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Application of Matched Statistical Filters for
EarthCARE Cloud Doppler Products

Ousmane O. Sy, Simone Tanelli, Pavlos Kollias, and Yuichi Ohno

Abstract—This paper presents a method for filtering the ran-
dom noise that affects spaceborne Doppler measurements of at-
mospheric velocities. The proposed method hinges on adaptive
low-pass filters that apply to the measured pulse-pair correlation
function. The parameters of the filters are found by optimizing
the statistics of the velocity residue of the filter. The method is
illustrated by simulations of the cloud-profiling radar of the fu-
ture Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)
mission of the European Space Agency and the Japanese Space
Exploration Agency. These simulations, which do not include
strong convection, show the higher performance of the filters
when compared with the traditional increase of the along-track
integration length. The results obtained with the filters show that
velocity accuracies of 0.48, 0.42, and 0.39 m · s−1 are achievable
at PRF = {6.1, 7, 7.5} kHz, respectively, while preserving the
initial 500-m sampling of the measured EarthCARE data. These
results also show the potential benefits of avoiding excessive along-
track integration, for postprocessing tasks such as dealiasing or
the retrieval of the vertical distribution of the atmospheric velocity
(e.g., longer than 5 km for cases consistent with the climatologies
represented in this data set).

Index Terms—Entropy, matched filters, pulse Doppler radar,
random noise, spaceborne radar.

I. INTRODUCTION

THE launch in 2016 of the Earth Cloud, Aerosol and
Radiation Explorer (EarthCARE) mission will put in orbit

the first spaceborne W-band (94 GHz) radar with Doppler
capability. The EarthCARE cloud profiling radar (CPR), hence-
forth denoted EC-CPR, will observe cloud and precipitation
processes in the atmosphere by measuring their reflectivity
and mean vertical velocity on a global scale. The EarthCARE
measurements will serve both operational and research pur-
poses by enabling the distinction between stratiform and con-
vective scenes, by quantifying energy and heat transfers, or
by improving the microphysical characterization of clouds and
precipitation [1].
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TABLE I
CHARACTERISTICS OF THE EARTHCARE CPR [21]

Given the configuration of EarthCARE, which is detailed
in Table I, the CPR will have to overcome various challenges
to accurately measure Doppler velocities using a pulse-pair
(PP) estimator [2]. Due to the low-Earth orbit of EarthCARE,
the large projected instantaneous velocity of the spacecraft
(VSAT = 7.2 km · s−1) will act as shear and broaden the
Doppler spectrum perceived from the spacecraft. This will
induce a temporal decorrelation of the received radar signal,
which, in turn, will increase the amplitude of random fluc-
tuations in the PP velocity estimate [1], [3]. The spectral
broadening also enhances nonuniform beam-filling (NUBF)
biases in the measured velocity [4], [5]. Furthermore, aliasing
and multiple-scattering issues, unavoidable in regions of high
precipitation or convection, and hardware-induced drifts and
platform-motion biases will increase the uncertainty of the
mean Doppler velocity estimates [3], [6].

Until the launch of EarthCARE, numerical simulations are
the only means to investigate the performance of EC-CPR.
These simulations can be done starting from either numerical
products of cloud-resolving models or from actual W-band
Doppler measurements acquired from a ground-based or air-
borne platform. Following this principle, various methods have
been proposed to detect and correct for multiple-scattering
problems [7], NUBF errors [4], [5], aliasing [8], pointing inac-
curacies [6], or random-fluctuation problems [9]. Focusing on
the latter, the common solution consists in performing a longer
onboard integration of the radar echoes, i.e., increasing the
number of radar pulses that are used in the PP estimation of the
Doppler reflectivity and velocity [3]. Due to the correlation that
exists between radar returns, the reduction in the variance of the
velocity estimate is generally smaller than the theoretical vari-
ance reduction achievable by integrating mutually statistically
independent radar pulses [10]. However, the longer integration
comes at the cost of a coarser spatial sampling of the final radar
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product, which raises the issue of the representativeness and
practical usefulness of the integrated data [9].

