PHY335 Spring 2022 Lecture 7

Digital logic

- Analog signals degenerate through noise.
- Replace continuous analog signal levels with only two, discrete levels (/windows/ranges)

Digital logic

- Analog signals degenerate through noise.
- Replace continuous analog signal levels with only two, discrete levels (/windows/ranges)
- These are called logic states
- HIGH vs. LOW (voltage level)
- TRUE vs. FALSE (Boolean logic)

Digital logic

- Analog signals degenerate through noise.
- Replace continuous analog signal levels with only two, discrete levels (/windows/ranges)
- These are called logic states
- HIGH vs. LOW (voltage level)
- TRUE vs. FALSE (Boolean logic)
- A system where HIGH represents TRUE is called active-high, a system where LOW represents TRUE is called active-low

Voltage ranges for HIGH and LOW

- Separate for input and output: Allows a bigger range for input than guarantees for the output.
- This gives noise immunity
- Classic: TTL (Transistor-Transistor-logic):
- Input: $<+0.8 \mathrm{~V}$ is low, $>+2.0 \mathrm{~V}$ is high (meaning that a TTL compatible device is allowed to transition from low to high anywhere between 0.8 and 2 V
- Output worst case: low +0.4 V , high +2.4 V
- So only 0.4 V worst-case voltage margin
- CMOS has better voltage-noise immunity (for same $V_{D D}$) and wider $V_{D D}$ range. Ranges for 5 V :
- Input: 0-1.5V low, 3.5 to 5 high
- Output: 0-0.05V low, 4.95 to 5 V high.

Logic families: the 74 xx series

- Originally $74 Y Y X X$, where $X X$ represents the code number for different functions.
- Series: YY
- Nothing: original TTL, 10 ns propagation delay, 25 MHz operation, 5 V
- $\mathrm{L}(\mathrm{S})$: Low power TTL: $33 \mathrm{~ns}, 3 \mathrm{MHz}, 1 / 10$ of power
- H: high speed TTL, $6 \mathrm{~ns}, 43 \mathrm{MHz}, 2.2 \times$ power
- F: Fast TTL, $3.5 \mathrm{~ns}, 100 \mathrm{MHz}$, but $1 / 2 \times$ power!
- HC(T): High speed CMOS, $9 \mathrm{~ns}, 50 \mathrm{MHz}, 1 / 20$ of power. T has TTL compatible voltage levels
- AC(T): Advanced CMOS, $3 \mathrm{~ns}, 125 \mathrm{MHz}, 1 / 20$ of power, typically 3.3 V or 5 V
There are also other logic series like the 4000 CMOS series

Other relevant logic codes

- ECL (Emitter-coupled-logic): ECL (negative power supply), PECL (positive supply) Less noise immunity, a lot of power required, but very very fast
- NIM logic (Nuclear Instrumentation Module): active-low!
- Many many CMOS variants with higher speed, lower power, lower $V_{C C}$ etc.

Combinatoric logic, simple logic gates \& logic simplification

Combinatorical logic is logic which only acts on the current state of signals. There is no history/memory.
(The delay between change of input and change of output is called the propagation delay)
We can build any function out of some standard building blocks! Represent the function in a table. Short hand: we can represent the logic state TRUE/FALSE with a binary digit, $1=$ TRUE, $0=$ FALSE

OR gate

$$
\begin{array}{ll|l}
A & \\
\\
A & B & Y \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array} \quad \circ Y=A+B
$$

AND gate

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

- $Y=A \cdot B=A B$

Inverter gate "NOT"

$$
\begin{aligned}
Y & =\bar{A}=/ A=* A= \\
A^{\prime} & =-A=\sim A=!A
\end{aligned}
$$

NOR gate

$$
\text { - } Y=\overline{A+B}
$$

NAND gate

XOR gate (exclusive or)

$$
\text { - } Y=A \otimes B=A^{\wedge} B
$$

- This is often used in cryptography:

$$
A \otimes B \otimes B=A
$$

De Morgan's Theorem

De Morgan's theorem:

$$
\begin{aligned}
& \overline{A \cdot B}=\bar{A}+\bar{B} \\
& \overline{A+B}=\bar{A} \cdot \bar{B}
\end{aligned}
$$

De Morgan's Theorem

De Morgan's theorem:

$$
\begin{aligned}
& \overline{A \cdot B}=\bar{A}+\bar{B} \\
& \overline{A+B}=\bar{A} \cdot \bar{B}
\end{aligned}
$$

This means that having inverters and one of OR / AND is enough to produce all logic functions!

De Morgan's Theorem

De Morgan's theorem:

$$
\begin{aligned}
& \overline{A \cdot B}=\bar{A}+\bar{B} \\
& \overline{A+B}=\bar{A} \cdot \bar{B}
\end{aligned}
$$

This means that having inverters and one of OR / AND is enough to produce all logic functions!
Since a NAND or NOR with both inputs tied together is an inverter, one can build all logic functions just with NAND or NOR gates!

