PHY335 Spring 2022 Lecture 6

Transistor types

Generally: Three poles!

- BJT: Bipolar (junction) transistors: npn/pnp

A current is controlled by a different current

- FET: Field effect transistors: n-channel / p-channel, (JFET, MOSFET etc.)
A current is controlled by a voltage

BJT: npn / pnp

Nomenclature

We are interested in voltage differences across the transistor:

- $V_{B E}=V_{B}-V_{E}$
- $V_{C E}=V_{C}-V_{E}$
- $V_{C B}=V_{C}-V_{B}$

Band diagram without voltages

Band diagram in normal mode

- The BE levels are shifted so that electrons (majority carriers in n , minority in p) can travel into the base.
- At the BC side, the field from the reverse bias drifts the electrons out.
- The density gradient across the thin base drives electrons across it via diffusion

Operation modes

- Active: Base-emitter is forward biased $\left(V_{B E}>0\right)$, base-collector is reverse biased $V_{C B}>0$. $I_{C}=\beta I_{B}$
- Reverse-active: Switch roles of C and E. Rarely used
- Saturation: $V_{B E}>0, V_{C B}<0$: maximum current
- Cut-off: $V_{B E}<0, V_{C B}>0$, both diodes in reverse, minimal current

Transistor rules for the "current model"

- Polarity: $V_{C E}>0$

Transistor rules for the "current model"

- Polarity: $V_{C E}>0$
- Junctions: The base-emitter and base-collector behave like diodes. (But collector-emitter current does not!)

Transistor rules for the "current model"

- Polarity: $V_{C E}>0$
- Junctions: The base-emitter and base-collector behave like diodes. (But collector-emitter current does not!)
- Maximum ratings: If you are outside, the magic smoke escapes.

Transistor rules for the "current model"

- Polarity: $V_{C E}>0$
- Junctions: The base-emitter and base-collector behave like diodes. (But collector-emitter current does not!)
- Maximum ratings: If you are outside, the magic smoke escapes.
- Then: Current amplifier: $I_{C}=h_{F E} I_{B}=\beta I_{B}$
β is a bad parameter: It can differ significantly for different specimen of the same type. (See datasheet)

Easy rule

$$
V_{B E} \approx 0.6 \mathrm{~V}
$$

Or:

$$
V_{B}=V_{E}+0.6 V
$$

BJT current source

We want a constant current through a load, independent of the load impedance.

BJT current source

We want a constant current through a load, independent of the load impedance.

BJT current source

We want a constant current through a load, independent of the load impedance.

- $V_{E}=V_{B}-0.6 V$

BJT current source

We want a constant current through a load, independent of the load impedance.

- $V_{E}=V_{B}-0.6 V$
- $I_{E}=V_{E} / R_{E}$

BJT current source

We want a constant current through a load, independent of the load impedance.

- $V_{E}=V_{B}-0.6 V$
- $I_{E}=V_{E} / R_{E}$
- $I_{\text {load }}=I_{C}=I_{E}-I_{B}=I_{E}(1-1 /(\beta+1)) \approx I_{E}$

BJT current source

We want a constant current through a load, independent of the load impedance.

- $V_{E}=V_{B}-0.6 V$
- $I_{E}=V_{E} / R_{E}$
- $I_{\text {load }}=I_{C}=I_{E}-I_{B}=I_{E}(1-1 /(\beta+1)) \approx I_{E}$
- So: $I_{\text {load }}=\frac{V_{B}-0.6 \mathrm{~V}}{R_{E}}$
- True as long as $V_{E}+0.2 V<V_{C}<V_{C C}$

Emitter follower

Emitter follower

- $V_{\text {out }}=V_{\text {in }}-0.6 \mathrm{~V}$
- Feedback: "Signal" to transistor is $V_{B E}=V_{B}-V_{E}=V_{\text {in }}-V_{\text {out }}$

Input impedance

Input impedance

$$
\Delta V_{B}=\Delta V_{E} \longrightarrow \Delta I_{E}=\frac{\Delta V_{E}}{R \| Z_{\text {load }}}=\frac{\Delta V_{B}}{R \| Z_{\text {load }}}
$$

Input impedance

$$
\begin{aligned}
& \Delta V_{B}=\Delta V_{E} \longrightarrow \Delta I_{E}=\frac{\Delta V_{E}}{R \| Z_{\text {load }}}=\frac{\Delta V_{B}}{R \| Z_{\text {load }}} \\
& \Delta I_{B}=\frac{\Delta I_{E}}{\beta+1}
\end{aligned}
$$

