
PHY335 Spring 2022 Lecture 7

Jan C. Bernauer

April 2022



Digital logic

Analog signals degenerate through noise.

Replace continuous analog signal levels with only two, discrete
levels (/windows/ranges)

These are called logic states

HIGH vs. LOW (voltage level)
TRUE vs. FALSE (Boolean logic)

A system where HIGH represents TRUE is called active-high, a
system where LOW represents TRUE is called active-low

2



Digital logic

Analog signals degenerate through noise.

Replace continuous analog signal levels with only two, discrete
levels (/windows/ranges)

These are called logic states

HIGH vs. LOW (voltage level)
TRUE vs. FALSE (Boolean logic)

A system where HIGH represents TRUE is called active-high, a
system where LOW represents TRUE is called active-low

3



Digital logic

Analog signals degenerate through noise.

Replace continuous analog signal levels with only two, discrete
levels (/windows/ranges)

These are called logic states

HIGH vs. LOW (voltage level)
TRUE vs. FALSE (Boolean logic)

A system where HIGH represents TRUE is called active-high, a
system where LOW represents TRUE is called active-low

4



Voltage ranges for HIGH and LOW

Separate for input and output: Allows a bigger range for input
than guarantees for the output.

This gives noise immunity

Classic: TTL (Transistor-Transistor-logic):

Input: <+0.8V is low, >+2.0V is high (meaning that a
TTL compatible device is allowed to transition from low
to high anywhere between 0.8 and 2V
Output worst case: low +0.4V, high +2.4V
So only 0.4V worst-case voltage margin

CMOS has better voltage-noise immunity (for same VDD) and
wider VDD range. Ranges for 5V:

Input: 0-1.5V low, 3.5 to 5 high
Output: 0-0.05V low, 4.95 to 5 V high.

5



Logic families: the 74xx series

Originally 74YYXX, where XX represents the code number for
di�erent functions.

Series: YY

Nothing: original TTL, 10ns propagation delay, 25 MHz
operation, 5V
L(S): Low power TTL: 33ns , 3MHz, 1/10 of power
H: high speed TTL, 6ns, 43MHz, 2.2x power
F: Fast TTL, 3.5ns, 100MHz, but 1/2x power!
HC(T): High speed CMOS, 9 ns, 50MHz, 1/20 of power.
T has TTL compatible voltage levels
AC(T): Advanced CMOS, 3 ns, 125MHz, 1/20 of power,
typically 3.3V or 5V

There are also other logic series like the 4000 CMOS series

6



Other relevant logic codes

ECL (Emitter-coupled-logic): ECL (negative power supply),
PECL (positive supply) Less noise immunity, a lot of power
required, but very very fast

NIM logic (Nuclear Instrumentation Module): active-low!

Many many CMOS variants with higher speed, lower power,
lower VCC etc.

7



Combinatoric logic, simple logic gates & logic simpli�cation

Combinatorical logic is logic which only acts on the current state of
signals. There is no history/memory.
(The delay between change of input and change of output is called
the propagation delay)
We can build any function out of some standard building blocks!
Represent the function in a table. Short hand: we can represent the
logic state TRUE/FALSE with a binary digit, 1=TRUE, 0=FALSE

8



OR gate

A

B
Y

A B Y

0 0 0
0 1 1
1 0 1
1 1 1

Y = A + B

9



AND gate

A

B
Y

A B Y

0 0 0
0 1 0
1 0 0
1 1 1

Y = A · B = AB

10



Inverter gate �NOT�

A Y

A Y

0 1
1 0

Y = Ā = /A = ∗A =
A′ = −A =∼ A =!A

11



NOR gate

A

B
Y

A B Y

0 0 1
0 1 0
1 0 0
1 1 0

Y = A + B

A B

Y

A

B

VDD

12



NAND gate

A

B
Y

A B Y

0 0 1
0 1 1
1 0 1
1 1 0

Y = AB

A B

VDD VDD

Y

A

B

13



XOR gate (exclusive or)

A

B
Y

A B Y

0 0 0
0 1 1
1 0 1
1 1 0

Y = A � B = A�B

This is often used in
cryptography:

A � B � B = A

14



De Morgan's Theorem

De Morgan's theorem:

A · B = A + B

A + B = A · B

This means that having inverters and one of OR / AND is enough
to produce all logic functions!
Since a NAND or NOR with both inputs tied together is an inverter,
one can build all logic functions just with NAND or NOR gates!

