PHY335 Spring 2022 Lecture 2

Linear passive components

There are exactly three linear passive components.

Linear passive components

There are exactly three linear passive components.

- Resistors

Linear passive components

There are exactly three linear passive components.

- Resistors
- Capacitors

Linear passive components

There are exactly three linear passive components.

- Resistors
- Capacitors
- Inductors

Capacitors

- Two pole

Capacitors

- Two pole
- Two large area "plates" with some insulator between

Capacitors

- Two pole
- Two large area "plates" with some insulator between
- A voltage across will charge up the plates:

$$
Q=C \cdot V
$$

Capacitors

- Two pole
- Two large area "plates" with some insulator between
- A voltage across will charge up the plates:

$$
Q=C \cdot V
$$

- Simple parallel plate:

$$
C=\epsilon \frac{A}{d}=k \epsilon_{0} \frac{A}{d}
$$

- Unit of capacitance (Farad):

$$
[C]=1 F=\frac{1 C}{1 V}=\frac{1 A s}{1 V}
$$

Capacitors and signals

$$
Q=C \cdot V \longrightarrow I=C \frac{d V}{d t}
$$

- Typical values are $p F$ to μF

Capacitors and signals

$$
Q=C \cdot V \longrightarrow I=C \frac{d V}{d t}
$$

- Typical values are $p F$ to μF
- Example: A 10 ms long current pulse of 1 mA into a $1 \mu F$ will change the voltage by:

$$
\Delta V=\frac{1 m A \cdot 10 m s}{1 \cdot 10^{-6} F}=10 V
$$

Capacitors = energy storage

- Power:

$$
P=V I=V C \frac{d V}{d t}
$$

Capacitors = energy storage

- Power:

$$
P=V I=V C \frac{d V}{d t}
$$

- Stored energy:

$$
E=\int_{0}^{V_{\max }} V C d V=\frac{1}{2} C V^{2}
$$

- The power into a resistor ends up as heat. The power into a capacitor is stored in the electrical field!

Capacitors in parallel

$$
C_{\text {total }} V=Q_{\text {total }}=Q_{1}+Q_{2}
$$

Capacitors in parallel

$$
\begin{aligned}
C_{\text {total }} V & =Q_{\text {total }}=Q_{1}+Q_{2} \\
& =C_{1} V+C_{2} V
\end{aligned}
$$

Capacitors in parallel

$$
\begin{gathered}
C_{\text {total }} V=Q_{\text {total }}=Q_{1}+Q_{2} \\
=C_{1} V+C_{2} V \\
C_{\text {total }}=C_{1}+C_{2}
\end{gathered}
$$

Capacitors in series

$$
I d t=C_{1} d V_{1}=C_{2} d V_{2}=C_{\text {total }} d V_{\text {total }}
$$

Capacitors in series

$$
\begin{gathered}
I d t=C_{1} d V_{1}=C_{2} d V_{2}=C_{\text {total }} d V_{\text {total }} \\
d V_{1}+d V_{2}=d V_{\text {total }}
\end{gathered}
$$

Capacitors in series

$$
\begin{gathered}
I d t=C_{1} d V_{1}=C_{2} d V_{2}=C_{\text {total }} d V_{\text {total }} \\
d V_{1}+d V_{2}=d V_{\text {total }} \\
d V_{\text {total }}=\frac{I d t}{C_{\text {total }}}=\frac{I d t}{C_{1}}+\frac{I d t}{C_{2}}
\end{gathered}
$$

Capacitors in series

$$
\begin{gathered}
I d t=C_{1} d V_{1}=C_{2} d V_{2}=C_{\text {total }} d V_{\text {total }} \\
d V_{1}+d V_{2}=d V_{\text {total }} \\
d V_{\text {total }}=\frac{I d t}{C_{\text {total }}}=\frac{I d t}{C_{1}}+\frac{I d t}{C_{2}} \\
C_{\text {total }}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}=\frac{C_{1} C_{2}}{C_{1}+C_{21}}
\end{gathered}
$$

RC Circuits: V and I vs time

RC Circuits: V and I vs time

$$
I=\frac{V}{R}
$$

RC Circuits: V and I vs time

$$
I=\frac{V}{R}=-C \frac{d V}{d t}
$$

RC Circuits: V and I vs time

$$
I=\frac{V}{R}=-C \frac{d V}{d t} \longrightarrow V=-R C \frac{d V}{d t}
$$

RC Circuits: V and I vs time

$$
I=\frac{V}{R}=-C \frac{d V}{d t} \longrightarrow V=-R C \frac{d V}{d t}
$$

Assume capacitor is charged to V_{0} at $t=0$:

$$
V=V_{0} e^{-t / R C}
$$

RC Circuits: V and I vs time

$$
I=\frac{V}{R}=-C \frac{d V}{d t} \longrightarrow V=-R C \frac{d V}{d t}
$$

Assume capacitor is charged to V_{0} at $t=0$:

$$
V=V_{0} e^{-t / R C}
$$

$$
[R C]=\frac{V}{A} \cdot \frac{C}{V}=\frac{A s}{A}=s
$$

Meaning of RC

Meaning of RC

Meaning of RC

Meaning of RC

RC is the time in which the signal closes in to the $T=\infty$ value by 63\%.

Meaning of RC

RC is the time in which the signal closes in to the $T=\infty$ value by 63\%.
We say: RC is the time constant of the circuit!

Another example

The capacitor is not charged. We close the switch at $t=0$.

Another example

The capacitor is not charged. We close the switch at $t=0$.

$$
I=C \frac{d V_{\text {out }}}{d t}
$$

Another example

The capacitor is not charged. We close the switch at $t=0$.

$$
I=C \frac{d V_{\text {out }}}{d t}=\frac{V_{\text {charge }}-V_{\text {out }}}{R}
$$

Another example

The capacitor is not charged. We close the switch at $t=0$.

$$
\begin{aligned}
& I=C \frac{d V_{\text {out }}}{d t}=\frac{V_{\text {charge }}-V_{\text {out }}}{R} \\
& V_{\text {out }}=V_{\text {charge }}\left(1-e^{-t / R C}\right)
\end{aligned}
$$

Integrator

What happens if we replace $V_{\text {charge }}$ with a time dependent $V_{\text {in }}(t)$?

Integrator

What happens if we replace $V_{\text {charge }}$ with a time dependent $V_{\text {in }}(t)$?

$$
V_{\text {out }}(t)=\frac{1}{R C} \int_{\infty}^{t} V_{\text {in }}(\tau) e^{-\frac{t-\tau}{R C}} d \tau
$$

For large RC: Integration!

Differentiator

Let's flip R and C.

$$
I=\frac{V_{\text {out }}(t)}{R}
$$

Differentiator

Let's flip R and C.

$$
I=\frac{V_{\text {out }}(t)}{R}=C \frac{d}{d t}\left(V_{\text {in }}(t)-V_{\text {out }}(t)\right)
$$

Differentiator

Let's flip R and C.

$$
\begin{gathered}
I=\frac{V_{\text {out }}(t)}{R}=C \frac{d}{d t}\left(V_{\text {in }}(t)-V_{\text {out }}(t)\right) \\
V_{\text {out }}(t)=R C \frac{d}{d t}\left(V_{\text {in }}(t)-V_{\text {out }}(t)\right)
\end{gathered}
$$

Differentiator

Let's flip R and C.

$$
\begin{gathered}
I=\frac{V_{\text {out }}(t)}{R}=C \frac{d}{d t}\left(V_{\text {in }}(t)-V_{\text {out }}(t)\right) \\
V_{\text {out }}(t)=R C \frac{d}{d t}\left(V_{\text {in }}(t)-V_{\text {out }}(t)\right)
\end{gathered}
$$

For small RC:

$$
V_{\text {out }}(t) \approx R C \frac{d}{d t} V_{\text {in }}(t)
$$

Inductors

$5000<$
The voltage over a coil depends on the rate of change of the current:

$$
V=L \frac{d l}{d t}
$$

Inductors

The voltage over a coil depends on the rate of change of the current:

$$
V=L \frac{d l}{d t}
$$

A coil stores energy in the magnetic field.

$$
E=\frac{1}{2} L l^{2}
$$

Unit of inductance (Henry):

$$
[L]=\frac{V s}{A}=H
$$

Linear devices

- R, L, and C are linear devices.