Input impedance

$$
\begin{aligned}
& \Delta V_{B}=\Delta V_{E} \longrightarrow \Delta I_{E}=\frac{\Delta V_{E}}{R \| Z_{\text {load }}}=\frac{\Delta V_{B}}{R \| Z_{\text {load }}} \\
& \Delta I_{B}=\frac{\Delta I_{E}}{\beta+1} \\
& r_{\text {in }}=\frac{\Delta V_{B}}{\Delta I_{B}}=(\beta+1)\left(R \| Z_{\text {load }}\right)=\beta\left(R \| Z_{\text {load }}\right)
\end{aligned}
$$

Output impedance

Output impedance

$$
r_{\text {out }}=\frac{\Delta V_{E}}{\Delta I_{E}}=\frac{\Delta V_{B}}{(\beta+1) \Delta I_{B}}=Z_{\text {source }} \frac{1}{\beta+1}=Z_{\text {source }} / \beta
$$

AC coupled emitter follower, working point

AC coupled emitter follower, working point

- We want the working point for $V_{\text {out }}=V_{C C} / 2$ if we don't have an input, and we need to pick a bias current $I_{\text {bias }}$. This gives $R_{E}=V_{C C} /\left(2 I_{b i a s}\right)$

AC coupled emitter follower, working point

- We want the working point for $V_{\text {out }}=V_{C C} / 2$ if we don't have an input, and we need to pick a bias current $I_{\text {bias }}$. This gives $R_{E}=V_{C C} /\left(2 I_{b i a s}\right)$
- We need to pick the voltage divider ratio $\left(R_{1}, R_{2}\right)$ so that $V_{B}=V_{C C} / 2+0.6 V$

AC coupled emitter follower, working point

- We want the working point for $V_{\text {out }}=V_{C C} / 2$ if we don't have an input, and we need to pick a bias current $I_{\text {bias }}$. This gives $R_{E}=V_{C C} /\left(2 I_{\text {bias }}\right)$
- We need to pick the voltage divider ratio $\left(R_{1}, R_{2}\right)$ so that $V_{B}=V_{C C} / 2+0.6 V$
- We want $R_{1,2}$ large (to not load the source). But the divider is loaded by input impedance (see above). So, $R_{1} \| R_{2}<\beta R_{E}$

Common emitter amplifier

We are interested in changes from the working point

- Assume frequency is large enough

Common emitter amplifier

We are interested in changes from the working point

- Assume frequency is large enough
- $\Delta V_{i n}=\Delta V_{E} \longrightarrow v_{i n}=v_{E}$

Common emitter amplifier

We are interested in changes from the working point

- Assume frequency is large enough
- $\Delta V_{\text {in }}=\Delta V_{E} \longrightarrow v_{\text {in }}=v_{E}$
- $i_{E}=v_{E} / R_{E}$

Common emitter amplifier

We are interested in changes from the working point

- Assume frequency is large enough
- $\Delta V_{i n}=\Delta V_{E} \longrightarrow v_{i n}=v_{E}$
- $i_{E}=v_{E} / R_{E}$
- $i_{C}=\beta i_{B}=\beta \frac{i_{E}}{\beta+1} \approx i_{E}$

Common emitter amplifier

We are interested in changes from the working point

- Assume frequency is large enough
- $\Delta V_{i n}=\Delta V_{E} \longrightarrow v_{i n}=v_{E}$
- $i_{E}=v_{E} / R_{E}$
- $i_{C}=\beta i_{B}=\beta \frac{i_{E}}{\beta+1} \approx i_{E}$
- $v_{\text {out }}=v_{C}=-R_{C} i_{C}=-\frac{R_{C}}{R_{E}} v_{\text {in }}$

Impedances

- Input: Looking into the input (ignore the C), we see $R_{1}\left\|R_{2}\right\| \beta R_{E}$
- Together with the C, this gives a high-pass filter....

Impedances

- Input: Looking into the input (ignore the C), we see $R_{1}\left\|R_{2}\right\| \beta R_{E}$
- Together with the C, this gives a high-pass filter....
- Output: Without the R_{C}, this looks like a current source (see above)
- Current sources have (ideally infinite) large resistances, so R_{C} dominates and is the output resistance

Impedances

- Input: Looking into the input (ignore the C), we see $R_{1}\left\|R_{2}\right\| \beta R_{E}$
- Together with the C, this gives a high-pass filter....
- Output: Without the R_{C}, this looks like a current source (see above)
- Current sources have (ideally infinite) large resistances, so R_{C} dominates and is the output resistance
- This means that R_{C} is limited by what ever we want to drive, and large amplifications need then very small R_{E}. How small can we make it?

No emitter resistor: Ebers-Moll equation

What happens if we omit the emitter resistor?

- We can't assume $V_{B}=V_{E}+0.7 V$ any more

No emitter resistor: Ebers-Moll equation

What happens if we omit the emitter resistor?

- We can't assume $V_{B}=V_{E}+0.7 V$ any more
- Use diode equation: $I_{E}=I_{S}(T)\left(e^{\frac{e V_{B E}}{k_{B} T}}-1\right)$

No emitter resistor: Ebers-Moll equation

What happens if we omit the emitter resistor?

- We can't assume $V_{B}=V_{E}+0.7 V$ any more
- Use diode equation: $I_{E}=I_{S}(T)\left(e^{\frac{e V_{B E}}{k_{B} T}}-1\right)$
- I.e.: $V_{B E}=\frac{k_{B} T}{e} \ln \left(\frac{I_{E}}{I_{S}(T)}+1\right)$

No emitter resistor: Ebers-Moll equation

What happens if we omit the emitter resistor?

- We can't assume $V_{B}=V_{E}+0.7 V$ any more
- Use diode equation: $I_{E}=I_{S}(T)\left(e^{\frac{e V_{B E}}{k_{B} T}}-1\right)$
- I.e.: $V_{B E}=\frac{k_{B} T}{e} \ln \left(\frac{I_{E}}{l_{S}(T)}+1\right)$
- (As usual, we can mostly neglect the 1)

No emitter resistor: Ebers-Moll equation

What happens if we omit the emitter resistor?

- We can't assume $V_{B}=V_{E}+0.7 V$ any more
- Use diode equation: $I_{E}=I_{S}(T)\left(e^{\frac{e V_{B E}}{k_{B} T}}-1\right)$
- I.e.: $V_{B E}=\frac{k_{B} T}{e} \ln \left(\frac{I_{E}}{l_{S}(T)}+1\right)$
- (As usual, we can mostly neglect the 1)
- A constant $\Delta V_{B E}$ gives a constant ratio $\frac{I_{E, 2}}{I_{E, 1}}=e^{\frac{e \Delta V_{B E}}{k_{B} T}}$

A closer look: r_{E}

$$
V_{B E}=\frac{k_{B} T}{e} \ln \left(\frac{I_{E}}{I_{S}(T)}+1\right)
$$

A closer look: r_{E}

- $V_{B E}=\frac{k_{B} T}{e} \ln \left(\frac{I_{E}}{I_{S}(T)}+1\right)$
- Linearize! We can find a small signal effective resistance:
- $r=\frac{d V}{d l}$
- In our case: $\frac{d V_{B E}}{d l_{E}} \approx \frac{k_{B} T}{e l_{E}} \approx \frac{25 m V}{I_{E}}$

A closer look: r_{E}

- $V_{B E}=\frac{k_{B} T}{e} \ln \left(\frac{I_{E}}{I_{S}(T)}+1\right)$
- Linearize! We can find a small signal effective resistance:
- $r=\frac{d V}{d l}$
- In our case: $\frac{d V_{B E}}{d l_{E}} \approx \frac{k_{B} T}{e l_{E}} \approx \frac{25 m V}{l_{E}}$
- This looks like an additional, intrinsic resistance on the emitter pole
- This limits the maximum amplification for the common emitter amplifier!

Small R_{E}

There is an additional problem with small R_{E} :

- Either the quiescent current is large \Leftrightarrow Power dissipation
- Or V_{E} is small \Leftrightarrow Large temperature drifts, since $\frac{d V_{B E}}{d T} \approx-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

Bypassing R_{E}

- For the working point, at DC, a normal size R_{E} gives good temperature stability
- For a signal of relevant frequency, the $C_{\text {bypass }}$ has small impedance. Then, the emitter resistance is $R_{E} \| R_{\text {bypass }}$, which can be very small

Common-base amplifier

- $V_{i n}<0$
- Input impedance is very small: r_{E}

Common-base amplifier

- $V_{i n}<0$
- Input impedance is very small:

r_{E}
- This is good for current source-type of signals.
- Many detectors are current sources, with some internal capacity.
- Using a simple resistor to convert to voltage makes it slow
- Transistor "hides" resistance, small $\tau=R C$

PNP instead of NPN

For PNP, reverse all polarities. Done.
Because now the current is carried via holes instead of electrons, they typically perform slightly worse.

Field Effect Transistors

BJTs control the current flow (CE) via the base current. Field Effect transistors control the flow via the presence of an electric field. You have to apply a voltage, but (essentially) no current flows.

Field Effect Transistors

BJTs control the current flow (CE) via the base current. Field Effect transistors control the flow via the presence of an electric field. You have to apply a voltage, but (essentially) no current flows.
Many types:

- n -channel and p -channel (analog to npn/pnp for BJTs)

Field Effect Transistors

BJTs control the current flow (CE) via the base current. Field Effect transistors control the flow via the presence of an electric field. You have to apply a voltage, but (essentially) no current flows.
Many types:

- n-channel and p-channel (analog to npn/pnp for BJTs)
- Metal-Oxid-Semiconductor (MOSFET) or Junction FETs (JFET)

Field Effect Transistors

BJTs control the current flow (CE) via the base current. Field Effect transistors control the flow via the presence of an electric field. You have to apply a voltage, but (essentially) no current flows.
Many types:

- n-channel and p-channel (analog to npn/pnp for BJTs)
- Metal-Oxid-Semiconductor (MOSFET) or Junction FETs (JFET)
- Depletion or Enhancement mode

Field Effect Transistors

BJTs control the current flow (CE) via the base current. Field Effect transistors control the flow via the presence of an electric field. You have to apply a voltage, but (essentially) no current flows.
Many types:

- n-channel and p-channel (analog to npn/pnp for BJTs)
- Metal-Oxid-Semiconductor (MOSFET) or Junction FETs (JFET)
- Depletion or Enhancement mode

This gives 8 combinations, 5 are used, 4 are common: n/p-JFET dep. NMOS (enh/dep), PMOS(enh)

FET symbols

Nomenclature

MOSFET (n-channel, enhancement)

Remember the definition of resistance: $R=I / A \times \rho$. A FET modifies the area A of the conductive part!

MOSFET (n-channel, enhancement)

Remember the definition of resistance: $R=I / A \times \rho$. A FET modifies the area A of the conductive part!

MOSFET (n-channel, enhancement)

Remember the definition of resistance: $R=I / A \times \rho$. A FET modifies the area A of the conductive part!

MOSFET (n-channel, enhancement)

Remember the definition of resistance: $R=I / A \times \rho$. A FET modifies the area A of the conductive part!

- with $V_{G S} \leq 0$, no conductance

- N.B: The D/S n and bulk p doped areas form a diode. It's important to keep this diode reverse biased. Often, the bulk is connected to the source, sometimes, it's available as a separate pin.

Operation modes: $V_{G S}$ dependance

For an enhancement mode n-MOSFET, we have

- Cut-off region: $V_{G S}<V_{\text {threshold }}$, no current

Operation modes: $V_{G S}$ dependance

For an enhancement mode n-MOSFET, we have

- Cut-off region: $V_{G S}<V_{\text {threshold, }}$, no current
- For $V_{G S}>V_{\text {threshold }}=V_{t h}$:
- $V_{D S}$ large $\left(V_{D S}>V_{G S}-V_{t h}\right)$: (current) saturation region $=$ active region (different from BJT!)

$$
I_{D}=\kappa\left(V_{G S}-V_{t h}\right)^{2}
$$

Operation modes: $V_{G S}$ dependance

For an enhancement mode n-MOSFET, we have

- Cut-off region: $V_{G S}<V_{\text {threshold }}$, no current
- For $V_{G S}>V_{\text {threshold }}=V_{t h}$:
- $V_{D S}$ large $\left(V_{D S}>V_{G S}-V_{t h}\right)$: (current) saturation region $=$ active region (different from BJT! $)$

$$
I_{D}=\kappa\left(V_{G S}-V_{t h}\right)^{2}
$$

- $V_{D S}$ small: linear region

$$
I_{D}=2 \kappa\left[\left(V_{G S}-V_{t h}\right) V_{D S}-V_{D S}^{2} / 2\right]
$$

Can interpret this as a voltage controlled resistor (but not quite ohmic)

$$
R_{D S} \approx \frac{1}{2 \kappa\left(V_{G S}-V_{t h}\right)}
$$

Operation modes: $V_{D S}$

Depletion mode

- One can dope the channel to manipulate $V_{t h}$

Depletion mode

- One can dope the channel to manipulate $V_{t h}$
- One can even make $V_{t h}$ negative!

