impedance is fully resistive!
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Why a sine waves so important?
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Why a sine waves so important?
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Why a sine waves so important?
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Why a sine waves so important?
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Why a sine waves so important?
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Why a sine waves so important?
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Frequency domain

Every periodic signal f(t) can be associated with a function F (ω)
via the Fourier transform.

f̂ (ω) = F [f (t)] =

∫ ∞

−∞
f (t)e−jωtdt

f (t) = F−1[f̂ (ω)] =
1

2π

∫ ∞

−∞
f̂ (ω)e jtωdt
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Example
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Solutions for arbitrary periodic waveforms

In the time domain, we would need to solve a non-trivial
di�erential equation

In the frequency domain, we can make use of the linearity:

Vout(t) = F−1[V̂out(ω)] = F−1[G (ω)V̂in(ω)]

So either transform Vin, build the product, and transform
back, or

Transform G (ω) and use the Convolution theorem:

F−1[Â(ω) · B̂(ω)] =

∫ ∞

−∞
Ā(τ)B(t − τ)dτ
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Solutions for arbitrary periodic waveforms
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In the frequency domain, we can make use of the linearity:
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