15



De Morgan's Theorem

De Morgan's theorem:

A · B = A + B

A + B = A · B

This means that having inverters and one of OR / AND is enough
to produce all logic functions!

Since a NAND or NOR with both inputs tied together is an inverter,
one can build all logic functions just with NAND or NOR gates!

16



De Morgan's Theorem

De Morgan's theorem:

A · B = A + B

A + B = A · B

This means that having inverters and one of OR / AND is enough
to produce all logic functions!
Since a NAND or NOR with both inputs tied together is an inverter,
one can build all logic functions just with NAND or NOR gates!

17



Logic Identities

ABC = (AB)C = A(BC )

AB = BA

AA = A

A1 = A

A0 = 0

A(B + C ) = AB + AC

A + AB = A

A+BC = (A+B)(A+C )

A + B + C =
(A+B)+C = A+(B+C )

A + B = B + A

A + A = A

A + 1 = 1

A + 0 = A

1̄ = 0

0̄ = 1

A + Ā = 1

AĀ = 0
¯̄A = A

18



From a truth table to a circuit

For each line where the output is 1, write an AND of all input
variables, negate them if the truth table is 0 for them.

OR all terms.

Simplify, with an eye on what gates you have, and what signals
you already have in your circuit

19



From a truth table to a circuit

For each line where the output is 1, write an AND of all input
variables, negate them if the truth table is 0 for them.

OR all terms.

Simplify, with an eye on what gates you have, and what signals
you already have in your circuit

20



From a truth table to a circuit

For each line where the output is 1, write an AND of all input
variables, negate them if the truth table is 0 for them.

OR all terms.

Simplify, with an eye on what gates you have, and what signals
you already have in your circuit

21



Example:

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Y = (ĀB̄C ) + (ĀBC̄ ) + (ĀBC ) + (ABC )
Y = Ā(B̄C + BC̄ + BC ) + ABC
Y = Ā(B̄C + B) + ABC
Y = Ā(B + C ) + ABC

22



Example:

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Y = (ĀB̄C ) + (ĀBC̄ ) + (ĀBC ) + (ABC )

Y = Ā(B̄C + BC̄ + BC ) + ABC
Y = Ā(B̄C + B) + ABC
Y = Ā(B + C ) + ABC

23



Example:

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Y = (ĀB̄C ) + (ĀBC̄ ) + (ĀBC ) + (ABC )
Y = Ā(B̄C + BC̄ + BC ) + ABC

Y = Ā(B̄C + B) + ABC
Y = Ā(B + C ) + ABC

24



Example:

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Y = (ĀB̄C ) + (ĀBC̄ ) + (ĀBC ) + (ABC )
Y = Ā(B̄C + BC̄ + BC ) + ABC
Y = Ā(B̄C + B) + ABC

Y = Ā(B + C ) + ABC

25



Example:

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Y = (ĀB̄C ) + (ĀBC̄ ) + (ĀBC ) + (ABC )
Y = Ā(B̄C + BC̄ + BC ) + ABC
Y = Ā(B̄C + B) + ABC
Y = Ā(B + C ) + ABC

26



Binary Numbers

Represent integers in base 2:
610 = 1102 = b110 = 1× 22 + 1× 21 + 0× 20

Each binary digit can be a signal

An array of signal can represent an integer in a certain range

Common names:

1 bit: 1 signal
Nibble: 4 bit
Byte: 8 bit
Word (architecture dependent, but often): 16 bit
DWORD (double word) 32 bit

Most signi�cant bit (MSB): Highest valued bit

Least signi�cant bit (LSB): bit with value 1

Often use hexadecimal: 1 hexadecimal digit (0-9,A-F) maps
directly to a nibble. 0xFF=255=0b1111 1111

27



Binary Numbers

Represent integers in base 2:
610 = 1102 = b110 = 1× 22 + 1× 21 + 0× 20

Each binary digit can be a signal

An array of signal can represent an integer in a certain range

Common names:

1 bit: 1 signal
Nibble: 4 bit
Byte: 8 bit
Word (architecture dependent, but often): 16 bit
DWORD (double word) 32 bit

Most signi�cant bit (MSB): Highest valued bit

Least signi�cant bit (LSB): bit with value 1

Often use hexadecimal: 1 hexadecimal digit (0-9,A-F) maps
directly to a nibble. 0xFF=255=0b1111 1111

