PHY335 Spring 2022 Lecture 5

Universal amplifier gadget

So far, we only could reduce voltages. We need an amplifier! What would be the ultimate amplifier gadget?

Universal amplifier gadget

So far, we only could reduce voltages. We need an amplifier! What would be the ultimate amplifier gadget?

- Arbitrary gain, positive and negative

Universal amplifier gadget

So far, we only could reduce voltages. We need an amplifier! What would be the ultimate amplifier gadget?

- Arbitrary gain, positive and negative
- Linear

Universal amplifier gadget

So far, we only could reduce voltages. We need an amplifier! What would be the ultimate amplifier gadget?

- Arbitrary gain, positive and negative
- Linear
- Infinite input impedance (so we don't load the source)

Universal amplifier gadget

So far, we only could reduce voltages. We need an amplifier!
What would be the ultimate amplifier gadget?

- Arbitrary gain, positive and negative
- Linear
- Infinite input impedance (so we don't load the source)
- Zero output impedance (so we can put arbitrary loads on it)

Ideal op amp

- One output (to the right)
- + is the non-inverting input
- - is the inverting input

Ideal op amp

Ideal op amp

$$
V_{\text {out }}=A \cdot\left(V_{+}-V_{-}\right)=A V_{D}
$$

Ideal op amp

$$
V_{\text {out }}=A \cdot\left(V_{+}-V_{-}\right)=A V_{D}
$$

For an ideal op amp, $A=\infty$. So for any any $V_{+} \neq V_{-},\left|V_{\text {out }}\right|=\infty$

Feedback

Any system where a fraction of the output is fed back into the system is said to have feedback. Feedback is either

- positive: the feedback increases the effective input Mostly with catastrophic consequences.
- negative: the feedback reduces the effective input This is what we need now! (also improves linearity)

Voltage follower

Voltage follower

This is obviously negative feedback:)

Voltage follower

This is obviously negative feedback:)

- Let's assume at $\mathrm{t}=0, V_{\text {in }}=0, V_{\text {out }}=0$

Voltage follower

This is obviously negative feedback:)

- Let's assume at t=0, $V_{\text {in }}=0, V_{\text {out }}=0$
- If $V_{\text {in }}$ increases, the opamp sees a small voltage difference between it's inputs: $V_{D}=V_{\text {in }}-V_{\text {out }}$
- $V_{\text {out }}$ will increase until V_{D} is zero again

Proof

$$
V_{\text {out }}=A\left(V_{\text {in }}-V_{\text {out }}\right)
$$

Proof

$$
\begin{gathered}
V_{\text {out }}=A\left(V_{\text {in }}-V_{\text {out }}\right) \\
(A+1) V_{\text {out }}=A V_{\text {in }}
\end{gathered}
$$

Proof

$$
\begin{gathered}
V_{\text {out }}=A\left(V_{\text {in }}-V_{\text {out }}\right) \\
(A+1) V_{\text {out }}=A V_{\text {in }} \\
\frac{A+1}{A} V_{\text {out }}=V_{\text {in }}
\end{gathered}
$$

Proof

$$
\begin{gathered}
V_{\text {out }}=A\left(V_{\text {in }}-V_{\text {out }}\right) \\
(A+1) V_{\text {out }}=A V_{\text {in }} \\
\frac{A+1}{A} V_{\text {out }}=V_{\text {in }}
\end{gathered}
$$

For $A \rightarrow \infty$

$$
V_{\text {out }}=V_{\text {in }}
$$

But why?

No current flowing into the inputs. Output can source arbitrary currents.
That means:

- It appears as infinite resistance: the source of $V_{i n}$ is not loaded, i.e. not affected by connecting the voltage follower
- The output voltage is not affected by a load connected to the output
The voltage follower can be used as a buffer, separating a load from an input.

Example for linearity improvement

Let's assume our real opamp is not linear, but still has a large amplification. For example, let's assume

$$
V_{o u t}=10^{5} V_{D} \times \sqrt{V_{D} / 1 V}
$$

Example for linearity improvement

Let's assume our real opamp is not linear, but still has a large amplification. For example, let's assume

$$
V_{o u t}=10^{5} V_{D} \times \sqrt{V_{D} / 1 V}
$$

We could now built a $\times 1$ amplifier by setting $V_{+}=V_{i n}$, $V_{-}=0$, and adding a $1: 10^{5}$ voltage divider. But then $V_{\text {out }}=V_{\text {in }} \times \sqrt{V_{\text {in }} / 1 V}$

Example for linearity improvement II

Instead, for a voltage follower with this horrible opamp, we would get:

$$
V_{\text {out }}=10^{5}\left(V_{\text {in }}-V_{\text {out }}\right) \sqrt{\left(V_{\text {in }}-V_{\text {out }}\right) / 1 V}
$$

