PHY335 Spring 2022 Lecture 3

Valence electrons

The electrons in the outermost shell of an atom are called valence electrons.

They determine the chemical but also the electrical properties of the material.

Energy levels

Energy levels

Energy levels

Energy levels

Insulator and conductors

E

Conduction

Conduction

Insulator
Conductor

Fermi Level

At absolute zero, $\mathrm{T}=0 \mathrm{~K}$, electrons have a maximum energy called the Fermi level, E_{F}. At higher temperatures, higher levels can be occupied, according to the Fermi function.

Semiconductor

Doping

- Gap for semiconductors $\sim \mathrm{eV}, k_{B} T \sim 26 \mathrm{meV}$ at room temperature, so very few electron/hole pairs

Doping

- Gap for semiconductors $\sim \mathrm{eV}, k_{B} T \sim 26 \mathrm{meV}$ at room temperature, so very few electron/hole pairs
- We can add electrons / holes by doping the semiconductor (with elements of the 3th/5th group)
- n-doped: Additional electrons from donor atoms with E_{F} close to the conduction band. Electrons majority carrier, holes minority.
- p-doped: Additional holes from acceptor atoms with E_{F} close to the valence band. Holes majority carrier, electrons minority.

Doped semiconductor

Conduction

p-type

pn Junction

E

n-type
p-type

pn Junction

Electrons drift $\mathrm{n} \rightarrow \mathrm{p}$ recombine, form ions This produces an E-field, levels shift.

Reverse bias

Reverse bias

If an external voltage is applied, + to n, - to p
the bands shift more, no current can flow

Forward bias

Forward bias

If an external voltage is applied,

+ to p , - to n
the bands shift back, current can flow

Some formulas

- Forward current I_{F} : Thermally excited electrons/holes can pass the barrier
- Reverse current I_{R} : Minority carriers are swept through the depletion region
(Both are defined from p to n !)
No bias voltage:

$$
I=I_{F, 0}+I_{R, 0}=0
$$

Some formulas

- Forward current I_{F} : Thermally excited electrons/holes can pass the barrier
- Reverse current I_{R} : Minority carriers are swept through the depletion region
(Both are defined from p to n !)
No bias voltage:

$$
I=I_{F, 0}+I_{R, 0}=0
$$

Reverse Bias: Harder to have enough energy for I_{F}, I_{R} unaffected

$$
I=I_{F}+I_{R} \approx I_{F, 0} e^{-\frac{e V}{k_{B} T}}+I_{R}=I_{R}
$$

Forward Bias: Easier to have enough energy:

$$
I \approx I_{F, 0} e^{\frac{e V}{k_{B} T}}+I_{R, 0}
$$

Ideal diode equation

Define saturation/scale current

$$
I_{S}=I_{F, 0}=-I_{R, 0}
$$

Ideal Diode equation (Schokley):

$$
I=I_{S}\left(e^{\frac{e V}{k_{B} T}}-1\right)
$$

where voltage V is positive when "plus" is connected to p

Diode I-V

Reverse breakdown

- Zener breakdown: Enough field to rip electrons out of valence bounds.
- Avalanche: electrons gain enough energy during drift that they knock out more electrons.
This is used in Zener diodes ($<8 \mathrm{~V}$ mostly Zener, $>8 \mathrm{~V}$ mostly Avalanche)

Useful approximations we will use

- For an applied voltage between reverse breakdown and V_{F} (the "knee", diode forward voltage drop), there is no current.
- For voltages outside the band, the current is so that the voltage is reduced to the border values.
- Typical V_{F} is $0.6-0.7 \mathrm{~V}$ for standard pn -diodes

Some diode applications

Diodes as voltage references

Current I_{D} so that $V_{D}=0.6 \mathrm{~V}$:

Some diode applications

Diodes as voltage references

Current I_{D} so that $V_{D}=0.6 \mathrm{~V}$:
$V_{R}=10 \mathrm{~V}-0.6 \mathrm{~V}=9.4 \mathrm{~V}, I_{R}=I_{D}=\frac{9.4 \mathrm{~V}}{100 \Omega}=94 \mathrm{~mA}$
With load: $V_{L}=0.6 \mathrm{~V}$ as long as $R_{L}>\frac{0.6 \mathrm{~V}}{94 m A}=6.4 \Omega$