28



Binary Numbers

Represent integers in base 2:
610 = 1102 = b110 = 1× 22 + 1× 21 + 0× 20

Each binary digit can be a signal

An array of signal can represent an integer in a certain range

Common names:

1 bit: 1 signal
Nibble: 4 bit
Byte: 8 bit
Word (architecture dependent, but often): 16 bit
DWORD (double word) 32 bit

Most signi�cant bit (MSB): Highest valued bit

Least signi�cant bit (LSB): bit with value 1

Often use hexadecimal: 1 hexadecimal digit (0-9,A-F) maps
directly to a nibble. 0xFF=255=0b1111 1111

29



Examples

0xA=?

=10=0b1010

0b1110=?=14=0xE

0b1111 1111 1111 1111= 0x��=216-1=65535

30



Examples

0xA=? =10

=0b1010

0b1110=?=14=0xE

0b1111 1111 1111 1111= 0x��=216-1=65535

31



Examples

0xA=? =10=0b1010

0b1110=?

=14=0xE

0b1111 1111 1111 1111= 0x��=216-1=65535

32



Examples

0xA=? =10=0b1010

0b1110=?=14

=0xE

0b1111 1111 1111 1111= 0x��=216-1=65535

33



Examples

0xA=? =10=0b1010

0b1110=?=14=0xE

0b1111 1111 1111 1111= 0x��=216-1=65535

34



Negative numbers in binary

Sign-magnitude: one bit for sign, remaining bits for magnitude

O�set binary: 0b1000=0, 0b1001=1, 0b0111=-1

2's complement: 0b0111=7, 0b0000=0,
0b1111=-1,0b1000=-8

Often 2's complement is used often because it simpli�es arithmetic
and has no doubled zero.

35



Sequential logic & one bit memory: �ip-�ops

The Reset-Set Flip-Flop: RS-FF

A

B

X

Y

X = AY = A + Y ,
Y = BX = B + X

Assume we put A low:

X must be high, Y depends
on what B is.

Assume we put B low:

Y must be high, X depends
on what A is.

36



Sequential logic & one bit memory: �ip-�ops

The Reset-Set Flip-Flop: RS-FF

A

B

X

Y

X = AY = A + Y ,
Y = BX = B + X

Assume we put A low:

X must be high, Y depends
on what B is.

Assume we put B low:

Y must be high, X depends
on what A is.

37



Sequential logic & one bit memory: �ip-�ops

The Reset-Set Flip-Flop: RS-FF

A

B

X

Y

X = AY = A + Y ,
Y = BX = B + X

Assume we put A low:

X must be high, Y depends
on what B is.

Assume we put B low:

Y must be high, X depends
on what A is.

38



Sequential logic & one bit memory: �ip-�ops

The Reset-Set Flip-Flop: RS-FF

A

B

X

Y

X = AY = A + Y ,
Y = BX = B + X

Assume we put A low:

X must be high, Y depends
on what B is.

Assume we put B low:

Y must be high, X depends
on what A is.

39



Sequential logic & one bit memory: �ip-�ops

The Reset-Set Flip-Flop: RS-FF

A

B

X

Y

X = AY = A + Y ,
Y = BX = B + X

Assume we put A and B HIGH. Two
possibilities:

X is high. This means Y has to be
LOW, which is �ne, because both
B and X are high
X is low. This means that Y has
to be HIGH.
X and Y can not both be LOW
(or HIGH) at the same time!

So the circuit is bi-stable. It
depends on the history whether X
is HIGH or LOW

40



Sequential logic & one bit memory: �ip-�ops

The Reset-Set Flip-Flop: RS-FF

A

B

X

Y

X = AY = A + Y ,
Y = BX = B + X

Assume we put A and B HIGH. Two
possibilities:

X is high. This means Y has to be
LOW, which is �ne, because both
B and X are high
X is low. This means that Y has
to be HIGH.
X and Y can not both be LOW
(or HIGH) at the same time!
So the circuit is bi-stable. It
depends on the history whether X
is HIGH or LOW

41



RS �ip �op function summarized

S̄

R̄

Q

Q̄

Normal state: S̄ and R̄ is high. Q and Q̄
stay constant.

