PHY335 Spring 2022 Lecture 6

Jan C. Bernauer

March 2022

Generally: Three poles!

- BJT: Bipolar (junction) transistors: npn/pnp A current is controlled by a different current
- FET: Field effect transistors: n-channel / p-channel, (JFET, MOSFET etc.)

A current is controlled by a voltage

We are interested in voltage differences across the transistor:

- $V_{BE} = V_B V_E$
- $V_{CE} = V_C V_E$

•
$$V_{CB} = V_C - V_B$$

Band diagram without voltages

Band diagram in normal mode

- The BE levels are shifted so that electrons (majority carriers in n, minority in p) can travel into the base.
- At the BC side, the field from the reverse bias drifts the electrons out.
- The density gradient across the thin base drives electrons across it via diffusion

Operation modes

- Active: Base-emitter is forward biased ($V_{BE} > 0$), base-collector is reverse biased $V_{CB} > 0$. $I_C = \beta I_B$
- Reverse-active: Switch roles of C and E. Rarely used
- Saturation: $V_{BE} > 0$, $V_{CB} < 0$: maximum current
- Cut-off: V_{BE} < 0, V_{CB} > 0, both diodes in reverse, minimal current

• Polarity: $V_{CE} > 0$

- Polarity: $V_{CE} > 0$
- Junctions: The base-emitter and base-collector behave like diodes. (But collector-emitter current does not!)

- Polarity: $V_{CE} > 0$
- Junctions: The base-emitter and base-collector behave like diodes. (But collector-emitter current does not!)
- Maximum ratings: If you are outside, the magic smoke escapes.

- Polarity: $V_{CE} > 0$
- Junctions: The base-emitter and base-collector behave like diodes. (But collector-emitter current does not!)
- Maximum ratings: If you are outside, the magic smoke escapes.
- Then: Current amplifier: $I_C = h_{FE}I_B = \beta I_B$

 β is a bad parameter: It can differ significantly for different specimen of the same type. (See datasheet)

$V_{BE} \approx 0.6 V$

Or:

$$V_B = V_E + 0.6 V$$

•
$$V_E = V_B - 0.6V$$

• $I_E = V_E/R_E$

- $V_{out} = V_{in} 0.6V$
- Feedback: "Signal" to transistor is $V_{BE} = V_B - V_E = V_{in} - V_{out}$

Input impedance

$$\Delta V_B = \Delta V_E \longrightarrow \Delta I_E = \frac{\Delta V_E}{R \| Z_{load}} = \frac{\Delta V_B}{R \| Z_{load}}$$

$$\Delta V_B = \Delta V_E \longrightarrow \Delta I_E = \frac{\Delta V_E}{R \| Z_{load}} = \frac{\Delta V_B}{R \| Z_{load}}$$

 $\Delta I_B = \frac{\Delta I_E}{\beta + 1}$

$$\begin{split} \Delta V_B &= \Delta V_E \longrightarrow \Delta I_E = \frac{\Delta V_E}{R \| Z_{load}} = \frac{\Delta V_B}{R \| Z_{load}} \\ \Delta I_B &= \frac{\Delta I_E}{\beta + 1} \\ r_{in} &= \frac{\Delta V_B}{\Delta I_B} = (\beta + 1)(R \| Z_{load}) = \beta(R \| Z_{load}) \end{split}$$

$$r_{out} = \frac{\Delta V_E}{\Delta I_E} = \frac{\Delta V_B}{(\beta+1)\Delta I_B} = Z_{source} \frac{1}{\beta+1} = Z_{source}/\beta$$

• We want the working point for $V_{out} = V_{CC}/2$ if we don't have an input, and we need to pick a bias current I_{bias} . This gives $R_E = V_{CC}/(2I_{bias})$

- We want the working point for $V_{out} = V_{CC}/2$ if we don't have an input, and we need to pick a bias current I_{bias} . This gives $R_E = V_{CC}/(2I_{bias})$
- We need to pick the voltage divider ratio (R_1, R_2) so that $V_B = V_{CC}/2 + 0.6 V$

