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Linear passive components

There are exactly three linear passive components.
o Resistors
o Capacitors

o Inductors
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o Two pole

o Two large area "plates” with some insulator between

©

A voltage across will charge up the plates:
R=C-V

©

Simple parallel plate:

C Ed eod

©

Unit of capacitance (Farad):

[C]=1F = .~ =



Capacitors and signals

dv
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o Typical values are pF to uF



Capacitors and signals

dv
Q—C-V—>/_CE

o Typical values are pF to uF

o Example: A 10ms long current pulse of 1 mA into a 1uF will
change the voltage by:

_ 1mA - 10ms

AV = =10V
1-1079F



Capacitors = energy storage

o Power: Y
P=VIl=VC—
dt



Capacitors = energy storage

o Power: oy
P=VIl=VC—
dt

o Stored energy:
Vmax 1
E= / VCdV = = CV?
0 2

o The power into a resistor ends up as heat. The power into a
capacitor is stored in the electrical field!



Capacitors in parallel

Ctotalv = Qtotal = Ql + QZ



Capacitors in parallel

Ctotalv = Qtotal = Ql + QZ
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Capacitors in parallel

Ctotalv = Qtotal = Ql + QZ
=GV+QV

Ctota/ = Cl + C2



Capacitors in series

Idt = Cldvl = C2d\/2 = Ctotaldvtotal
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Capacitors in series

Idt = Cldvl = C2d\/2 = Ctotaldvtotal

dV]_ + de - thota/

Idt  Idt It

AViotal = —— = — + —
total Ctotal Cl * C2



Capacitors in series

Idt = Cldvl = C2d\/2 = Ctotaldvtotal

dV]_ + de - thota/

Idt Idt  Idt
Viotal = o = e -
total Ctotal Cl * C2

1 GG

Ctotal - 1 1 - C n C
a6 1 21



RC Circuits: V and | vs time




RC Circuits: V and | vs time




RC Circuits: V and | vs time




RC Circuits: V and | vs time

l=p=-Cr —V=-RC



RC Circuits: V and | vs time
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Assume capacitor is charged to Vp at t = 0:

V = Voe /RC



RC Circuits: V and | vs time

74 dv dv

Assume capacitor is charged to Vp at t = 0:

V = Voe /RC

vV C As
R = —— = — =
RC=Zv=%"°



Meaning of RC
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RC is the time in which the signal closes in to the T = oo value by
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Meaning of RC

S

1/e ~ 37%

RC t

RC is the time in which the signal closes in to the T = oo value by
63%.
We say: RC is the time constant of the circuit!



Another example

R

XA :

Vout

Vcharge C

The capacitor is not charged. We close the switch at t = 0.




Another example

R

XA :

Vout

Vcharge C

The capacitor is not charged. We close the switch at t = 0.

dVout
dt

I=C




Another example

R

XA :

Vout

Vcharge C

The capacitor is not charged. We close the switch at t = 0.

dvout Vcharge - Vout
/ = C =
dt R




Another example

R

XA :

Vout

Vcharge C

The capacitor is not charged. We close the switch at t = 0.

dvout Vcharge - Vout
/ = C =
dt R

Vout = Vcharge (1 - e_t/RC>




Integrator

What happens if we replace Vparge with a time dependent Vi,(t)?




Integrator

What happens if we replace Vparge with a time dependent Vi,(t)?

1 t t—7
Vour(t) = 2 / Vin(r)e— 7 dr
o0

For large RC: Integration!




Differentiator




Differentiator

C
I,

V,'nc( t) | | Vouj ( t)
130

Let’s flip R and C.

Vout(t)
R

d
| — - CE(V,,,(t) - Vout(t))




Differentiator

C
ol .
Vin(t) 1 Vour(t)
1 R f
Let's flip R and C.
Vout(t) d

| =

- = CE(V’ (t) - Vout(t))

Voue(t) = RC 2 (Vin(1) — Voue(1)




Differentiator

C
I,

Vin(t) 1] Vour (1)
1 37

Let's flip R and C.