Linear devices

- R, L, and C are linear devices.
- One consequence: For given waveform, output amplitude and input amplitude have fixed ratio.

Linear devices

- R, L, and C are linear devices.
- One consequence: For given waveform, output amplitude and input amplitude have fixed ratio.
- But not necessarily same shape!

Linear devices

- R, L, and C are linear devices.
- One consequence: For given waveform, output amplitude and input amplitude have fixed ratio.
- But not necessarily same shape!
- Sine waves stay sine waves, but with a phase:
- R produces (generally) no phase shift
- L and C do, because

$$
\frac{d}{d t} \sin (\omega t)=\omega \cos (\omega t)=\omega \sin \left(2 \pi f t+90^{\circ}\right)
$$

Let's go complex

Instead of keeping track of phases, we can express a signal as a complex value, with complex amplitudes, and (later) only look at the real part.

Let's go complex

Instead of keeping track of phases, we can express a signal as a complex value, with complex amplitudes, and (later) only look at the real part.

$$
e^{j \omega t}=\cos \omega t+j \sin \omega t
$$

Let's go complex

Instead of keeping track of phases, we can express a signal as a complex value, with complex amplitudes, and (later) only look at the real part.

$$
e^{j \omega t}=\cos \omega t+j \sin \omega t
$$

Example:

$$
V(t)=A \sin \omega t=\Re\left[-j A e^{j \omega t}\right]=A \Re[-j \cos \omega t+\sin \omega t]
$$

Let's go complex

Instead of keeping track of phases, we can express a signal as a complex value, with complex amplitudes, and (later) only look at the real part.

$$
e^{j \omega t}=\cos \omega t+j \sin \omega t
$$

Example:

$$
V(t)=A \sin \omega t=\Re\left[-j A e^{j \omega t}\right]=A \Re[-j \cos \omega t+\sin \omega t]
$$

We can encode Amplitude + phase into a complex amplitude \boldsymbol{A}.

Real amplitude and phase from complex amplitude:

$\Re\left[\boldsymbol{A} e^{j \omega t}\right]=\Re[\boldsymbol{A}] \cos \omega t-\Im[\boldsymbol{A}] \sin \omega t$

Real amplitude and phase from complex amplitude:

$\Re\left[\boldsymbol{A} e^{j \omega t}\right]=\Re[\boldsymbol{A}] \cos \omega t-\Im[\boldsymbol{A}] \sin \omega t$

$$
\begin{gathered}
=\sqrt{\Re[\boldsymbol{A}]^{2}+\Im[\boldsymbol{A}]^{2}} \cos (\omega t+\phi) \\
\phi=\operatorname{atan} 2(\Im[\boldsymbol{A}], \Re[\boldsymbol{A}])
\end{gathered}
$$

Some tricks with complex numbers

$$
\frac{1}{a+j b}=\frac{a-j b}{a^{2}+b^{2}}
$$

Some tricks with complex numbers

$$
\begin{gathered}
\frac{1}{a+j b}=\frac{a-j b}{a^{2}+b^{2}} \\
\left|\frac{1}{a+j b}\right|=\sqrt{\frac{a-j b}{a^{2}+b^{2}} \cdot \frac{a+j b}{a^{2}+b^{2}}}=\sqrt{\frac{a^{2}+b^{2}}{\left(a^{2}+b^{2}\right)^{2}}}=\frac{1}{\sqrt{a^{2}+b^{2}}}
\end{gathered}
$$