Example for linearity improvement II

Instead, for a voltage follower with this horrible opamp, we would get:

$$
\begin{gathered}
V_{\text {out }}=10^{5}\left(V_{\text {in }}-V_{\text {out }}\right) \sqrt{\left(V_{\text {in }}-V_{\text {out }}\right) / 1 V} \\
V_{\text {out }}^{2}=10^{10}\left(V_{\text {in }}-V_{\text {out }}\right)^{2}\left(V_{\text {in }}-V_{\text {out }}\right) / 1 V \\
10^{-10} V_{\text {out }}^{2} 1 V=\left(V_{\text {in }}-V_{\text {out }}\right)^{3} \\
V_{\text {out }}+\left(10^{-10} V_{\text {out }}^{2} 1 V\right)^{1 / 3}=V_{\text {in }}
\end{gathered}
$$

Example for linearity improvement II

Instead, for a voltage follower with this horrible opamp, we would get:

$$
\begin{gathered}
V_{\text {out }}=10^{5}\left(V_{\text {in }}-V_{\text {out }}\right) \sqrt{\left(V_{\text {in }}-V_{\text {out }}\right) / 1 V} \\
V_{\text {out }}^{2}=10^{10}\left(V_{\text {in }}-V_{\text {out }}\right)^{2}\left(V_{\text {in }}-V_{\text {out }}\right) / 1 V \\
10^{-10} V_{\text {out }}^{2} 1 V=\left(V_{\text {in }}-V_{\text {out }}\right)^{3} \\
V_{\text {out }}+\left(10^{-10} V_{\text {out }}^{2} 1 V\right)^{1 / 3}=V_{\text {in }}
\end{gathered}
$$

Seems pretty linear: 10 V output would correspond to 10.002 V input instead of $\sim 4.644 \mathrm{~V}$

The Golden Rules

- There is no current flowing into the inputs
- In a working circuit with feedback, $V_{\text {out }}$ is so that $V_{+}=V_{-}$

Non-inverting amplifier

Non-inverting amplifier

- $V_{i n}=V_{+}, \mathrm{GR} 2 \rightarrow V_{i n}=V_{-}$
- There is no current into the inverting input. Unloaded voltage divider.

$$
V_{-}=V_{\text {out }} \frac{R_{2}}{R_{1}+R_{2}}=V_{\text {in }}
$$

- So, voltage gain is

$$
G_{V}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{1}+R_{2}}{R_{2}}
$$

Inverting amplifier

$$
V_{\text {in }} \text { M }
$$

Inverting amplifier

- $V_{+}=0 V$, so $V_{-}=0 V$ (This is called a virtual ground.)
- No current into -, so

$$
\frac{V_{\text {in }}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}}=0
$$

- Voltage gain:

$$
G_{V}=-\frac{R_{2}}{R_{1}}
$$

- However:

$$
Z_{i n}=R_{1}
$$

Non-working inverting amplifier

Non-working inverting amplifier

This circuits does not have negative feedback.
Golden rules do not apply!

Voltage adder

Voltage adder

$$
\begin{aligned}
& \frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\frac{V_{\text {out }}}{R_{f}}=0 \\
& V_{\text {out }}=-R_{f}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right)
\end{aligned}
$$

If $R_{f}=R_{1}=R_{2}=R_{3}$:

$$
V_{\text {out }}=-\left(V_{1}+V_{2}+V_{3}\right)
$$

Some notes about real opamps

Real op amps

- have finite amplification
- have amplification which depends on frequency

Some notes about real opamps

Real op amps

- have finite amplification
- have amplification which depends on frequency
- need power

Some notes about real opamps

Real op amps

- have finite amplification
- have amplification which depends on frequency
- need power
- can actually not drive that much current

Some notes about real opamps

Real op amps

- have finite amplification
- have amplification which depends on frequency
- need power
- can actually not drive that much current
- restrictions on input
- restrictions on output (except rail-to-rail)
- take time to come out of overdrive (output at the \min / \max)

Power supply

Most often need a split supply: $\pm x V$, often $\pm 15 \mathrm{~V}$ (exception: single supply op amps). Circuit diagram:

In circuit diagrams, the positive rail is often named $V_{C C}$, the negative $V_{E E}$
DANGER: Sometimes, they are also named V_{+}and V_{-}

Differential Amplifier

Differential Amplifier

Differential Amplifier

$$
V_{\text {in,- }}
$$

Differential Amplifier

$$
\begin{aligned}
& V_{\text {in,- }} \text { CN } \\
& V_{+}=V_{-}
\end{aligned}
$$