Vout(t) d

| — 5 — CE(V’ (t) — Vout(t))

Voue(t) = RC 2 (Vin(1) — Voue(1)

For small RC: J
ou ~ RC*Vm t
Vout () % RC= Via(1)




Inductors

e
The voltage over a coil depends on the rate of change of the
current:
dl
V=L—
dt



Inductors

e
The voltage over a coil depends on the rate of change of the
current:
dl
V=L—
dt

A colil stores energy in the magnetic field.

E=lip
2
Unit of inductance (Henry):
Vs
lj]=—=H
="



Linear devices

o R, L, and C are linear devices.
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Linear devices

o R, L, and C are linear devices.

o One consequence: For given waveform, output amplitude and
input amplitude have fixed ratio.

o

But not necessarily same shape!
o Sine waves stay sine waves, but with a phase:

o R produces (generally) no phase shift

o L and C do, because

% sin(wt) = w cos(wt) = wsin(27ft + 90°)



Let's go complex

Instead of keeping track of phases, we can express a signal as a
complex value, with complex amplitudes, and (later) only look at
the real part.
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Let's go complex

Instead of keeping track of phases, we can express a signal as a
complex value, with complex amplitudes, and (later) only look at
the real part.

9t = coswt + jsinwt

Example:

V(t) = Asinwt = %[—jAej“Jt] = AR[—j coswt + sinwt]

We can encode Amplitude + phase into a complex amplitude A.



Real amplitude and phase from complex amplitude:

R[A“t] = R[A] coswt — S[A]sinwt



Real amplitude and phase from complex amplitude:

R[A“t] = R[A] coswt — S[A]sinwt

= \/R[A]2 + S[A]2 cos(wt + ¢)

¢ = atan2(S[A], R[A])




Some tricks with complex numbers

1 a—jb
a+jb  a?+ b2




Some tricks with complex numbers

1 a—jb
a+jb  a?+ b2

| 1 ‘_\/a—jb a+jb a2+b 1
at+jb Va2+bp2 22+ \(2+b2)2 V221 b2




Impedance: Complex resistance

We can now introduce the complex resistance Z, called Impedance

Z=R+jX

Impedance = Resistance + Reactance



Recovering Ohm's law: Capacitor

Let's assume we have a (co)sine wave with an angular frequency w
and (real) amplitude A:

V(t) = At
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Recovering Ohm's law: Capacitor

Let's assume we have a (co)sine wave with an angular frequency w
and (real) amplitude A:

V(t) = At

For a capacitor, we know that:

1% .
I(t) = C‘;—t = CAjwet = jwCV(t)

So we find an impedance of

V(t) 1

c= —

I(t) jwC



Recovering Ohm's law: Inductor
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and (real) amplitude A:
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Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency w
and (real) amplitude A:

I(t) = Aet

For a capacitor, we know that:

| .
V(t) = L% — KAjwelt = juLI(t)

So we find an impedance of



Low-pass filter

R

Vino VVYV q ° Vout




Low-pass filter

R

Vin o= AN\

p——O

—C

Zr =
out out
, ij



Low-pass filter

R

Zr =
Vin O_/\/\/\/_"—O out Vout
- C JwC

_ Vout _ Jjw C 1 _ 1
Vi, R—{—L 1+ jwRC 1—i—jw/wo




Low-pass filter

R Zr =R

Vi, R+-L. 1+jwRC 1+ jw/wp

Amplitude ratio:
Vout 1

1
Vin  VI+w?R2C2  \/1+ (w/wp)?




Low-pass filter

R Zr =
Vin O_/\/\/\/_"—O out Vout
- C JwC
Voltage divider!
G((,U) VOth j C 1 — 1
Vi, R—{—LC 1+ jwRC 1—i—jw/wo
Amplitude ratio:
Vour 1 B 1
Vin V14 w?2R2C2 /1 + (w/wp)?
Phase shift:
¢ =—tan ' wRC = —tan~!

wo



Frequency response of a low pass filter (Bode plots)

0 2 4 6 8 10



Frequency response of a low pass filter (Bode plots)
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Frequency response of a low pass filter (Bode plots)