The aim of this paper is to address the issue of the random
fluctuations of the measured mean Doppler velocity, whereas
the NUBF and aliasing were addressed in [8]. Instead of the
traditional constant integration, we propose to apply an adaptive
low-pass filter to the Fourier spectrum of the pulse-to-pulse
correlation function, from which the filtered mean velocity
is deduced by PP processing. Working with the spectrum of
the correlation function circumvents possible aliasing problems
that occur when using the mean velocity. The characteristics of
the optimal filter are obtained by applying various optimization
schemes to the statistical parameters of the filtered velocity field.

First, to highlight the potential of the filtering approach, we
begin by assuming that the true velocity field is known. As a
result, the optimal filter can be identified as the one that mini-
mizes the root-mean-square (RMS) error between the measured
velocity and the true velocity. In a second stage, more practical
approaches are proposed, which only rely on the measured
velocity and on the velocity residue, i.e., the difference between
the prefiltering and filtered velocity fields, both of which are
available in operational conditions. The first filter of this type
is one that maximizes the entropy of the residue, following a
statistical or thermodynamic rationale. As an alternative, a con-
structive approach is proposed, which seeks the optimal filter
as the one that leads to the statistical independence between
the prefiltering and filtered velocity errors. This scheme then
leads to target values for the probability distribution of the
velocity residue. These target values are analytically estimated
by simulating a Doppler spectrum centered about 0 m · s−1 and
with a width consistent with the characteristics of EC-CPR.

The outline of this paper is as follows. Section II presents
the general method used to simulate EarthCARE Doppler data
using high-resolution measurements obtained either from a
ground-based or an airborne instrument. The traditional on-
board integration method is then discussed in Section III,
where its shortcomings are illustrated through the example of a
snowstorm event recorded in Wakasa Bay, Japan, in 2003. Next,
the filtering process that we propose is explained in Section IV,
where the optimization of the filter parameters is also outlined.
Section V then provides results obtained for the snowstorm case
of Wakasa Bay, in Section V-A, and general statistics drawn
from the analysis of a large set of EC-CPR simulations, in
Section V-B.

II. SPACEBORNE DOPPLER SIMULATIONS

USING HIGH-RESOLUTION DATA

Due to the absence of actual spaceborne Doppler measure-
ments, the products of EC-CPR are simulated using nonspace-
borne Doppler data. The broad lines of the simulation method,
which is explained in extenso in [8], are recalled here. Owing to
the nonscanning character of EC-CPR and its small beamwidth,
the configuration is parametrized in the orbital plane where any
point M(x, h) is referenced by its along-track coordinate x and
its height h above the ground [3]. For instance, the spacecraft
is assumed to be located at the point MSAT(xSAT, hSAT), as
shown in Fig. 1.

Fig. 1. Instantaneous configuration: EC-CPR located at MSAT(xSAT,
hSAT), resolution volume V(ME) centered around ME(xE, hE) and con-
taining points M IN(xIN, hIN), where the Doppler data (ZIN, μIN, σIN)
(M IN) are known.

The input data consist of measurements of reflectivity fac-
tors ZIN, mean vertical velocities μIN, and spectral widths
σIN. These measurements are acquired by ground-based and
airborne radars operating at the same frequency as EC-CPR,
i.e., ∼95 GHz, but at a higher spatial resolution than EC-CPR.
Using these data, the Doppler power spectrum PIN of each
elementary volume is approximated by a Gaussian.

Given a point ME(xE, hE), where xE = xSAT, and hE is
the height of a range gate of EC-CPR, the volume of resolution
about ME has horizontal and vertical dimensions given by the
supports X and H of the two-way antenna pattern fX and the
range-weighting function fH, respectively.

To obtain a reference against which EC-CPR simulations can
be compared, the input Doppler spectra are averaged using fX
and fH as follows:

PTRUE(ME, v) =

∫
H

ωH(hIN − hE)

∫
X

ωX(xIN − xE)

×PIN(xIN, hIN, v)dxIN dhIN (1)

where the normalized weighting functions ωX and ωH are
defined as

ωX(x) =
fX(x)∫

X
fX(x′) dx′ for any x ∈ X

ωH(h) =
fH(h)∫

H
fH(h′) dh′ for any h ∈ H. (2)

The zeroth- and first-order moments of PTRUE are the reflec-
tivity factor ZTRUE and the mean velocity μTRUE, which are
taken as the truth.

