

PHY335 Spring 2022 Lecture 4

Jan C. Bernauer

February 2022

PHY335 Spring 2022 Lecture 4

The spice must flow. - Baron Harkonnen

Widespread standard: SPICE - Simulation Program with Integrated Circuit Emphasis

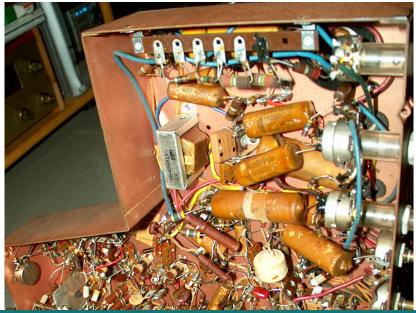
- Many commercial and free implementations
- e.g. LTspice from Analog devices (Linear Technology)
- open source: ngspice

- To simulate, the simulation program needs to know the devices and their connections.
- This list is called the "netlist"
- Can be created by hand
- But mostly via some form of graphical interface

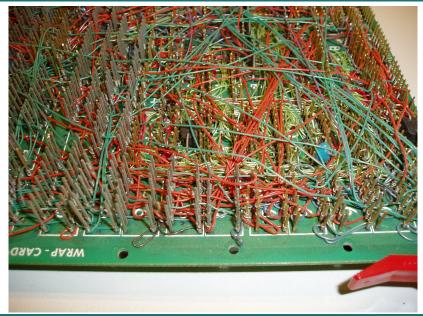
This process is called "schematic capture"

• AC analysis: linear small-signal frequency-domain analysis

- AC analysis: linear small-signal frequency-domain analysis
- DC analysis: nonlinear quiescent/working point calculation
- DC transfer curve analysis


- AC analysis: linear small-signal frequency-domain analysis
- DC analysis: nonlinear quiescent/working point calculation
- DC transfer curve analysis
- Noise analysis

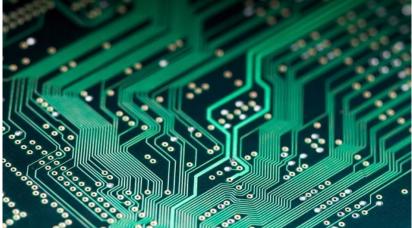
- AC analysis: linear small-signal frequency-domain analysis
- DC analysis: nonlinear quiescent/working point calculation
- DC transfer curve analysis
- Noise analysis
- Transfer function analysis: small-signal input/output gain and impedance


- AC analysis: linear small-signal frequency-domain analysis
- DC analysis: nonlinear quiescent/working point calculation
- DC transfer curve analysis
- Noise analysis
- Transfer function analysis: small-signal input/output gain and impedance
- Transient analysis: non-linear time-domain large-signal analysis

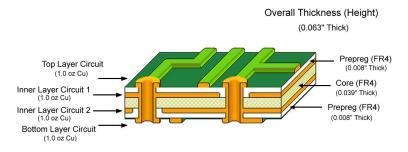
- The simulation needs to know how electrical devices work.
- This is documented in "models"
 - Many build-in, especially for ideal components
 - Parametric models
 - replace element with equivalent circuit of more basic elements
 - Sometimes: behavior described with code
- Most manufacturers supply SPICE models

Electronics manufacturing: Point-to-point

Electronics manufacturing: Wire-wrap

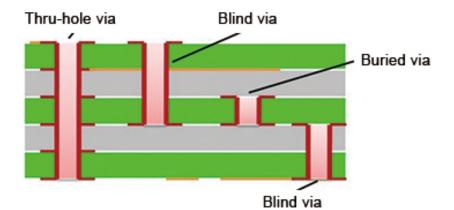


Electronics prototyping: Dead-bug

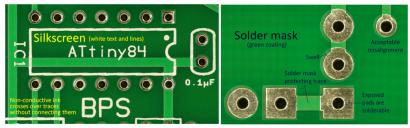


Modern electronics manufacturing: PCB

Printed Circuit Board



A PCB board can have several copper layers. Typically 1,2,4,6,8,10 ...



A wide variation of base materials:

- FR-2 (cheap), phenolic paper / phenolic cotton paper, paper impregnated with a phenol formaldehyde resin.
 Common in consumer electronics with single-sided boards (rarely 2 sided, never more).
- FR-4 (most common) a woven fiberglass cloth impregnated with an epoxy resin.
- Flexible: Kapton, UPILEX, or Pyralux

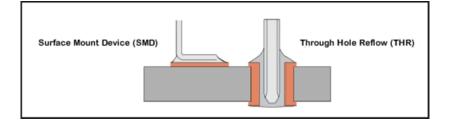
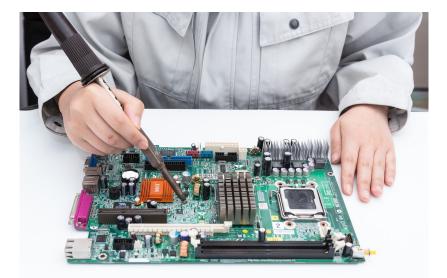


Figure 1 Types of Vias



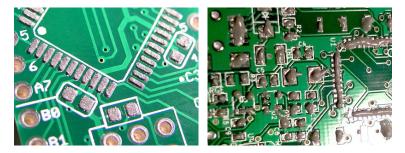
Silkscreen on a PCB

Solder mask on a PCB

Soldering techniques: Hand soldering

Soldering techniques: Hand soldering

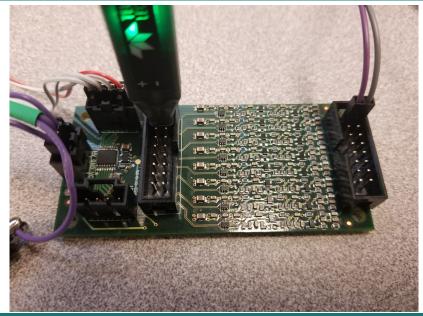
Soldering techniques: Hand soldering



Soldering techniques: Wave

Bath of molten solder. Mainly for THT

Solder paste is applied to pads. Molten via IR/convection heat.



EDA: Electronic design automation Workflow:

- Schematic capture
- Layout of board
 - part placement
 - routing of connections
- Production of "Gerber files": geometry for production

- Cost depends on
 - Layer count and PCB size
 - Feature size (trace size, vias etc)
 - Options
 - Turn-around time
- Fastest: 1 day
- Cheapest: 2\$ for 10x10cm 2 layers!

A board we built