Eo~1 /172 (-3db)]
| at w=wp 1
|
|
1
|
=01 b ! =
r |
|
| -20db
} per dechde’
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|
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w/wo



Frequency response of a low pass filter (Bode plots)

T 0° TP T
1 E =
-~ VI2 (8db)] e | i
| at w=wp 1
|
! —-30° -
|
=00 b ‘ 4 N
r |
| o | _
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| per dec dei 750 L |
|
|
0.01 ol vl el —90° vl vl T
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w/wo w/wo



High-pass filter




High-pass filter

Vipo | | * © Vout Vi Vout




High-pass filter

Vipo | | * © Vout Vi Vout

Vout R JwRC  jw/wo
Vi R+2 1+4jwRC 1+ jw/wo




High-pass filter

Vipo | I * © Vout Vi Vout

Vout R JwRC  jw/wo
Vi R+2 1+4jwRC 1+ jw/wo

Amplitude:
Viout wRC w/wo

Vin  VI+w2R2CZ  \/1+ (w/wn)?




High-pass filter

Vipo | I * © Vout Vi Vout

Glw) Vout _ R _ jw.RC _ jw/wo
Vi, R-|—J.Q+C 1+ jwRC 1+ jw/wo
Amplitude:
Vout wRC B w/wo
Vn T VIR Vit (oo
Phase shift:

¢ =tan"11/wRC =tan"! %




Frequency response of a high pass filter (Bode plots)

L [ ‘ a e
£\/1/2 (-3dB) ~1
rat w = wo |

|
|
l
|
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r |
|
20dB |
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l
0.01 Col le ol
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w/wo
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o At the -3db point, f = ﬁ, the reactance of the capacitor is
equal to the resistance of the resistor
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o Sounds like a 1:2 voltage divider!
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of the input?



o At the -3db poir.1t, f= ﬁ, the. reactance of the capacitor is
equal to the resistance of the resistor

o Sounds like a 1:2 voltage divider!

o But why is the output -3dB, i.e \/1/2, and not -6dB, i.e. 1/2
of the input?

Phasors are a visual way to handle complex numbers.
o Draw vectors in complex plane
o Addition is vector addition
o Multiplication is

o Multiplication of length
o Addition of angle









1/jwC




1/jwC




w
L

=

Hjwe Vin=2Zrcl
vy R




w
L

=

Hjwe Vin=2Zrcl
vy R

Vour =ZclY




Power in L and C circuits

Vi, o< sinwt
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Power in L and C circuits

Vi, o< sinwt
Igr o< sinwt

I 4 t
X — X COSw
€= at



Power in L and C circuits

Vi, o< sinwt

Igr o< sinwt
/ v t
X —— X COS W
©7 dt

I / Vdt oc — coswt



Instantaneous power
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Instantaneous power
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Instantaneous power
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Average power

So while B
PR = VR,rmsIR,rms

PL=Pc=0



Average power

So while B
PR = VR,rmsIR,rms

PL=Pc=0

The actual delivered power is called active power, measured in
Watts. Py = Vimslims is the "apparent power”, often VA instead of
Watts.

o Residential customers pay for active power

o Commerical customers often for apparent power.



LC circuits |: Tank circuit

R
Vin Vout



LC circuits |: Tank circuit

R
Vin Vout

ﬁﬂwc (& —w0)

100



LC circuits |: Tank circuit

R
Vin Vout
L C
1 J
Z pr— pr—
T L jwC T (& - w0)
V4

_R+ZLC

101



LC circuits |: Tank circuit

R
Vin Vout
L C
1 J
Z pr— pr—
T L jwC T (& - w0)
Zc
Gw)= -2t
(w) R+2Z,c

1 /1
(a)—CL—CL)CC)—O—>WC— E

102



Frequency response of a tank circuit

nl ] il
0.8 + —
Awsqp
06 | = e
= A E |
0.4 —
0.2 +— —
0 ! ! ! ! !