- We want the working point for $V_{out} = V_{CC}/2$ if we don't have an input, and we need to pick a bias current I_{bias} . This gives $R_E = V_{CC}/(2I_{bias})$
- We need to pick the voltage divider ratio (R₁, R₂) so that V_B = V_{CC}/2 + 0.6 V
- We want R_{1,2} large (to not load the source). But the divider is loaded by input impedance (see above). So, R₁ || R₂ < βR_E

We are interested in changes from the working point

We are interested in changes from the working point

•
$$\Delta V_{in} = \Delta V_E \longrightarrow v_{in} = v_E$$

We are interested in changes from the working point

•
$$\Delta V_{in} = \Delta V_E \longrightarrow v_{in} = v_E$$

•
$$i_E = v_E/R_E$$

We are interested in changes from the working point

•
$$\Delta V_{in} = \Delta V_E \longrightarrow v_{in} = v_E$$

•
$$i_E = v_E/R_E$$

•
$$i_C = \beta i_B = \beta \frac{i_E}{\beta + 1} \approx i_E$$

We are interested in changes from the working point

•
$$\Delta V_{in} = \Delta V_E \longrightarrow v_{in} = v_E$$

•
$$i_E = v_E/R_E$$

•
$$i_C = \beta i_B = \beta \frac{i_E}{\beta + 1} \approx i_E$$

•
$$v_{out} = v_C = -R_C i_C = -\frac{R_C}{R_E} v_{in}$$

- Input: Looking into the input (ignore the C), we see $R_1 \parallel R_2 \parallel \beta R_E$
 - Together with the C, this gives a high-pass filter....

- Input: Looking into the input (ignore the C), we see $R_1 \parallel R_2 \parallel \beta R_E$
 - Together with the C, this gives a high-pass filter....
- Output: Without the *R_C*, this looks like a current source (see above)
 - Current sources have (ideally infinite) large resistances, so *R_C* dominates and is the output resistance

- Input: Looking into the input (ignore the C), we see $R_1 \parallel R_2 \parallel \beta R_E$
 - Together with the C, this gives a high-pass filter....
- Output: Without the *R_C*, this looks like a current source (see above)
 - Current sources have (ideally infinite) large resistances, so *R_C* dominates and is the output resistance
- This means that R_C is limited by what ever we want to drive, and large amplifications need then very small R_E . How small can we make it?

• We can't assume $V_B = V_E + 0.7 V$ any more

- We can't assume $V_B = V_E + 0.7 V$ any more
- Use diode equation: $I_E = I_S(T)(e^{\frac{eV_{BE}}{k_BT}} 1)$

- We can't assume $V_B = V_E + 0.7 V$ any more
- Use diode equation: $I_E = I_S(T)(e^{\frac{eV_{BE}}{k_BT}} 1)$

• I.e.:
$$V_{BE} = \frac{k_B T}{e} \ln \left(\frac{I_E}{I_S(T)} + 1 \right)$$

- We can't assume $V_B = V_E + 0.7 V$ any more
- Use diode equation: $I_E = I_S(T)(e^{\frac{eV_{BE}}{k_BT}} 1)$

• I.e.:
$$V_{BE} = \frac{k_B T}{e} \ln \left(\frac{l_E}{l_S(T)} + 1 \right)$$

• (As usual, we can mostly neglect the 1)

- We can't assume $V_B = V_E + 0.7 V$ any more
- Use diode equation: $I_E = I_S(T)(e^{\frac{eV_{BE}}{k_BT}} 1)$

• I.e.:
$$V_{BE} = \frac{k_B T}{e} \ln \left(\frac{l_E}{l_S(T)} + 1 \right)$$

- (As usual, we can mostly neglect the 1)
- A constant ΔV_{BE} gives a constant ratio $\frac{I_{E,2}}{I_{E,1}} = e^{\frac{e\Delta V_{BE}}{k_B T}}$

•
$$V_{BE} = \frac{k_B T}{e} \ln \left(\frac{l_E}{l_S(T)} + 1 \right)$$

•
$$V_{BE} = \frac{k_B T}{e} \ln \left(\frac{I_E}{I_S(T)} + 1 \right)$$

• Linearize! We can find a small signal effective resistance:

•
$$r = \frac{dV}{dI}$$

• In our case: $\frac{dV_{BE}}{dI_E} \approx \frac{k_B T}{eI_E} \approx \frac{25mV}{I_E}$

•
$$V_{BE} = \frac{k_B T}{e} \ln \left(\frac{I_E}{I_S(T)} + 1 \right)$$

• Linearize! We can find a small signal effective resistance:

•
$$r = \frac{dV}{dl}$$

• In our case: $\frac{dV_{BE}}{dl_E} \approx \frac{k_B T}{el_E} \approx \frac{25mV}{l_E}$

- This looks like an additional, intrinsic resistance on the emitter pole
- This limits the maximum amplification for the common emitter amplifier!

There is an additional problem with small R_E :

- Either the quiescent current is large \Leftrightarrow Power dissipation
- Or V_E is small \Leftrightarrow Large temperature drifts, since $\frac{dV_{BE}}{dT} \approx -2.1 mV/^{\circ}C$

- For the working point, at DC, a normal size R_E gives good temperature stability
- For a signal of relevant frequency, the C_{bypass} has small impedance. Then, the emitter resistance is R_E || R_{bypass}, which can be very small

Common-base amplifier

 V_{in} < 0
 Input impedance is very small: r_E

Common-base amplifier

- $V_{in} < 0$
- Input impedance is very small:
 r_E
- This is good for current source-type of signals.
 - Many detectors are current sources, with some internal capacity.
 - Using a simple resistor to convert to voltage makes it slow
 - Transistor "hides" resistance, small $\tau = RC$

For PNP, reverse all polarities. Done.

Because now the current is carried via holes instead of electrons, they typically perform slightly worse.

Many types:

• n-channel and p-channel (analog to npn/pnp for BJTs)

Many types:

- n-channel and p-channel (analog to npn/pnp for BJTs)
- Metal-Oxid-Semiconductor (MOSFET) or Junction FETs (JFET)

Many types:

- n-channel and p-channel (analog to npn/pnp for BJTs)
- Metal-Oxid-Semiconductor (MOSFET) or Junction FETs (JFET)
- Depletion or Enhancement mode

Many types:

- n-channel and p-channel (analog to npn/pnp for BJTs)
- Metal-Oxid-Semiconductor (MOSFET) or Junction FETs (JFET)
- Depletion or Enhancement mode

This gives 8 combinations, 5 are used, 4 are common: n/p-JFET dep. NMOS (enh/dep), PMOS(enh)

Remember the definition of resistance: $R = l/A \times \rho$. A FET modifies the area A of the conductive part!

Remember the definition of resistance: $R = l/A \times \rho$. A FET modifies the area A of the conductive part!

• with $V_{GS} \leq$ 0, no conductance

Remember the definition of resistance: $R = l/A \times \rho$. A FET modifies the area A of the conductive part!

Remember the definition of resistance: $R = I/A \times \rho$. A FET modifies the area A of the conductive part!

 N.B: The D/S n and bulk p doped areas form a diode. It's important to keep this diode reverse biased. Often, the bulk is connected to the source, sometimes, it's available as a separate pin.

Operation modes: V_{GS} dependance

For an enhancement mode n-MOSFET, we have

• Cut-off region: $V_{GS} < V_{threshold}$, no current

Operation modes: V_{GS} dependance

For an enhancement mode n-MOSFET, we have

• Cut-off region: $V_{GS} < V_{threshold}$, no current

• For
$$V_{GS} > V_{threshold} = V_{th}$$
:

• V_{DS} large ($V_{DS} > V_{GS} - V_{th}$): (current) saturation region = active region (different from BJT!)

$$I_D = \kappa (V_{GS} - V_{th})^2$$

Operation modes: V_{GS} dependance

For an enhancement mode n-MOSFET, we have

• Cut-off region: $V_{GS} < V_{threshold}$, no current

• For
$$V_{GS} > V_{threshold} = V_{th}$$
:

• V_{DS} large ($V_{DS} > V_{GS} - V_{th}$): (current) saturation region = active region (different from BJT!)

$$I_D = \kappa (V_{GS} - V_{th})^2$$

• V_{DS} small: linear region

$$I_D = 2\kappa \left[\left(V_{GS} - V_{th} \right) V_{DS} - V_{DS}^2 / 2 \right]$$

Can interpret this as a voltage controlled resistor (but not quite ohmic)

$$R_{DS} pprox rac{1}{2\kappa(V_{GS} - V_{th})}$$

Operation modes: V_{DS}

• One can dope the channel to manipulate V_{th}

- One can dope the channel to manipulate V_{th}
- One can even make V_{th} negative!