The actual Doppler spectrum PE, as seen by EC-CPR, is ob-
tained by shifting the mean of the input spectra by the projection
of the spacecraft velocity vector V SAT across the footprint and
then summing these shifted spectra according to the antenna
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weighting functions as in (1). The resulting Doppler power
spectrum PE includes the effect of the spacecraft-induced
spectral broadening [11], as well as NUBF velocity biases
when the reflectivity is not symmetrically distributed within
the resolution volume [4]. Although PIN is approximated by a
Gaussian, similarly to what is done in kernel density estimation
[12], the composite spectra PTRUE and PE will have any
arbitrary shapes allowed by (1), not necessarily a Gaussian
shape. Next, a stochastic Fourier method [13] is applied to PE

to derive the time series of complex-voltage samples ((I,Q)
samples). The resulting stochastic (I,Q) samples, which are
denoted {VME

(k Ts), for k = 1, . . . , Npulse}, are sampled at
the rate of the PRF 1/TS and include the effects of the random
distribution of the atmospheric scatterers, the finite PRF, and
the vertical oversampling of EC-CPR [8].

The single-burst PP estimates of the reflectivity, i.e., ZPP,1,
and of the mean velocity, i.e., μPP,1, read

ZPP,1(ME) =

Npulse∑
�=1

|VME
(�Ts)|2 (3)

μPP,1(ME) =
VNyq

π
arg [KPP,1(ME)] (4)

where VNyq = λ/(4TS) is the Nyquist velocity, λ is the wave-
length of EC-CPR, and KPP,1 is the lag-1 correlation function
given by

KPP,1(ME) =

Npulse−1∑
�=1

V ∗
ME

[�Ts]× VME
[(�+ 1)Ts] (5)

with V ∗
ME

being the complex conjugate of VME
.

To mitigate the effects of the random noise on the EC-CPR
Doppler products, contiguous burst groups are integrated along
track, on a range-bin-by-range-bin basis. In doing so, Ngap = 2
“silent” pulses are included between consecutive bursts of
(I,Q) samples. Assuming that Ninteg consecutive burst groups
are integrated, the resulting Doppler moments are computed
using NintegNpulse voltage samples in the PP formulas (3)–(5).
The thus obtained PP estimates of the reflectivity and mean
velocity are denoted ZPP and μPP, respectively. As a result,
the variances of ZPP and μPP are reduced by a factor Ninteg,
in the best case, i.e., if the bursts are mutually statistically in-
dependent. The tradeoff for the reduced uncertainty of ZPP and
μPP is a Ninteg times coarser horizontal sampling. On board
EC-CPR, a 500-m integration will be performed to produce the
“level-1B” Doppler data. This amounts to integrating approxi-
mately 18 (22) burst groups at PRF=6.1 kHz(PRF=7.5 kHz).

III. ACCURACY OF THE EC-CPR MEAN VELOCITY

By neglecting hardware-induced or platform stability er-
rors, the mean velocity estimate μPP is mainly affected by
aliasing, NUBF, and random-fluctuation errors (discussed in
Section II), as well as multiple scattering.

The aliasing errors are caused by the function arg(·) in (4),
which limits the value of μPP to the range [−VNyq,+VNyq].
Owing to the organized spatial patterns in which aliasing errors
appear, μPP can be unwrapped using a near-neighbor dealiasing
logic [10]. However, with EC-CPR Doppler measurements, the

random noise is generally spatially uncorrelated (or it has a
correlation length that is shorter than the spatial sampling of the
PP data), and it can therefore produce large variations of μPP

over a short distance [8]. Due to these large random errors of
μPP (given the operational parameters), Doppler folding should
be expected not only when the Doppler velocities exceed the
Nyquist boundaries but also due to the random noise. This is
expected to make the application of traditional near-neighbor
unfolding algorithms challenging. Alternative methods include
mapping techniques [14] or educated dealiasing algorithms if
a reference velocity map is available, e.g., through a different
channel or instrument.

The NUBF velocity errors are caused by inhomogeneities of
the reflectivity in the along-track direction within the resolution
volume of the CPR. These errors can be efficiently corrected
for using their correlation to the along-track gradient of ZPP

[4], [8]. The correction is all the more efficient as the horizontal
sampling of ZPP is finer to be representative of the subbeam
variations. However, this requirement of a finer along-track
sampling partly contradicts the principle of a longer along-track
integration to reduce the random noise. In the particular case of
EC-CPR, since the level 1B data are sampled every 500 m, the
along-track gradient can be computed by central finite differ-
ences over a 1-km baseline, which is very close to the length
of the projected 3-dB antenna pattern, i.e., ∼800 m. Therefore,
depending on the severity of the NUBF biases, the gradient-
based correction will only overcome NUBF errors partially.

Where multiple scattering affects the radar return, both the
reflectivity and the mean Doppler velocity lose their direct con-
nection to the single-scattering interpretation [7], [15]. Depend-
ing on the severity of the multiple-scattering contamination,
the corresponding errors can significantly reduce the portion of
usable radar profile. Multiple scattering is expected to be par-
ticularly significant in deep convection and heavy precipitation,
which are extreme regimes not analyzed in this paper.

Once other errors have been accounted for, the residual
velocity error is due to the random noise and to the finite radar
sampling. Just as in ground-based Doppler weather radars,
this noise is caused by the loss of phase coherence between
consecutive (I,Q) samples, which stems from the relative
motion of the hydrometeors included in the radar volume of
resolution, and from thermal noise. Moreover, the large instan-
taneous speed of the spacecraft induces spectral broadening,
which further decorrelates the consecutive radar returns [3].
The common solution to this problem consists in increasing
the integration time. For instance, the “level-2” products of EC-
CPR will be obtained by integrating over 1 and 10 km [16].

A. Illustration of the Effects of a Longer
Along-Track Integration

To illustrate the effects of the along-track integration on the
accuracy of the Doppler data, we consider EC-CPR simula-
tions performed using airborne measurements recorded by the
W-band SPIDER radar of the National Institute of Information
and Communications Technology (NICT), in Japan [17]. The
spaceborne Doppler products are simulated by approximating
the two-way antenna pattern as a Gaussian pencil beam [3]
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Fig. 2. Snowstorm measured by SPIDER: true reflectivity ZTRUE averaged at the (top row) EarthCARE resolution, (second row) realistic reflectivity ZPP

estimated by PP processing, (third row) true mean velocity μTRUE averaged at the EarthCARE resolution, and (bottom row) realistic mean velocity μPP

estimated by PP processing.

and for PRF = 7 kHz, which is an intermediate value between
the limit values of EC-CPR’s PRF, viz., PRF = 6.1 kHz and
PRF = 7.5 kHz. The event displayed in Fig. 2 corresponds to
a snowstorm measured by SPIDER on January 29, 2003. This
test case involves large spatial variations of the reflectivity and
the mean velocity.

As expected from EC-CPR’s specifications, the measured
reflectivity ZPP is very accurate (RMS error of ∼0.3 dB
for SNR ≥ 6). The PP estimated velocity μPP displayed in
Fig. 2 (row 4) is corrected for NUBF as in [8]. Despite the
random fluctuations, μPP captures the features of μTRUE,
such as the localized convective areas located around x ∈
{90, 105, 120, 140, 208} km. The well-known dependence on
SNR [2] is particularly evident in regions with negative SNR
(i.e., below −21.5 dBZ for EC-CPR), where μPP estimates as-
sume almost a uniform distribution within the Nyquist interval.
However, the random fluctuations of the PP estimate are also
clearly visible at the surface where μPP has nonvanishing val-
ues, although |μTRUE| ∼ 0 m · s−1 and SNR � 0 dB. Prior to
any velocity filtering, the RMS velocity error is σPRE = 1.38,
1.27, and 1.19 m · s−1 for SNR ≥ 1.5, SNR ≥ 6, and SNR ≥
16.5 (corresponding to ZPP ≥ −20 dBZ, ZPP ≥ −15.5 dBZ,
and ZPP ≥ −5 dBZ), respectively.

The error reduction achieved by a longer along-track integra-
tion is illustrated in Fig. 3 for integration lengths of 1, 5, and

10 km. As expected, increasing the integration length reduces
the amplitude of the random fluctuations in μPP. This improve-
ment can be quantified in the RMS sense by comparing the
integrated μPP to the average of μTRUE at the same integrated
horizontal spacing, as shown in Table II. The gain in accuracy
is slightly smaller than the hypothetical improvement expected
when independent profiles are integrated, i.e., an RMS error
reduction by a factor

√
Ninteg [2].

However, Fig. 3 also shows how an excessive integration can
lead to the loss of fine-scale information initially present in
μTRUE. This can be quantified by comparing the integrated μPP

to the true velocity μTRUE at the original level-1B sampling of
500 m. To measure this effect, the integrated velocity μPP is
first interpolated down to the 500-m sampling.

The results obtained after near-neighbor and linear interpo-
lation are shown in Table II. While the linear interpolation
produces slightly more accurate results than the near-neighbor
interpolation, particularly for the 1-km data, the improvement
in performance is minor. Furthermore, excessively integrated
data, e.g., over lengths larger than 5 km, fail to capture the
dynamic of the true signal μTRUE, hence the RMS error of
∼0.95 m · s−1, which is mainly due to the dynamic or energy
of μTRUE that was eliminated by filtering. It is evident, for
example, how the four convective cells have almost entirely
disappeared from these excessively integrated velocities.



SY et al.: APPLICATION OF MATCHED STATISTICAL FILTERS FOR EARTHCARE CLOUD DOPPLER PRODUCTS 7301

Fig. 3. Snowstorm measured by SPIDER: effect of a longer along-track integration on the (left) PP velocity and (right) its error for SNR ≥ 6. Results are shown
for the (first row) reference velocity μTRUE, the (second row) level-1B PP velocity μPP, and longer along-track integrations, viz., (third row) 1 km, (fourth row)
5 km, and (fifth row) 10 km.

TABLE II
EFFECT OF A LONGER ALONG-TRACK INTEGRATION ON THE ACCURACY OF μPP FOR SNR ≥ 6: RMS ERROR BETWEEN THE

INTEGRATED μPP AND THE HORIZONTALLY AVERAGED μTRUE (SECOND AND THIRD COLUMNS); RMS ERROR BETWEEN

THE INTEGRATED μPP INTERPOLATED TO THE LEVEL-1B AND THE LEVEL-1B μTRUE (FOURTH AND FIFTH COLUMNS)

IV. ADAPTIVE LOW-PASS FILTERING

A. Spectrum of the Pulse Pair Correlation Function

The along-track integration performed by EC-CPR to obtain
the profiles of vertical velocity is now analyzed in the spectral
domain. To begin with, we consider the correlation function
KPP of level-1B PP, which is defined in (5). Starting the reason-
ing with the correlation function has the advantage of avoiding
aliasing issues. At this stage, we also assume that NUBF

errors have been corrected by using, for instance, a reflectivity
gradient method, i.e.,

K(xE, hE)=KPP(xE, hE)exp

[
−jπ

κNUBF∇xZPP(xE, hE)

VNyq

]
(6)

where κNUBF is chosen as κNUBF = 0.195 m · s−1 · (dB ·
km−1)−1 [8].
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Fig. 4. Snowstorm measured by SPIDER: amplitudes of (top left) KTRUE and (bottom left) K and amplitudes of the Fourier transforms (top right) KTRUE

and (bottom right) |K| at the range gates h = 2 km and h = 4 km. The (top right) low-pass filter Lα=3,β=2 and the (bottom right) “sinc” filters corresponding
to 1 and 10 km along-track integrations are also plotted.

We first consider a data set comprising NX radar profiles
spaced every ΔX = 500 m along track and NH range gates
spaced every ΔH = 100 m.

Let K denote the along-track Fourier transform of K, i.e.,

K(f, hE) =

∫
R

e−j2πfxEK(xE, hE) dxE ∀f ∈ R. (7)

The discrete sampling of K implies that K is available over
the bandwidth [−(2ΔX)

−1, (2ΔX)
−1] and sampled at the rate

Δf = (NXΔX)
−1. Since K is complex valued, K will gener-

ally be nonsymmetrical with respect to the origin f = 0 km−1.
As an example, the amplitude of the PP correlation function

K is shown in Fig. 4 for the snowstorm case discussed in
Section III-A. To serve as a reference, the PP correlation func-
tion KTRUE of the true signal, i.e., unaffected by the spacecraft-
induced spectral broadening, is also plotted. The weakness of
|K| compared with |KTRUE| is due to the temporal decorrela-
tion between consecutive EC-CPR voltage samples. In Fig. 4,
a comparison between |KTRUE| and |K|, which are plotted
for the range gates h=2 km and h=4 km, illustrates the
spectral impact of the Doppler broadening: while |KTRUE| is
a slowly decaying function of |f | with a clearly defined mode
in the low |f | region, instead, the random fluctuations and the
spacecraft-induced spectral broadening whiten the spectrum K,

thereby reducing the SNR to levels close to zero, even in the low-
frequency regions. To overcome this issue, a rectifying or match-
ing filter needs to be applied to restore the shape of the spectrum.