Some diode applications

Diodes as voltage references

Current I_{D} so that $V_{D}=0.6 \mathrm{~V}$:
$V_{R}=10 \mathrm{~V}-0.6 \mathrm{~V}=9.4 \mathrm{~V}, I_{R}=I_{D}=\frac{9.4 \mathrm{~V}}{100 \Omega}=94 \mathrm{~mA}$
With load: $V_{L}=0.6 \mathrm{~V}$ as long as $R_{L}>\frac{0.6 \mathrm{~V}}{94 m A}=6.4 \Omega$

Voltage clamping

$$
V_{\text {out }}=\min \left(0.6 \mathrm{~V}, V_{\text {in }}\right)
$$

Voltage clamping

$$
V_{\text {out }}=\min \left(V_{\text {clamp }}+0.6 \mathrm{~V}, V_{\text {in }}\right)
$$

Zener diode in reverse

Current I_{D} so that $V_{D}=5 V$:

Zener diode in reverse

Current I_{D} so that $V_{D}=5 \mathrm{~V}$:
$V_{R}=10 \mathrm{~V}-5 \mathrm{~V}=5 \mathrm{~V}, I_{R}=I_{D}=\frac{5 \mathrm{~V}}{100 \Omega}=50 \mathrm{~mA}$
With load: $V_{L}=5 \mathrm{~V}$ as long as $R_{L}>\frac{5 \mathrm{~V}}{50 \mathrm{~mA}}=100 \Omega$

Zener diode in reverse

Current I_{D} so that $V_{D}=5 V$:
$V_{R}=10 \mathrm{~V}-5 \mathrm{~V}=5 \mathrm{~V}, I_{R}=I_{D}=\frac{5 \mathrm{~V}}{100 \Omega}=50 \mathrm{~mA}$
With load: $V_{L}=5 \mathrm{~V}$ as long as $R_{L}>\frac{5 \mathrm{~V}}{50 \mathrm{~mA}}=100 \Omega$
Compare to a resistive divider: $R_{2}=100 \Omega, R_{L}$ of 100Ω would change V_{L} by $\sim 2 \mathrm{~V}$!

Zener diode in reverse

Current I_{D} so that $V_{D}=5 V$:
$V_{R}=10 \mathrm{~V}-5 \mathrm{~V}=5 \mathrm{~V}, I_{R}=I_{D}=\frac{5 \mathrm{~V}}{100 \Omega}=50 \mathrm{~mA}$
With load: $V_{L}=5 \mathrm{~V}$ as long as $R_{L}>\frac{5 \mathrm{~V}}{50 \mathrm{~mA}}=100 \Omega$
Compare to a resistive divider: $R_{2}=100 \Omega, R_{L}$ of 100Ω would change V_{L} by $\sim 2 \mathrm{~V}$!
Zener can be very useful for voltage clamps!

Half-wave rectifier

Half-wave rectifier

Full-wave rectifier

Buffer capacitor

If $R C \gg T / 2, V_{\text {out }}$ between $V_{\max }$ and $V_{\max }-V_{\text {ripple }}$

Ripple

If $V_{\text {ripple }}$ is small compared to $V_{\text {max }}, I \sim$ constant,

$$
V_{\text {ripple }} \approx \frac{1}{C} \Delta T \approx \frac{1}{C} \frac{T}{2}=\frac{V_{\max }}{R C} \frac{T}{2}
$$

Light emitting diodes

- The forward current has electrons fall into holes at the np interface layer. The energy of the electrons is released in the form of photons.
- The frequency of that light depends on the energy: $E=\hbar f$. This roughly aligns LED color with V_{f} : red ($610-760 \mathrm{~nm}$): $1.6-2 \mathrm{~V}$, to violet ($400-450 \mathrm{~nm}$) 2.8-4V
- White LED: either RGB, or blue/violet with white phosphor (like CFL)

LED II

- They burn out quickly if the current is too high (the junction gets too hot). That's why you need to limit the current. Mostly: Resistor
- Example: 5V, red LED. Resistor needs to drop 3.4V at 15 mA , so 226Ω in series