- One can dope the channel to manipulate V_{th}
- One can even make V_{th} negative!
 - there is current flow possible even at $V_{GS} = 0$
 - have to drive V_{GS} negative to stop flow.

$$V_{GS}(I_D = 0) = V_P$$
 "pinch-off voltage"

• Junction FETs can only be in depletion mode

Junction FET (n-channel)

- V_{GS} = 0: Maximum channel width, maximum current, I_{DSS} (Drain current with gate Shorted to Source)
- NB: $V_{GS} > 0$ will quickly lead to large currents into the gate!

Junction FET (n-channel)

• $V_{GS} < 0$: Depletion region grows, makes channel smaller, $I_D < I_{DSS}$

Junction FET (n-channel)

• $V_{GS} \leq V_P < 0$: Depletion region pinched off channel, $I_D \approx 0$

Good:

- No current on the controlling side, only voltage required
- In other words: infinite input resistance.
- No static power draw on the controlling side, can achieve small R(on) on the controlled side

Bad

- Easy to destroy with static electricity
- Device parameters have a bigger scattering. E.g V_{th} and V_p have often a spread of 1-5V between specimen!

- We can use the analog topologies of BJT
- Some circuits benefit greatly from FETs:
 - \bullet High-impedance/low current input: FETs need no current to operate, resistance in the order of $10^{14}\Omega$
 - Analog switches: see below
 - Digital logic: complementary MOS (pMOS and nMOS): no static power consumption
 - Power switching (MOSFET)
 - Linear circuits: Here, mostly JFET

• JFET: depletion mode: conducting if V_{GS} = 0

- JFET: depletion mode: conducting if $V_{GS} = 0$
- *R_G* pulls G down to 0, so JFET will start to conduct

- JFET: depletion mode: conducting if $V_{GS} = 0$
- *R_G* pulls G down to 0, so JFET will start to conduct
- That means that $V_S = I_D R_S$ increases, V_{GS} becomes negative

- JFET: depletion mode: conducting if $V_{GS} = 0$
- *R_G* pulls G down to 0, so JFET will start to conduct
- That means that $V_S = I_D R_S$ increases, V_{GS} becomes negative
- Equilibrium = working point is reached, when

$$-V_{GS} = V_S = I_D(V_{GS})R_S$$

- JFET: depletion mode: conducting if V_{GS} = 0
- *R_G* pulls G down to 0, so JFET will start to conduct
- That means that $V_S = I_D R_S$ increases, V_{GS} becomes negative
- Equilibrium = working point is reached, when

$$-V_{GS} = V_S = I_D(V_{GS})R_S$$

 Input impedance is dominated by R_G, which can be MOhms

• Enhancement mode MOSFET

- Enhancement mode MOSFET
- Assume V_{in} is an analog signal >0

- Enhancement mode MOSFET
- Assume V_{in} is an analog signal >0
- If V_{control} ≤ 0, the MOSFET is not conducting, the output is 0

- Enhancement mode MOSFET
- Assume V_{in} is an analog signal >0
- If $V_{control} \leq 0$, the MOSFET is not conducting, the output is 0
- if $V_{control} = V_{DD}$, all signals $0 < V_{in} < V_{DD}$ are passed through to V_{out}

Power switching

Model 3 inverter. Note two rows of rectangular devices Taken from Motor Trend photos of Munro Ass. teardown

Each of the black devices can switch 100A at 650V.... $24m\Omega$ resistance when switched on

Logic: CMOS inverter

- A logic low input (0V) lets the upper FET conduct, which pulls the output to logic high (V_{DD})
- A logic high inout (V_{DD}) lets the lower FET conduct, which pulls the output to logic low (0V)
- Ergo: $out = \overline{in}$