Logic Identities

$$
\begin{array}{ll}
\circ A B C=(A B) C=A(B C) & \\
\circ A B=B A & \circ A+B=B+A \\
\circ A A=A & \circ A+1=1 \\
\circ A 1=A & \circ A+0=A \\
\circ A 0=0 & \circ \overline{1}=0 \\
\circ A(B+C)=A B+A C & \circ \overline{0}=1 \\
\circ A+A B=A & \circ A \bar{A}=0 \\
\circ A+B C=(A+B)(A+C) & \circ \overline{\bar{A}}=A
\end{array}
$$

From a truth table to a circuit

- For each line where the output is 1 , write an AND of all input variables, negate them if the truth table is 0 for them.

From a truth table to a circuit

- For each line where the output is 1 , write an AND of all input variables, negate them if the truth table is 0 for them.
- OR all terms.

From a truth table to a circuit

- For each line where the output is 1 , write an AND of all input variables, negate them if the truth table is 0 for them.
- OR all terms.
- Simplify, with an eye on what gates you have, and what signals you already have in your circuit

Example:

A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Example:

A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Example:

A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
& Y=(\bar{A} \bar{B} C)+(\bar{A} B \bar{C})+(\bar{A} B C)+(A B C) \\
& Y=\bar{A}(\bar{B} C+B \bar{C}+B C)+A B C
\end{aligned}
$$

Example:

A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
& Y=(\bar{A} \bar{B} C)+(\bar{A} B \bar{C})+(\bar{A} B C)+(A B C) \\
& Y=\bar{A}(\bar{B} C+B \bar{C}+B C)+A B C \\
& Y=\bar{A}(\bar{B} C+B)+A B C
\end{aligned}
$$

Example:

A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
& Y=(\bar{A} \bar{B} C)+(\bar{A} B \bar{C})+(\bar{A} B C)+(A B C) \\
& Y=\bar{A}(\bar{B} C+B \bar{C}+B C)+A B C \\
& Y=\bar{A}(\bar{B} C+B)+A B C \\
& Y=\bar{A}(B+C)+A B C
\end{aligned}
$$

Binary Numbers

- Represent integers in base 2 :

$$
\sigma_{10}=110_{2}=b 110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
$$

Binary Numbers

- Represent integers in base 2 :

$$
\sigma_{10}=110_{2}=b 110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
$$

- Each binary digit can be a signal
- An array of signal can represent an integer in a certain range

Binary Numbers

- Represent integers in base 2 :

$$
6_{10}=110_{2}=b 110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
$$

- Each binary digit can be a signal
- An array of signal can represent an integer in a certain range
- Common names:
- 1 bit: 1 signal
- Nibble: 4 bit
- Byte: 8 bit
- Word (architecture dependent, but often): 16 bit
- DWORD (double word) 32 bit
- Most significant bit (MSB): Highest valued bit
- Least significant bit (LSB): bit with value 1
- Often use hexadecimal: 1 hexadecimal digit ($0-9, A-F$) maps directly to a nibble. $0 \times F F=255=0 b 11111111$

Examples

- $0 \times \mathrm{A}=$?

Examples

- $0 \times A=?=10$

Examples

- $0 x A=?=10=0 b 1010$
$0 \mathrm{~b} 1110=$?

Examples

- $0 x A=?=10=0 b 1010$
$0 \mathrm{~b} 1110=$? $=14$

Examples

- $0 x A=?=10=0 b 1010$
- $0 b 1110=?=14=0 x E$
- Ob1111 $111111111111=0 x f f f f=2^{16}-1=65535$

Negative numbers in binary

- Sign-magnitude: one bit for sign, remaining bits for magnitude
- Offset binary: $0 b 1000=0,0 b 1001=1,0 b 0111=-1$
- 2's complement: $0 b 0111=7,0 b 0000=0$, $0 b 1111=-1,0 b 1000=-8$
Often 2's complement is used often because it simplifies arithmetic and has no doubled zero.

Sequential logic \& one bit memory: flip-flops

The Reset-Set Flip-Flop: RS-FF

Sequential logic \& one bit memory: flip-flops

The Reset-Set Flip-Flop: RS-FF

$$
\begin{aligned}
X & =\overline{A Y}=\bar{A}+\bar{Y} \\
Y & =\overline{B X}=\bar{B}+\bar{X}
\end{aligned}
$$

Sequential logic \& one bit memory: flip-flops

The Reset-Set Flip-Flop: RS-FF

- $\begin{aligned} X & =\overline{A Y}=\bar{A}+\bar{Y}, \\ Y & =\overline{B X}=\bar{B}+\bar{X}\end{aligned}$
- Assume we put A low:
- X must be high, Y depends on what B is.