An along-track integration of the level-1B data by a factor
Ninteg is equivalent to a uniform horizontal averaging of the
500-m profiles over a distance of Ninteg × 500 m. Translated in
the spectral domain, the averaging amounts to multiplying the
spectrum K by a cardinal sine (“sinc”-in-frequency) function.
The amplitudes of the sinc filters associated with 1- and 10-km
integrations are plotted in Fig. 4 (bottom right). As the inte-
gration length increases, the corresponding sinc filter alters the
initial shape of K, particularly its tails. Moreover, if the inte-
grated data are downsampled to an Ninteg × 500 m spacing, this
amounts to truncating the spectrum K to the frequency range
[−(2NintegΔX)

−1, (2NintegΔX)
−1] km−1. While one expects

the random noise to dominate the high-frequency regions of
the spectrum, these spectral bands generally contain useful
information about the fine spatial features of the atmospheric
scene being observed. Instead, by applying a low-pass filter
with a smoother decay toward higher frequencies, similar to the
filter Lα=3,β=2 defined in (8) and plotted in Fig. 4 (top right),
one has a better chance of identifying the filter that matches the
received data [18]. This matched filter increases the SNR of the
measured signal while preserving the tails of the spectrum and
the potential information therein.
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Fig. 5. Examples of filters Lα,β for α ∈ {10−2, 1, 10, 103} km and β ∈ {0.5, 1, 2, 3}.

B. Filtering Process

As an alternative to the traditional integration, we propose to
apply an adaptive low-pass filter to K that matches better the
spectral signature of the desired signal. The transfer function
Lα,β of the filter is defined as

Lα,β(f) =
1

1 + |αf |β ∀ f ∈ R (8)

where α ∈ A and β ∈ B, with A and B given subdomains
of (0,∞). Although Lα,β is symmetrical with respect to f =
0 km−1, its general expression covers a broad range of filter
shapes, as illustrated in Fig. 5.

Increasing the filter constant α narrows the bandwidth of the
filters, as can be seen by comparing L0.01,0.5 and L10,0.5. On
the other hand, increasing the order β steepens the slopes of the
filter, as demonstrated by L10,0.5 and L10,3. However, unlike a
truncation, these filters preserve the tails of the spectrum while
enhancing the low-frequency portion of the spectrum, as can be
seen for (α = 3, β = 2) in Fig. 4.

The filtered spectrum Kα,β and its inverse Fourier transform
Kα,β are then expressed as

Kα,β(f, hE) =Lα,β(f)K(f, hE) (9)

Kα,β(xE, hE) =
1

2π

∫
R

ej2πfxEKα,β(f, hE)df. (10)

Finally, the filtered mean Doppler velocity μα,β is obtained
through PP processing of Kα,β , i.e.,

μα,β(xE, hE) = VNyq
arg [Kα,β(xE, hE)]

π
. (11)

The general steps described here to compute the filtered veloc-
ity μα,β are schematically summarized in Fig. 6, where they
constitute the so-called “Process 1.”

C. Optimal Filter Selection

The difficulty in the selection of the optimal filter is to
identify the value of (α, β) in A× B that produces the most
accurate μα,β , with respect to the reference μTRUE that is
generally unknown. To begin with, in Section IV-C1, we as-
sume the knowledge of μTRUE and derive an optimal filter
that demonstrates the best performance achievable through
the filtering approach. In Section IV-C2, we propose an un-
constrained optimization criterion that is based only on the
available observables. Finally, in Section IV-C3, a filter based
on constrained optimization is introduced.