Differential Amplifier II

$$
\left(V_{\text {in },-}-V_{\text {out }}\right) \frac{R_{2}}{R_{1}+R_{2}}+V_{\text {out }}=V_{\text {in },+} \frac{R_{2}}{R_{1}+R_{2}}
$$

Differential Amplifier II

$$
\begin{gathered}
\left(V_{\text {in },-}-V_{\text {out }}\right) \frac{R_{2}}{R_{1}+R_{2}}+V_{\text {out }}=V_{\text {in },+} \frac{R_{2}}{R_{1}+R_{2}} \\
\left(V_{\text {in },-}-V_{\text {out }}\right)+\frac{R_{2}+R_{1}}{R_{2}} V_{\text {out }}=V_{\text {in },+}
\end{gathered}
$$

Differential Amplifier II

$$
\begin{gathered}
\left(V_{\text {in },-}-V_{\text {out }} \frac{R_{2}}{R_{1}+R_{2}}+V_{\text {out }}=V_{\text {in },+} \frac{R_{2}}{R_{1}+R_{2}}\right. \\
\left(V_{\text {in },-}-V_{\text {out }}\right)+\frac{R_{2}+R_{1}}{R_{2}} V_{\text {out }}=V_{\text {in },+} \\
\left(\frac{R_{2}+R_{1}}{R_{2}}-1\right) V_{\text {out }}=V_{\text {in },+}-V_{\text {in },-}
\end{gathered}
$$

Differential Amplifier II

$$
\begin{gathered}
\left(V_{\text {in },-}-V_{\text {out }}\right) \frac{R_{2}}{R_{1}+R_{2}}+V_{\text {out }}=V_{\text {in },+} \frac{R_{2}}{R_{1}+R_{2}} \\
\left(V_{\text {in },-}-V_{\text {out }}\right)+\frac{R_{2}+R_{1}}{R_{2}} V_{\text {out }}=V_{\text {in },+} \\
\left(\frac{R_{2}+R_{1}}{R_{2}}-1\right) V_{\text {out }}=V_{\text {in },+}-V_{\text {in },-} \\
V_{\text {out }}=\frac{R_{2}}{R_{1}}\left(V_{\text {in },+}-V_{\text {in },-}\right)
\end{gathered}
$$

Opamp as a (voltage controlled) current source

Opamp as a (voltage controlled) current source

GRs: $V_{-}=V_{+}=V_{i n}$

$$
I_{\text {load }}=\frac{V_{-}}{R}=\frac{V_{i n}}{R}
$$

Opamp as a (voltage controlled) current source

GRs: $V_{-}=V_{+}=V_{i n}$

$$
I_{\text {load }}=\frac{V_{-}}{R}=\frac{V_{\text {in }}}{R}
$$

Not ideal: Load does not return to ground.

Integrator

Integrator

Integrator

Integrator

Problem: No feedback for DC

Integrator

Integrator

Integrator

$$
\begin{gathered}
\frac{V_{\text {in }}}{R}=-C \frac{d V_{\text {out }}}{d t} \\
V_{\text {out }}(t)=-\frac{1}{R C} \int V_{\text {in }}(t)+\text { const. }
\end{gathered}
$$

Integrator

Problem: No feedback for DC. Need to "zero" by shorting out C from time to time.

Integrator, closer look

Let's look at the performance of a real op amp.

- There is some small input current, I_{B}.
- If $V_{\text {in }}$ is not connected, this will produce a voltage drift of $\frac{d V}{d t}=\frac{I_{B}}{C}$.
- For the TL082, $I_{B}=50 p A$
- Let's say, for 10 nF , we see $\frac{d V_{\text {out }}}{d t}=5 \mathrm{mV} / \mathrm{s}$

Integrator, closer look II

Let's say $V_{\text {in }}$ is actually connected to ground.

- The op amp actually has some input voltage offset, $V_{O S}$ (in the sense that $V_{D}=V_{+}-V_{-}-V_{O S}$)
- In other words, with $V_{-}=0 V, V_{+}=V_{O S}$
- This will produce a current through R
- For the TL082, $V_{O S}$ is 5 mV .
- With $R=1 M \Omega$, i.e. 5 nA
- That's a 100 times worse than the error from I_{B}

Combating drift with a T-network

We can also add a (large) resistor parallel to C to give $D C$ negative feedback.

Combating drift with a T-network

We can also add a (large) resistor parallel to C to give $D C$ negative feedback.

We want to make R_{B} very, very large. These resistors are hard to come by and have bad parasitic parameters (mainly capacitance)

Combating drift with a T-network II

How does that work?

$$
v_{-}=\text {Gnd } \sim_{\sum_{=}^{R_{2}}}^{R_{1}} \sim_{~}^{R_{3}} \text { vout }
$$

- R_{1} and R_{2} both connect the T-node to (virtual) ground.