103



LC circuits II: Notch filter
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LC circuits II: Notch filter

R
Vin Vout
L
—__— C
Zic = ol — = j(wl — —)
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LC circuits II: Notch filter

R
Vin Vout
L
—__— C
Zic = jol+ —— = j(wl - —)
Z

106



Frequency response of a notch filter

90°
60°
30°
0°
—30°
—60°

-90°

[\V]
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Transmission lines / cables

We often want to transfer signals from one location to another. For
that we need cables. These are mostly coaxial cables.

108



Transmission lines / cables

We often want to transfer signals from one location to another. For
that we need cables. These are mostly coaxial cables.

A coax cable has an inner conductor, which is surrounded by an
isolator, surrounded by a shield.

Lsdx Rsdx

— AN

Codx —— Rpdx

109



Coax cable (simplified)

We can assume that Rsis small, and Ryis large.

V(x,t)

Lsdx
I(x,t)

I(x + dx,t)

Codx

—>— V/(x + dx, t)

110



Coax cable (simplified)

We can assume that Rsis small, and Ryis large.

V(x,t)

Cpdx

Lsdx
I(x,t)

I(x + dx,t)

Codx

—>— V/(x + dx, t)

dV(x +dx,t)

dt

I(x,t) — I(x + dx, t)



Coax cable (simplified)

We can assume that Rsis small, and Ryis large.

Lsdx I(x + dx,t)

V(x,t) —>—0000———s—>— V(x + dx, t)
I(x,t)
Codx —
dexw — I(x, £) — I(x + dx, t)

d(V(x,t) + 2 (x, t)dx)
dt

Cpdx =I(x,t) — I(x + dx, t)



Coax cable (simplified)

We can assume that Rsis small, and Ryis large.

Lsdx I(x + dx,t)

V(x,t) —>—0000———s—>— V(x + dx, t)
I(x,t)
Codx —
dexw — I(x, £) — I(x + dx, t)

d(V(x,t) + 2 (x, t)dx)
dt
dV(x,t)  dl(x,t)

P e

Cpdx =I(x,t) — I(x + dx, t)

113



Coax cable 11

Lsdx I(x + dx,t)
V(x,t) —>—0000———e—>— V(x + dx, t)

. dV(x,t) _ dl(x,t)
Prdt dx

dl(x,t
Lsdx% = V(x,t) — V(x + dx,t)




Coax cable 11

Lsdx I(x + dx,t)
V(x,t) —>—0000———e—>— V(x + dx, t)

dV(x,t) _ dl(x,t)

C —
Podt dx
dl(x,t
Lsdx% = V(x,t) — V(x + dx,t)
! di(x,t) _ dV(x,t)

dt dx

115



Coax cable Il

. dV(x,t) _ dl(x,t)

P dt dx
! di(x,t)  dV(xt)
S odt dx

Differentiate the first with regard to dt, the second with regard to
dx

116



Coax cable Il

. dV(x,t) _ dl(x,t)

Prdt dx
! di(x,t)  dV(xt)
S odt dx
Differentiate the first with regard to dt, the second with regard to

dx

. d?V(x,t) _d2/(x, t)
Prode2 dxdt

Pl(x,t)  dPV(xt)

S dtdx dx?




Coax cable IV

c d’V(x,t) 1 d?V(x,t)
P dr? CLs dx?
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Coax cable IV

d’V(x, t) d’V(x, t)
C———=——"

1
dt? Ls  dx?

d’V(x,t)  d?V(x,t)
dt2 dx?

We can guess a solution: V/(x, t) = Acos(w(t — 1x))

LsC,

119



Coax cable IV

d’V(x, t) d’V(x, t)
C———=——"

1
dt? Ls  dx?

d’V(x,t)  d?V(x,t)
dt2 dx?

We can guess a solution: V/(x, t) = Acos(w(t — 1x))

LsC,

1
—LCw?V(x,t) = —;wz V(x,t)
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Coax cable IV

d’V(x, t) d’V(x, t)
C———=——"

1
dt? Ls  dx?

d’V(x,t)  d?V(x,t)
dt2 dx?

We can guess a solution: V/(x, t) = Acos(w(t — 1x))

LsC,

1
—LCw?V(x,t) = —;wz V(x,t)

C_/1
~VILC

The propagation speed in a coax cable is ¢ = /1/LC =~ 297%



Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable.
What is the impedance Zy?

Ldx
S S

Cdx — __ Zo




Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable.
What is the impedance Zy?

Ldx
S -
Cdx — Zy
Zy = jwldx + -

JwCdx + ZLO
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Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable.
What is the impedance Zy?

Ldx
S S

Cdx — __ Zo

Zo = juwldx + ———
P T jocd+ £

: Z
Zy=jwldx + ——————
0= Jw X+ijdeo+1



Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable.
What is the impedance Zy?

Ldx
S S

Cdx — __ Zo

Zo = juwldx + ———
P T jocd+ £

: Z
Zy=jwldx + ——————
0= Jw X+ijdeo+1

Zo(jwCdxZoy + 1) = jwldx(jwCdxZo + 1) + Zo
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Characteristic Impedance of a coax cable

Z3jwCdx + Zy = —w?LCdx?Zy + jwldx + Zy
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Characteristic Impedance of a coax cable

Z3jwCdx + Zy = —w?LCdx?Zy + jwldx + Zy

Z3jwCdx = jwldx



Characteristic Impedance of a coax cable

Z3jwCdx + Zy = —w?LCdx?Zy + jwldx + Zy

Z3jwCdx = jwldx

/L
Z(): E

The cable impedance is fully resistive!
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Why a sine waves so important?

2 ‘ ‘
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= 0 |

0 2 4 6 8 10
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Why a sine waves so important?

2 | | H(tg I

15 L = Z}:o ﬁ sin((2¢ 4 1)mt

1 AN NN NN AN AN
v v Y v Y

130



Why a sine waves so important?
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Why a sine waves so important?

2 T T

3 o f(tg —
15 L % Zi:O (25‘_1) sin((2¢ + 1)mt) —— |
1 {\/\/\ I\/\A (\/\/\A AN [\I\/\n —
VVyV YAAY VVyV VYAAY VVyV
0.5 _
= o0k |
g
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Why a sine waves so important?

2 T T fl(tg —

4 e
15 L ED I ﬁ sin((2i 4 1)wt
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Why a sine waves so important?

2 T T fl(tg —

5 . .
15 L DN ﬁ sin((2¢ + 1)7t

1 M AAAN L W. V.. AAAA AAAN —
UAAAR'] VAAAA' UAAAAL'] UAAAA']

-1 Al Aannh Ananf Aannh M
'AAA" VAAA VAAA VAAAY
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Why a sine waves so important?

T T ]
(tg —
1.5 %Z}i% (21‘1-1) sin((2i + )mt) ——
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Frequency domain

Every periodic signal f(t) can be associated with a function F(w)
via the Fourier transform.

f(w) = FIf(t)] = /_ h f(t)e /“tdt
() = F ) = 5 [ Fwpetae

136
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Solutions for arbitrary periodic waveforms

o In the time domain, we would need to solve a non-trivial
differential equation
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Solutions for arbitrary periodic waveforms

o In the time domain, we would need to solve a non-trivial
differential equation

o In the frequency domain, we can make use of the linearity:

Vout(t) = f_l[Vout(w)] = ]:_I[G(W) \A/m(w)]
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Solutions for arbitrary periodic waveforms

o In the time domain, we would need to solve a non-trivial
differential equation

o In the frequency domain, we can make use of the linearity:
Vour(t) = FHVoue(w)] = F G (w) Vin(w)]

o So either transform Vj,, build the product, and transform
back, or
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Solutions for arbitrary periodic waveforms

Q

(»)

(%)

©

In the time domain, we would need to solve a non-trivial
differential equation

In the frequency domain, we can make use of the linearity:

Vout(t) = f_l[Vout(w)] = f_l[G(W) \A/m(w)]

So either transform Vj,, build the product, and transform
back, or

Transform G(w) and use the Convolution theorem:

FUAW) - Bw)] = / © A(1)B(t — 7)dr
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