Sequential logic \& one bit memory: flip-flops

The Reset-Set Flip-Flop: RS-FF

- $\begin{aligned} X & =\overline{A Y}=\bar{A}+\bar{Y}, \\ Y & =\overline{B X}=\bar{B}+\bar{X}\end{aligned}$
- Assume we put A low:
- X must be high, Y depends on what B is.
- Assume we put B low:
- Y must be high, X depends on what A is.

Sequential logic \& one bit memory: flip-flops

The Reset-Set Flip-Flop: RS-FF

- $X=\overline{A Y}=\bar{A}+\bar{Y}$,

$$
Y=\overline{B X}=\bar{B}+\bar{X}
$$

- Assume we put A and B HIGH. Two possibilities:
- X is high. This means Y has to be LOW, which is fine, because both B and X are high
- X is low. This means that Y has to be HIGH.
- X and Y can not both be LOW (or HIGH) at the same time!

Sequential logic \& one bit memory: flip-flops

The Reset-Set Flip-Flop: RS-FF

- $X=\overline{A Y}=\bar{A}+\bar{Y}$, $Y=\overline{B X}=\bar{B}+\bar{X}$
- Assume we put A and B HIGH. Two possibilities:
- X is high. This means Y has to be LOW, which is fine, because both B and X are high
- X is low. This means that Y has to be HIGH.
- X and Y can not both be LOW (or HIGH) at the same time!
- So the circuit is bi-stable. It depends on the history whether X is HIGH or LOW

RS flip flop function summarized

- Normal state: \bar{S} and \bar{R} is high. Q and \bar{Q} stay constant.
- Setting \bar{S} low sets the FF, so Q goes high
- Setting \bar{R} low reset the FF, so Q goes low
- Setting \bar{S} and \bar{R} low at the same time is a forbidden state (Because then $Q=\bar{Q}$)

Clocked flip flops: JK

- If clock is low, nothing happens
- if clock is high,
- J and K are low: nothing happens

- J high: If Q is low, S goes low, Q goes high, S goes high, then nothing happens
- K high: If Q is high, Q goes low, then nothing happens
- J and K are high: Q toggles/oscillate
- Two fixes:
- Short clock high periods (e.g. with a capacitor)
- Master-slave config (two JK in series, with inverted clock)

Most common flip flop: D FF

- Take a MS JK flip flop. Rename J to D, and connect K to an inverted D
- D is the data line. On every clock edge, D is transferred to Q. This is called latching.
- Exist with "latching" on rising and/or falling edge.

Oscillators and clocks

- We already talked about the NE555.
- Many variants. Parameters to look out for:
- Frequency stability
- High-Low-ratio
- Jitter: short term frequency oscillations
- Can it drive all my chips?
- Often combined with a quartz, which swings on its resonance frequency

Adders: Half adder

We want to add two 1 bit numbers to get one 2 bit output

A	B	C (arry)	$\mathrm{L}(\mathrm{SB})$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Adders: Half adder

We want to add two 1 bit numbers to get one 2 bit output

A	B	C (arry)	$\mathrm{L}(\mathrm{SB})$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- $C=A B$
- $L=A \otimes B$ (xor)

Adding more bits with Half Adders

Two two-bits to 3 bits:

Exercise: Build the truth table for this circuit!

Full adder

Truth table:

A	B	C_{i}	C_{o}	L
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Multiple bits with the Full adder

- Slowest path is carry, which has to ripple through all FAs. Other name: Ripple carry adder RCA

Programmable logic: FPGAs

In addition to fixed function ICs, there exists programmable logic.
The most capable version of this are called FPGA: Field Programmable Gate Arrays

- Consists of many LUTs, look-up-tables. These are the hardware realization of truth tables.
- One can program these truth tables!
- Additionally, one can program how these elements are connected to each other
- This is not the same as a CPU

From analog to digital: Analog to Digital Converters

We want to convert an analog signal into a binary number proportional to the size of the signal.

From analog to digital: Analog to Digital Converters

We want to convert an analog signal into a binary number proportional to the size of the signal.
We already now a simple ADC with 1 bit output! The discriminator!

From analog to digital: Analog to Digital Converters

We want to convert an analog signal into a binary number proportional to the size of the signal.
We already now a simple ADC with 1 bit output! The discriminator!
There are many different ways to built multi-bit ADCs:

- Flash or direct conversion ADCs: Result in one clock
- Successive approximation: Result in N clocks for n bits
- $\Sigma \triangle$ ADCs: 1 bit with high oversampling. Slowest, but very linear

Flash ADC

Digital Analog Converts: DACs

Simplest form: R-2R network:

Digital Analog Converts: DACs

Simplest form: R-2R network:

Digital Analog Converts: DACs

Simplest form: R-2R network:

Digital Analog Converts: DACs

Simplest form: R-2R network:

