PHY335 Spring 2022 Lecture 3

Jan C. Bernauer

14

February 2022

Valence electrons

The electrons in the outermost shell of an atom are called valence electrons.

They determine the chemical but also the electrical properties of the material.

Energy levels

Energy levels

x

Insulator and conductors

At absolute zero, T=0K, electrons have a maximum energy called the Fermi level, E_F . At higher temperatures, higher levels can be occupied, according to the Fermi function.

Semiconductor

• Gap for semiconductors $\sim eV$, $k_BT \sim 26meV$ at room temperature, so very few electron/hole pairs

- Gap for semiconductors $\sim eV$, $k_BT \sim 26 meV$ at room temperature, so very few electron/hole pairs
- We can add electrons / holes by doping the semiconductor (with elements of the 3th/5th group)
- n-doped: Additional electrons from donor atoms with E_F close to the conduction band. Electrons majority carrier, holes minority.
- p-doped: Additional holes from acceptor atoms with E_F close to the valence band. Holes majority carrier, electrons minority.

Doped semiconductor

pn Junction

pn Junction

Some formulas

- Forward current *I_F*: Thermally excited electrons/holes can pass the barrier
- Reverse current *I_R* : Minority carriers are swept through the depletion region

(Both are defined from p to n!) No bias voltage:

 $I = I_{F,0} + I_{R,0} = 0$

Some formulas

- Forward current *I_F*: Thermally excited electrons/holes can pass the barrier
- Reverse current I_R: Minority carriers are swept through the depletion region

(Both are defined from p to n!) No bias voltage:

$$I = I_{F,0} + I_{R,0} = 0$$

Reverse Bias: Harder to have enough energy for I_F , I_R unaffected

$$I = I_F + I_R \approx I_{F,0} e^{-\frac{eV}{k_B T}} + I_R = I_R$$

Forward Bias: Easier to have enough energy:

$$I \approx I_{F,0} e^{\frac{eV}{k_B T}} + I_{R,0}$$

Define saturation/scale current

$$I_{S} = I_{F,0} = -I_{R,0}$$

Ideal Diode equation (Schokley):

$$I = I_{S} \left(e^{\frac{eV}{k_{B}T}} - 1 \right)$$

where voltage V is positive when "plus" is connected to p

- Zener breakdown: Enough field to rip electrons out of valence bounds.
- Avalanche: electrons gain enough energy during drift that they knock out more electrons.

This is used in Zener diodes (<8V mostly Zener, >8V mostly Avalanche)

- For an applied voltage between reverse breakdown and V_F (the "knee", diode forward voltage drop), there is no current.
- For voltages outside the band, the current is so that the voltage is reduced to the border values.
- Typical V_F is 0.6-0.7V for standard pn-diodes

Diodes as voltage references

Current I_D so that $V_D = 0.6 V$:

Diodes as voltage references

Current I_D so that $V_D = 0.6V$: $V_R = 10V - 0.6V = 9.4V$, $I_R = I_D = \frac{9.4V}{100\Omega} = 94 mA$ With load: $V_L = 0.6V$ as long as $R_L > \frac{0.6V}{94mA} = 6.4\Omega$ Diodes as voltage references

Current I_D so that $V_D = 0.6V$: $V_R = 10V - 0.6V = 9.4V$, $I_R = I_D = \frac{9.4V}{100\Omega} = 94mA$ With load: $V_L = 0.6V$ as long as $R_L > \frac{0.6V}{94mA} = 6.4\Omega$

Voltage clamping

 $V_{out} = \min(0.6V, V_{in})$

Voltage clamping

$$V_{out} = \min(V_{clamp} + 0.6V, V_{in})$$

Current I_D so that $V_D = 5V$:

Current I_D so that $V_D = 5V$: $V_R = 10V - 5V = 5V$, $I_R = I_D = \frac{5V}{100\Omega} = 50 mA$ With load: $V_L = 5V$ as long as $R_L > \frac{5V}{50mA} = 100\Omega$

Current I_D so that $V_D = 5V$: $V_R = 10V - 5V = 5V$, $I_R = I_D = \frac{5V}{100\Omega} = 50 mA$ With load: $V_L = 5V$ as long as $R_L > \frac{5V}{50mA} = 100\Omega$ Compare to a resistive divider: $R_2 = 100\Omega$, R_L of 100Ω would change V_L by $\sim 2V!$

Current I_D so that $V_D = 5V$: $V_R = 10V - 5V = 5V$, $I_R = I_D = \frac{5V}{100\Omega} = 50 mA$ With load: $V_L = 5V$ as long as $R_L > \frac{5V}{50mA} = 100\Omega$ Compare to a resistive divider: $R_2 = 100\Omega$, R_L of 100Ω would change V_L by $\sim 2V!$ Zener can be very useful for voltage clamps!

Half-wave rectifier

Half-wave rectifier

Full-wave rectifier

Buffer capacitor

If $RC \gg T/2$, V_{out} between V_{max} and $V_{max} - V_{ripple}$

If V_{ripple} is small compared to V_{max} , $I \sim$ constant,

$$V_{ripple} pprox rac{l}{C} \Delta T pprox rac{l}{C} rac{T}{2} = rac{V_{max}}{RC} rac{T}{2}$$

- The forward current has electrons fall into holes at the np interface layer. The energy of the electrons is released in the form of photons.
- The frequency of that light depends on the energy: $E = \hbar f$. This roughly aligns LED color with V_f : red (610-760nm): 1.6-2V, to violet (400-450nm) 2.8-4V
- White LED: either RGB, or blue/violet with white phosphor (like CFL)

- They burn out quickly if the current is too high (the junction gets too hot). That's why you need to limit the current. Mostly: Resistor
- Example: 5V, red LED. Resistor needs to drop 3.4V at 15mA, so 226Ω in series