Impedance: Complex resistance

We can now introduce the complex resistance Z, called Impedance

$$
\begin{aligned}
\boldsymbol{Z} & =R+j X \\
\text { Impedance } & =\text { Resistance }+ \text { Reactance }
\end{aligned}
$$

Recovering Ohm's law: Capacitor

Let's assume we have a (co)sine wave with an angular frequency ω and (real) amplitude A:

$$
\boldsymbol{V}(t)=A e^{j \omega t}
$$

Recovering Ohm's law: Capacitor

Let's assume we have a (co)sine wave with an angular frequency ω and (real) amplitude A:

$$
\boldsymbol{V}(t)=A e^{j \omega t}
$$

For a capacitor, we know that:

$$
\boldsymbol{I}(t)=C \frac{d \boldsymbol{V}}{d t}=C A j \omega e^{j \omega t}=j \omega C \boldsymbol{V}(t)
$$

Recovering Ohm's law: Capacitor

Let's assume we have a (co)sine wave with an angular frequency ω and (real) amplitude A:

$$
\boldsymbol{V}(t)=A e^{j \omega t}
$$

For a capacitor, we know that:

$$
\boldsymbol{I}(t)=C \frac{d \boldsymbol{V}}{d t}=C A j \omega e^{j \omega t}=j \omega C \boldsymbol{V}(t)
$$

So we find an impedance of

$$
\boldsymbol{Z}_{\boldsymbol{C}}=\frac{\boldsymbol{V}(t)}{\boldsymbol{I}(t)}=\frac{1}{j \omega C}
$$

Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency ω and (real) amplitude A:

$$
\boldsymbol{I}(t)=A e^{j \omega t}
$$

Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency ω and (real) amplitude A:

$$
\boldsymbol{I}(t)=A e^{j \omega t}
$$

For a capacitor, we know that:

$$
\boldsymbol{V}(t)=L \frac{d \boldsymbol{I}}{d t}=K A j \omega e^{j \omega t}=j \omega L \boldsymbol{I}(t)
$$

Recovering Ohm's law: Inductor

Let's assume we have a (co)sine wave with an angular frequency ω and (real) amplitude A:

$$
\boldsymbol{I}(t)=A e^{j \omega t}
$$

For a capacitor, we know that:

$$
\boldsymbol{V}(t)=L \frac{d \boldsymbol{I}}{d t}=K A j \omega e^{j \omega t}=j \omega L \boldsymbol{I}(t)
$$

So we find an impedance of

$$
\boldsymbol{Z}_{\boldsymbol{L}}=\frac{\boldsymbol{V}(t)}{\boldsymbol{I}(t)}=j \omega L
$$

Low-pass filter

Low-pass filter

Low-pass filter

Voltage divider!

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{V}_{\text {out }}}{\boldsymbol{V}_{\text {in }}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{1+j \omega R C}=\frac{1}{1+j \omega / \omega_{0}}
$$

Low-pass filter

Voltage divider!

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{V}_{\text {out }}}{\boldsymbol{V}_{\text {in }}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{1+j \omega R C}=\frac{1}{1+j \omega / \omega_{0}}
$$

Amplitude ratio:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\sqrt{1+\omega^{2} R^{2} C^{2}}}=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}
$$

Low-pass filter

Voltage divider!

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{V}_{\text {out }}}{\boldsymbol{V}_{\text {in }}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{1+j \omega R C}=\frac{1}{1+j \omega / \omega_{0}}
$$

Amplitude ratio:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\sqrt{1+\omega^{2} R^{2} C^{2}}}=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}
$$

Phase shift:

$$
\phi=-\tan ^{-1} \omega R C=-\tan ^{-1} \frac{\omega}{\omega_{0}}
$$

Frequency response of a low pass filter (Bode plots)

Frequency response of a low pass filter (Bode plots)

Frequency response of a low pass filter (Bode plots)

Frequency response of a low pass filter (Bode plots)

High-pass filter

High-pass filter

High-pass filter

Voltage divider!