Setting S̄ low sets the FF, so Q goes high

Setting R̄ low reset the FF, so Q goes low

Setting S̄ and R̄ low at the same time is a
forbidden state (Because then Q = Q̄)

42



Clocked �ip �ops: JK

Q

Q̄

J

K

clock

If clock is low, nothing happens

if clock is high,

J and K are low: nothing happens
J high: If Q is low, S goes low, Q
goes high, S goes high, then
nothing happens
K high: If Q is high, Q goes low,
then nothing happens
J and K are high: Q
toggles/oscillate

Two �xes:

Short clock high periods (e.g.
with a capacitor)
Master-slave con�g (two JK in
series, with inverted clock)

43



Most common �ip �op: D FF

Take a MS JK �ip �op. Rename J to D, and connect K to an
inverted D

D is the data line. On every clock edge, D is transferred to Q.
This is called latching.

Exist with �latching� on rising and/or falling edge.

44



Oscillators and clocks

We already talked about the NE555.

Many variants. Parameters to look out for:

Frequency stability
High-Low-ratio
Jitter: short term frequency oscillations
Can it drive all my chips?

Often combined with a quartz, which swings on its resonance
frequency

45



Adders: Half adder

We want to add two 1 bit numbers to get one 2 bit output

A B C(arry) L(SB)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

C = AB

L = A � B (xor)

46



Adders: Half adder

We want to add two 1 bit numbers to get one 2 bit output

A B C(arry) L(SB)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

C = AB

L = A � B (xor)

47



Adding more bits with Half Adders

Two two-bits to 3 bits:

HA

L

C

HA

L

C

HA

L

C

O1

O2

O3

A0

B0

A1

B1

Exercise: Build the truth table for this circuit!

48



Full adder

Truth table:

A B Ci Co L

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

49



Multiple bits with the Full adder

FA

CI

COA0

B0

O0

FA

CI

COA1

B1

O1

FA

CI

COA2

B2

O2

O3

Slowest path is carry, which has to ripple through all FAs.
Other name: Ripple carry adder RCA

50



Programmable logic: FPGAs

In addition to �xed function ICs, there exists programmable logic.
The most capable version of this are called FPGA: Field
Programmable Gate Arrays

Consists of many LUTs, look-up-tables. These are the
hardware realization of truth tables.

One can program these truth tables!

Additionally, one can program how these elements are
connected to each other

This is not the same as a CPU

51



From analog to digital: Analog to Digital Converters

We want to convert an analog signal into a binary number
proportional to the size of the signal.

We already now a simple ADC with 1 bit output! The discriminator!
There are many di�erent ways to built multi-bit ADCs:

Flash or direct conversion ADCs: Result in one clock

Successive approximation: Result in N clocks for n bits

Σ∆ ADCs: 1 bit with high oversampling. Slowest, but very
linear

52



From analog to digital: Analog to Digital Converters

We want to convert an analog signal into a binary number
proportional to the size of the signal.
We already now a simple ADC with 1 bit output! The discriminator!

There are many di�erent ways to built multi-bit ADCs:

Flash or direct conversion ADCs: Result in one clock

Successive approximation: Result in N clocks for n bits

Σ∆ ADCs: 1 bit with high oversampling. Slowest, but very
linear

53



From analog to digital: Analog to Digital Converters

We want to convert an analog signal into a binary number
proportional to the size of the signal.
We already now a simple ADC with 1 bit output! The discriminator!
There are many di�erent ways to built multi-bit ADCs:

Flash or direct conversion ADCs: Result in one clock

Successive approximation: Result in N clocks for n bits

Σ∆ ADCs: 1 bit with high oversampling. Slowest, but very
linear

54



Flash ADC

55



Digital Analog Converts: DACs

Simplest form: R-2R network:

A0

2R

2R
R

A1

2R

R

A2

2R

R

A3

2R

Vout

56



Digital Analog Converts: DACs

Simplest form: R-2R network:

R

−
+ VA0

/2
R

A1

2R

R

A2

2R

R

A3

2R

Vout

57



Digital Analog Converts: DACs

Simplest form: R-2R network:

R

−
+ VA0

/4 + VA1
/2
R

A2

2R

R

A3

2R

Vout

58



Digital Analog Converts: DACs

Simplest form: R-2R network:

R

−
+ VA0

/16 + VA1
/8 + VA2

/4 + VA3
/2

Vout

59