1) Error-Based Optimization: In the hypothetical scenario
where the reference velocity μTRUE is available, the velocity
error εα,β = μα,β − μTRUE can be computed. This error will
partly consist of aliasing effects affecting the PP estimation
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Fig. 6. Summary of the filtering approach: Process 1 describes the evaluation
of the filtered velocity μα,β , whereas the rest of the diagram shows the
optimization of statistics of the velocity error Eα,β or residue Rα,β .

of μα,β . To focus on the aliasing-free component of εα,β , the
velocity error is defined as

Eα,β =μα,β − μTRUE mod (2VNyq)

=
VNyq

π
arg

[
exp

(
jπ

μα,β − μTRUE

VNyq

)]
(12)

where mod(·) denotes the modulo operator. The optimal filter
can be then sought by determining the value of (α, β) that

minimizes the RMS error σ[Eα,β ] =
√

IE[E2
α,β ]− |IE[Eα,β ]|2.

The expectation operator IE[·] is defined as

IE[Eα,β ] =
1

Npixels

Npixels∑
k=1

Eα,β(xk, hk) (13)

with Npixels the number of pixels from the scene that are
used to compute the statistics. For instance, with a data set
comprising NX vertical profiles and NH range bins, if all points
are used, then Npixels = NXNH. Otherwise, if, e.g., only the
points where the SNR is larger than a threshold SNR0 are used,
then Npixels ≤ NXNH.

Thus, the optimal “error variance minimizing” (EVM) filter
is characterized by

(αEVM, βEVM) = argmin
(α,β)∈A×B

σ2[Eα,β ]. (14)

2) Unconstrained Residue-Based Optimization—Maximum
Entropy Filter: While the EVM filter is optimal in terms of
RMS error reduction, it cannot be obtained in general due to the
unavailability of μTRUE. On the contrary, the velocity residue
Rα,β of the filter is a variable that can be computed in practice
given its definition as

Rα,β = μPP − μα,β mod (2VNyq). (15)

Similarly to (12), this definition circumvents potential aliasing
errors. The objective is to identify statistical measures of Rα,β ,
the optimization of which is consistent with a minimization
of σ2[Eα,β ].

First, an unconstrained filter is developed according to the
heuristic argument that the true radar signal μTRUE is spatially
organized by the morphology of the physical atmospheric pro-
cess that is being observed, whereas the random velocity noise
should be a “disorganized” stochastic signal. Hence, when
filtering μPP, if the filter eliminates some meaningful features
from the velocity field, these organized features will appear
in Rα,β and therefore reduce the level of disorganization of
Rα,β . This rationale can be formalized by quantifying the level
of organization of Rα,β through Shannon’s entropy, which is
defined as

S[Rα,β ] = −
∫

[−VNyq,VNyq]

fRα,β
(r) ln

[
fRα,β

(r)
]
dr (16)

where fRα,β
is the probability density function (pdf) of Rα,β

obtained by sorting the samples of Rα,β [19]. Thus, the optimal
filter is sought as the one that produces the “least organized”
residue, i.e., as a “residue entropy maximizing” (REM) filter
characterized by

(αREM, βREM) = argmin
(α,β)∈A×B

S[Rα,β ]. (17)

Compared with the EVM filter, the REM filter may be subopti-
mal in terms of RMS error reduction. Indeed, given the choices
made in the filtering, e.g., the use of the same filter for all range
bins, situations can arise where the RMS error reduction is only
feasible at the expense of losing some organized spatial features
from the radar data, which, once in the velocity residue, will re-
duce the value of the entropy. However, as a corollary, the REM
filter should be very efficient at preserving the morphology of
the velocity field.

3) Constrained Residue-Based Optimization—Minimum
Variance Filter: The RMS error σ2[Eα,β ] cannot be minimized
by optimizing σ2[Rα,β ] without constraints. This can be seen
by expressing Rα,β as a function of Eα,β and the prefiltering
velocity error EPRE = μPP − μTRUE as follows:

Rα,β = EPRE − Eα,β mod (2VNyq). (18)

Thus, the variance of Rα,β reads

σ2[Rα,β ] = σ2[EPRE] + σ2[Eα,β ]− 2 Cov[EPREEα,β ] (19)

where Cov[EPREEα,β ]=IE[EPREEα,β ]−IE[EPRE]IE[Eα,β ].
In the right-hand side of (19), σ2[EPRE] is the variance of
the prefiltering-velocity error and is therefore independent from
(α, β). The difficulties stem from the term Cov[EPREEα,β ] as
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it involves the filtered velocity error, which depends on (α, β).
Hence, it is not easy to relate a minimum of σ2[Eα,β ] to a
minimum or a maximum of σ2[Rα,β ], unless Cov[EPREEα,β ]
vanishes. This occurs when 1) the filtering is perfect, i.e.,
|Eα,β | ∼0 m · s−1, which is a very optimistic assumption to
make a priori about the performance of the filter, or when
2) EPRE and Eα,β are mutually statistically uncorrelated or
independent, which is not necessarily true for every (α, β) and
therefore amounts to constraining the optimization algorithm.