How does that work?

$$
=
$$

- R_{1} and R_{2} both connect the T-node to (virtual) ground.
- $R_{2} \ll R_{1}=R_{3}$, which mean $R_{3}+R_{2} \approx R_{3}$ and $R 1 \| R_{2} \approx R_{2}$

How does that work?

- R_{1} and R_{2} both connect the T-node to (virtual) ground.
- $R_{2} \ll R_{1}=R_{3}$, which mean $R_{3}+R_{2} \approx R_{3}$ and $R 1 \| R_{2} \approx R_{2}$
- So the voltage at the T-node is given by a voltage divider:

$$
V_{T-\text { node }}=V_{\text {out }} \frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{3}}=V_{\text {out }} \frac{R_{2}}{R_{3}}
$$

On the other hand

On the other hand

At DC , i.e. $\omega=0$, we can ignore the capacitor.

On the other hand

At DC , i.e. $\omega=0$, we can ignore the capacitor.

$$
\frac{V_{\text {in }}}{R}=-\frac{V_{T-\text { node }}}{R_{1}}=V_{\text {out }} \frac{R_{2}}{R_{1} R_{3}}
$$

The T-Network acts like a large resistor of the value

$$
R_{T}=\frac{R_{1} R_{3}}{R_{2}}
$$

Differentiator

Differentiator

$$
C \frac{d V_{\text {in }}}{d t}=I=-\frac{V_{\text {out }}}{R}
$$

Differentiator

$$
\begin{gathered}
C \frac{d V_{\text {in }}}{d t}=I=-\frac{V_{\text {out }}}{R} \\
V_{\text {out }}=-R C \frac{d V_{\text {in }}}{d t}
\end{gathered}
$$

Slew rate

The output of an opamp can only change at a certain, type dependent, maximal rate. This is the so called slew rate SR.

- The slew rate is visible for example if the output should be a square wave, where the voltage level changes are not instantaneous.
- Or as a distortion in a waveform. For a sine wave,

$$
\frac{d V}{d t}=V_{0} \omega \cos \omega t
$$

so the frequency at which distortions appear gives the slew rate as $S R=2 \pi V_{0} f$

Opamps as comparators

Let's look at a case when no feedback is applied:

Opamps as comparators

Let's look at a case when no feedback is applied:

For $V_{\text {in }} \neq V_{\text {Threshold }}$, the output will saturate at it's minimum or maximum. Optimized opamps for this purpose exist, they are called comparators. Simplest form of an analog to digital converter!

Unstable transition

Schmitt-Trigger

Adding positive feedback can help:

Schmitt-Trigger

Adding positive feedback can help:

The positive feedback adds hysteresis!

Schmitt-Trigger II

Unit 5 comments

Unit 5, question 2 asks you to build a voltage divider with a potentiometer and two resistors to set a voltage from $\pm 5 \mathrm{~V}$ using a supply of $\pm 15 \mathrm{~V}$.

- There are 30 V across 3 resistors of the same size. \rightarrow each resistor drops the same voltage, 10 V

Unit 5 comments

Unit 5, question 2 asks you to build a voltage divider with a potentiometer and two resistors to set a voltage from $\pm 5 \mathrm{~V}$ using a supply of $\pm 15 \mathrm{~V}$.

- There are 30 V across 3 resistors of the same size. \rightarrow each resistor drops the same voltage, 10 V
- One can think of the potentiometer as two resistances which sum up to 10 k :

$$
+15 V \circ \bigvee_{R} W_{a} \cdot \bigvee_{R-a} \text { WNR }_{R}-15 V
$$

How stiff is this source?

Thevenin equivalent R :

$$
R_{T h}=(R+a) \|(R+R-a)=\frac{1}{\frac{1}{R+a}+\frac{1}{2 R-a}}=\frac{2 R^{2}+R a-a^{2}}{3 R}
$$

Minimum: $a=0$ or $a=R, R_{T h}=\frac{2}{3} R$.
Maximum: $a=R / 2, R_{t h}=\frac{3}{4} R$

How stiff is this source?

Thevenin equivalent R :

$$
R_{T h}=(R+a) \|(R+R-a)=\frac{1}{\frac{1}{R+a}+\frac{1}{2 R-a}}=\frac{2 R^{2}+R a-a^{2}}{3 R}
$$

Minimum: $a=0$ or $a=R, R_{T h}=\frac{2}{3} R$.
Maximum: $a=R / 2, R_{t h}=\frac{3}{4} R$
Relative change: $\approx \pm 6 \%$

Why not directly to $\pm 5 \mathrm{~V}$?

Now, $R_{T h}$ between 0 and $R / 4$. That's $\pm 100 \%$