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{V}_{o u t}}{\boldsymbol{V}_{\text {in }}}=\frac{R}{R+\frac{1}{j \omega C}}=\frac{j \omega R C}{1+j \omega R C}=\frac{j \omega / \omega_{0}}{1+j \omega / \omega_{0}}
$$

High-pass filter

Voltage divider!

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{V}_{o u t}}{\boldsymbol{V}_{\text {in }}}=\frac{R}{R+\frac{1}{j \omega C}}=\frac{j \omega R C}{1+j \omega R C}=\frac{j \omega / \omega_{0}}{1+j \omega / \omega_{0}}
$$

Amplitude:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\omega R C}{\sqrt{1+\omega^{2} R^{2} C^{2}}}=\frac{\omega / \omega_{0}}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}
$$

High-pass filter

Voltage divider!

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{V}_{o u t}}{\boldsymbol{V}_{\text {in }}}=\frac{R}{R+\frac{1}{j \omega C}}=\frac{j \omega R C}{1+j \omega R C}=\frac{j \omega / \omega_{0}}{1+j \omega / \omega_{0}}
$$

Amplitude:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\omega R C}{\sqrt{1+\omega^{2} R^{2} C^{2}}}=\frac{\omega / \omega_{0}}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}
$$

Phase shift:

$$
\phi=\tan ^{-1} 1 / \omega R C=\tan ^{-1} \frac{\omega_{0}}{\omega}
$$

Frequency response of a high pass filter (Bode plots)

Phasers

Phas \neq ors

- At the -3 db point, $f=\frac{1}{2 \pi R C}$, the reactance of the capacitor is equal to the resistance of the resistor

Phasধors

- At the -3 db point, $f=\frac{1}{2 \pi R C}$, the reactance of the capacitor is equal to the resistance of the resistor
- Sounds like a 1:2 voltage divider!

Phasধors

- At the -3 db point, $f=\frac{1}{2 \pi R C}$, the reactance of the capacitor is equal to the resistance of the resistor
- Sounds like a $1: 2$ voltage divider!
- But why is the output -3 dB , i.e $\sqrt{1 / 2}$, and not -6 dB , i.e. $1 / 2$ of the input?

Phasধors

- At the -3 db point, $f=\frac{1}{2 \pi R C}$, the reactance of the capacitor is equal to the resistance of the resistor
- Sounds like a 1:2 voltage divider!
- But why is the output -3 dB , i.e $\sqrt{1 / 2}$, and not -6 dB , i.e. $1 / 2$ of the input?
Phasors are a visual way to handle complex numbers.
- Draw vectors in complex plane
- Addition is vector addition
- Multiplication is
- Multiplication of length
- Addition of angle

Phasors

Phasors

Phasors

Phasors

Phasors

Phasors

Power in L and C circuits

$V_{i n} \propto \sin \omega t$

Power in L and C circuits

$V_{i n} \propto \sin \omega t$
$I_{R} \propto \sin \omega t$

Power in L and C circuits

$V_{i n} \propto \sin \omega t$
$I_{R} \propto \sin \omega t$

$$
I_{C} \propto \frac{d V}{d t} \propto \cos \omega t
$$

Power in L and C circuits

$V_{i n} \propto \sin \omega t$
$I_{R} \propto \sin \omega t$

$$
\left.\begin{array}{rl}
I_{C} & \propto \frac{d V}{d t} \propto \cos \omega t \\
I_{L} & \propto \int V d t
\end{array}\right)-\cos \omega t
$$

Instantaneous power

Instantaneous power

Instantaneous power

号

Instantaneous power

号

Average power

So while

$$
\bar{P}_{R}=V_{R, r m s} I_{R, r m s}
$$

$$
\bar{P}_{L}=\bar{P}_{C}=0
$$

Average power

So while

$$
\begin{gathered}
\bar{P}_{R}=V_{R, r m s} I_{R, r m s} \\
\bar{P}_{L}=\bar{P}_{C}=0
\end{gathered}
$$

The actual delivered power is called active power, measured in Watts. $P_{A}=V_{r m s} I_{r m s}$ is the "apparent power", often VA instead of Watts.

- Residential customers pay for active power
- Commerical customers often for apparent power.

LC circuits I: Tank circuit

LC circuits I: Tank circuit

LC circuits I: Tank circuit

$Z_{L C}=\frac{1}{\frac{1}{j \omega L}+j \omega C}=\frac{j}{\left(\frac{1}{\omega L}-\omega C\right)}$

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{Z}_{L C}}{R+\boldsymbol{Z}_{L C}}
$$

LC circuits I: Tank circuit

$Z_{L C}=\frac{1}{\frac{1}{j \omega L}+j \omega C}=\frac{j}{\left(\frac{1}{\omega L}-\omega C\right)}$

$$
\boldsymbol{G}(\omega)=\frac{\boldsymbol{Z}_{L C}}{R+\boldsymbol{Z}_{L C}}
$$

$$
\left(\frac{1}{\omega_{C} L}-\omega_{C} C\right)=0 \longrightarrow \omega_{C}=\sqrt{\frac{1}{L C}}
$$

Frequency response of a tank circuit

LC circuits II: Notch filter

LC circuits II: Notch filter

LC circuits II: Notch filter

Frequency response of a notch filter

Transmission lines / cables

We often want to transfer signals from one location to another. For that we need cables. These are mostly coaxial cables.

Transmission lines / cables

We often want to transfer signals from one location to another. For that we need cables. These are mostly coaxial cables.
A coax cable has an inner conductor, which is surrounded by an isolator, surrounded by a shield.

Coax cable (simplified)

We can assume that R_{s} is small, and R_{p} is large.

$$
V(x, t) \underset{I(x, t)}{\rightarrow} \stackrel{L_{s} d x}{\substack{\square}} C_{p} d x \underset{\square}{I(x+d x, t)} V(x+d x, t)
$$

Coax cable (simplified)

We can assume that R_{s} is small, and R_{p} is large.

$$
C_{p} d x \frac{d V(x+d x, t)}{d t}=I(x, t)-I(x+d x, t)
$$

Coax cable (simplified)

We can assume that R_{s} is small, and R_{p} is large.

$$
\begin{gathered}
V(x, t) \underset{I(x, t)}{\rightarrow} C_{p} d x=V(x+d x, t) \\
C_{p} d x \frac{d V(x+d x, t)}{d t}=I(x, t)-I(x+d x, t) \\
C_{p} d x \frac{d\left(V(x, t)+\frac{d V}{d x}(x, t) d x\right)}{d t}=I(x, t)-I(x+d x, t)
\end{gathered}
$$

Coax cable (simplified)

We can assume that R_{s} is small, and R_{p} is large.

$$
\begin{gathered}
C_{p} d x \frac{d V(x+d x, t)}{d t}=I(x, t)-I(x+d x, t) \\
C_{p} d x \frac{d\left(V(x, t)+\frac{d V}{d x}(x, t) d x\right)}{d t}=I(x, t)-I(x+d x, t) \\
C_{p} \frac{d V(x, t)}{d t}=-\frac{d I(x, t)}{d x}
\end{gathered}
$$

Coax cable II

$$
\begin{gathered}
V(x, t) \underset{I(x, t)}{\rightarrow} C_{s}^{L_{s} d x} C_{p} d x= \\
C_{p} \frac{d V(x+d x, t)}{d t}=-\frac{d I(x, t)}{d x} \\
L_{s} d x \frac{d I(x, t)}{d t}=V(x, t)-V(x+d x, t)
\end{gathered}
$$

Coax cable II

$$
\begin{gathered}
V(x, t) \underset{I(x, t)}{\rightarrow} \overbrace{s}^{L_{s} d x} C_{p} d x \xrightarrow{I(x+d x, t)} V(x+d x, t) \\
C_{p} \frac{d V(x, t)}{d t}=-\frac{d I(x, t)}{d x} \\
L_{s} d x \frac{d I(x, t)}{d t}=V(x, t)-V(x+d x, t) \\
L_{s} \frac{d I(x, t)}{d t}=-\frac{d V(x, t)}{d x}
\end{gathered}
$$

Coax cable III

$$
\begin{aligned}
& C_{p} \frac{d V(x, t)}{d t}=-\frac{d l(x, t)}{d x} \\
& L_{s} \frac{d l(x, t)}{d t}=-\frac{d V(x, t)}{d x}
\end{aligned}
$$

Differentiate the first with regard to dt , the second with regard to dx

Coax cable III

$$
\begin{aligned}
& C_{p} \frac{d V(x, t)}{d t}=-\frac{d l(x, t)}{d x} \\
& L_{s} \frac{d l(x, t)}{d t}=-\frac{d V(x, t)}{d x}
\end{aligned}
$$

Differentiate the first with regard to dt , the second with regard to dx

$$
\begin{aligned}
& C_{p} \frac{d^{2} V(x, t)}{d t^{2}}=-\frac{d^{2} I(x, t)}{d x d t} \\
& L_{s} \frac{d^{2} I(x, t)}{d t d x}=-\frac{d^{2} V(x, t)}{d x^{2}}
\end{aligned}
$$

Coax cable IV

$$
C_{p} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{1}{L_{s}} \frac{d^{2} V(x, t)}{d x^{2}}
$$

Coax cable IV

$$
\begin{aligned}
& C_{p} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{1}{L_{s}} \frac{d^{2} V(x, t)}{d x^{2}} \\
& L_{s} C_{P} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{d^{2} V(x, t)}{d x^{2}}
\end{aligned}
$$

We can guess a solution: $V(x, t)=A \cos \left(\omega\left(t-\frac{1}{c} x\right)\right)$

Coax cable IV

$$
\begin{aligned}
& C_{p} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{1}{L_{s}} \frac{d^{2} V(x, t)}{d x^{2}} \\
& L_{s} C_{P} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{d^{2} V(x, t)}{d x^{2}}
\end{aligned}
$$

We can guess a solution: $V(x, t)=A \cos \left(\omega\left(t-\frac{1}{c} x\right)\right)$

$$
-L C \omega^{2} V(x, t)=-\frac{1}{c^{2}} \omega^{2} V(x, t)
$$

Coax cable IV

$$
\begin{aligned}
& C_{p} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{1}{L_{s}} \frac{d^{2} V(x, t)}{d x^{2}} \\
& L_{S} C_{p} \frac{d^{2} V(x, t)}{d t^{2}}=\frac{d^{2} V(x, t)}{d x^{2}}
\end{aligned}
$$

We can guess a solution: $V(x, t)=A \cos \left(\omega\left(t-\frac{1}{c} x\right)\right)$

$$
\begin{gathered}
-L C \omega^{2} V(x, t)=-\frac{1}{c^{2}} \omega^{2} V(x, t) \\
c=\sqrt{\frac{1}{L C}}
\end{gathered}
$$

The propagation speed in a coax cable is $c=\sqrt{1 / L C} \approx \frac{20 c m}{n s}$

Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable. What is the impedance \boldsymbol{Z}_{0} ?

Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable. What is the impedance \boldsymbol{Z}_{0} ?

$$
Z_{0}=j \omega L d x+\frac{1}{j \omega C d x+\frac{1}{Z_{0}}}
$$

Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable. What is the impedance \boldsymbol{Z}_{0} ?

$$
\begin{aligned}
\boldsymbol{Z}_{0} & =j \omega L d x+\frac{1}{j \omega C d x+\frac{1}{Z_{0}}} \\
Z_{0} & =j \omega L d x+\frac{\boldsymbol{Z}_{0}}{j \omega C d x \boldsymbol{Z}_{0}+1}
\end{aligned}
$$

Characteristic Impedance of a coax cable

Assume we are looking at the beginning of a semi-infinite cable. What is the impedance \boldsymbol{Z}_{0} ?

$$
\begin{aligned}
Z_{0} & =j \omega L d x+\frac{1}{j \omega C d x+\frac{1}{Z_{0}}} \\
Z_{0} & =j \omega L d x+\frac{\boldsymbol{Z}_{0}}{j \omega C d x \boldsymbol{Z}_{0}+1}
\end{aligned}
$$

$$
\boldsymbol{Z}_{0}\left(j \omega C d x \boldsymbol{Z}_{0}+1\right)=j \omega L d x\left(j \omega C d x \boldsymbol{Z}_{0}+1\right)+\boldsymbol{Z}_{0}
$$

Characteristic Impedance of a coax cable

$$
Z_{0}^{2} j \omega C d x+Z_{0}=-\omega^{2} L C d x^{2} Z_{0}+j \omega L d x+Z_{0}
$$

Characteristic Impedance of a coax cable

$$
\begin{gathered}
\boldsymbol{Z}_{0}^{2} j \omega C d x+Z_{0}=-\omega^{2} L C d x^{2} \boldsymbol{Z}_{0}+j \omega L d x+\boldsymbol{Z}_{0} \\
Z_{0}^{2} j \omega C d x=j \omega L d x
\end{gathered}
$$

Characteristic Impedance of a coax cable

$$
\begin{gathered}
Z_{0}^{2} j \omega C d x+Z_{0}=-\omega^{2} L C d x^{2} Z_{0}+j \omega L d x+Z_{0} \\
Z_{0}^{2} j \omega C d x=j \omega L d x \\
Z_{0}=\sqrt{\frac{L}{C}}
\end{gathered}
$$

The cable impedance is fully resistive!

Why a sine waves so important?

Frequency domain

Every periodic signal $\mathrm{f}(\mathrm{t})$ can be associated with a function $F(\omega)$ via the Fourier transform.

$$
\begin{gathered}
\hat{f}(\omega)=\mathcal{F}[f(t)]=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
f(t)=\mathcal{F}^{-1}[\hat{f}(\omega)]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{j t \omega} d t
\end{gathered}
$$

Example

Solutions for arbitrary periodic waveforms

- In the time domain, we would need to solve a non-trivial differential equation

Solutions for arbitrary periodic waveforms

- In the time domain, we would need to solve a non-trivial differential equation
- In the frequency domain, we can make use of the linearity:

$$
V_{\text {out }}(t)=\mathcal{F}^{-1}\left[\hat{V}_{\text {out }}(\omega)\right]=\mathcal{F}^{-1}\left[G(\omega) \hat{V}_{\text {in }}(\omega)\right]
$$

Solutions for arbitrary periodic waveforms

- In the time domain, we would need to solve a non-trivial differential equation
- In the frequency domain, we can make use of the linearity:

$$
V_{\text {out }}(t)=\mathcal{F}^{-1}\left[\hat{V}_{\text {out }}(\omega)\right]=\mathcal{F}^{-1}\left[G(\omega) \hat{V}_{\text {in }}(\omega)\right]
$$

- So either transform $V_{i n}$, build the product, and transform back, or

Solutions for arbitrary periodic waveforms

- In the time domain, we would need to solve a non-trivial differential equation
- In the frequency domain, we can make use of the linearity:

$$
V_{\text {out }}(t)=\mathcal{F}^{-1}\left[\hat{V}_{\text {out }}(\omega)\right]=\mathcal{F}^{-1}\left[G(\omega) \hat{V}_{\text {in }}(\omega)\right]
$$

- So either transform $V_{i n}$, build the product, and transform back, or
- Transform $G(\omega)$ and use the Convolution theorem:

$$
\mathcal{F}^{-1}[\hat{A}(\omega) \cdot \hat{B}(\omega)]=\int_{-\infty}^{\infty} \bar{A}(\tau) B(t-\tau) d \tau
$$