Depletion mode

- One can dope the channel to manipulate $V_{t h}$
- One can even make $V_{t h}$ negative!
- there is current flow possible even at $V_{G S}=0$
- have to drive $V_{G S}$ negative to stop flow.

$$
V_{G S}\left(I_{D}=0\right)=V_{P} \text { "pinch-off voltage" }
$$

- Junction FETs can only be in depletion mode

Junction FET (n-channel)

- $V_{G S}=0$: Maximum channel width, maximum current, $I_{D S S}$ (Drain current with gate Shorted to Source)
- NB: $V_{G S}>0$ will quickly lead to large currents into the gate!

Junction FET (n-channel)

- $V_{G S}<0$: Depletion region grows, makes channel smaller, $I_{D}<I_{D S S}$

Junction FET (n-channel)

- $V_{G S} \leq V_{P}<0$: Depletion region pinched off channel, $I_{D} \approx 0$

Advantages / Disadvantages of FET

Good:

- No current on the controlling side, only voltage required
- In other words: infinite input resistance.
- No static power draw on the controlling side, can achieve small $R(o n)$ on the controlled side

Bad

- Easy to destroy with static electricity
- Device parameters have a bigger scattering. E.g $V_{t h}$ and V_{p} have often a spread of $1-5 \mathrm{~V}$ between specimen!

Basic FET circuits

- We can use the analog topologies of BJT
- Some circuits benefit greatly from FETs:
- High-impedance/low current input: FETs need no current to operate, resistance in the order of $10^{14} \Omega$
- Analog switches: see below
- Digital logic: complementary MOS (pMOS and nMOS): no static power consumption
- Power switching (MOSFET)
- Linear circuits: Here, mostly JFET

Source follower

This is the equivalent of the emitter follower.

- JFET: depletion mode: conducting if $V_{G S}=0$

Source follower

This is the equivalent of the emitter follower.

- JFET: depletion mode: conducting if $V_{G S}=0$
- R_{G} pulls G down to 0 , so JFET will start to conduct

Source follower

This is the equivalent of the emitter follower.

- JFET: depletion mode: conducting if $V_{G S}=0$
- R_{G} pulls G down to 0 , so JFET will start to conduct
- That means that $V_{S}=I_{D} R_{S}$ increases, $V_{G S}$ becomes negative

Source follower

This is the equivalent of the emitter follower.

- JFET: depletion mode: conducting if $V_{G S}=0$
- R_{G} pulls G down to 0 , so JFET will start to conduct
- That means that $V_{S}=I_{D} R_{S}$ increases, $V_{G S}$ becomes negative
- Equilibrium = working point is reached, when

$$
-V_{G S}=V_{S}=I_{D}\left(V_{G S}\right) R_{S}
$$

Source follower

This is the equivalent of the emitter follower.

- JFET: depletion mode: conducting if $V_{G S}=0$
- R_{G} pulls G down to 0 , so JFET will start to conduct
- That means that $V_{S}=I_{D} R_{S}$ increases, $V_{G S}$ becomes negative
- Equilibrium = working point is reached, when

$$
-V_{G S}=V_{S}=I_{D}\left(V_{G S}\right) R_{S}
$$

- Input impedance is dominated by R_{G}, which can be MOhms

Analog switch

- Enhancement mode MOSFET

Analog switch

- Enhancement mode MOSFET
- Assume $V_{i n}$ is an analog signal >0

Analog switch

- Enhancement mode MOSFET
- Assume $V_{\text {in }}$ is an analog signal >0
- If $V_{\text {control }} \leq 0$, the MOSFET is not conducting, the output is 0

Analog switch

- Enhancement mode MOSFET
- Assume $V_{i n}$ is an analog signal >0
- If $V_{\text {control }} \leq 0$, the MOSFET is not conducting, the output is 0
- if $V_{\text {control }}=V_{D D}$, all signals $0<V_{i n}<V_{D D}$ are passed through to $V_{\text {out }}$

Power switching

Model 3 inverter. Note two rows of rectangular devices
Taken from Motor Trend photos of Munro Ass. teardown
Each of the black devices can switch 100 A at 650 V $24 m \Omega$ resistance when switched on

Logic: CMOS inverter

- A logic low input (0V) lets the upper FET conduct, which pulls the output to logic high ($V_{D D}$)
- A logic high inout ($V_{D D}$) lets the lower FET conduct, which pulls the output to logic low (0 V)
- Ergo: out $=\overline{\text { in }}$