To eliminate the statistical coupling between Eα,β and
EPRE, one can restrict the domains A and B of α and β to
the subset I ⊂ A× B that leads to a Eα,β that is statistically
independent from EPRE. Hence, for any (α, β) ∈ I

σ2[Rα,β ] = σ2[EPRE] + σ2[Eα,β ] (20)

and minimizing σ2[Rα,β ] is equivalent to minimizing σ2[Eα,β ].
Therefore, the optimal “constrained residue variance minimiz-
ing filter” (RV) is obtained by solving

(αRV, βRV) = argmin
(α,β)∈I

σ2[Rα,β ]. (21)

The requirement of statistical independence between EPRE and
Eα,β is of course stronger than a requirement of uncorrelated-
ness as it excludes filters, which lead to Eα,β and EPRE that are
statistically dependent despite being uncorrelated. It is worth
noting that, once the search space I has been determined, one
can also seek the optimal filter by maximizing the entropy of
Rα,β . As shown in Appendix C, this type of filter produces
similar results as the RV filters.

a) Optimal search space I: For any (α, β) ∈ I, owing to
(18) and the independence between Eα,β and EPRE, the pdf of
Rα,β matches an expected shape defined as

fRα,β
= fEPRE

∗ f−Eα,β
(22)

where fEPRE
and f−Eα,β

are the pdfs of EPRE and −Eα,β ,
respectively, whereas the asterisk stands for the convolution.
The estimates f̂EPRE

and f̂−Eα,β
of fEPRE

and f−Eα,β
are

computed following a method that is detailed in Appendix A
and summarized in the next section. Then, I is determined
by finding the values of (α, β) ∈ A× B that have a small
Kolmogorov–Smirnov statistic T (α, β), i.e.,

T (α, β)=sup
v∈R

∣∣∣FRα,β
(v)−F̂EPRE−Eα,β

(v)
∣∣∣≤Tmax (23)

where Tmax ≥ 0 is a threshold value, and sup denotes the supre-
mum operator. In this equation, FRα,β

and F̂EPRE−Eα,β
are the

cumulative distribution functions (cdfs) of fRα,β
and f̂EPRE

∗
f̂−Eα,β

, respectively. The use of the entire cdf of Rα,β in (23)
leads to a more robust search space I than by matching only the
variance of Rα,β to a target value as is done in the constrained
optimization based on uncorrelatedness (see Appendix D).

b) Expected distributions of the filtered and prefiltering
velocity errors Eα,β and EPRE: Given a filter Lα,β , the pdf
f−Eα,β

is estimated by generating an ensemble of realizations
of the random process Eα,β . This is done by simulating se-
quences of (I,Q) samples that vary according to the statistics
predicted by the CPR characteristics and assumed turbulence.

TABLE III
SUMMARY OF OPTIMALITY CRITERIA FOR

THE SELECTION OF THE FILTERS

Fig. 7. Spatial scales Xα,β of the filters for α ∈ A = [10−2, 103] km and
β ∈ B = [0.5, 3].

As detailed in Appendix A, the simulation of these (I,Q)
samples takes into account the SNR distribution in the radar
scene of interest and the broadening caused by the spacecraft
velocity [11]. The total broadening also includes a ∼1 m ·
s−1 contribution from moderate atmospheric turbulence. The
obtained voltage samples are then integrated over a distance
Xα,β = [2Θα,β ]

−1, which represents the scale or characteristic
length of the filter, with the noise equivalent bandwidth Θα,β

defined as

Θα,β =

⎡⎣∫
R

f2Lα,β(f)df

/∫
R

Lα,β(f)df

⎤⎦ 1
2

. (24)

The pdf fEPRE
can be approximated similarly to f−Eα,β

, with
the only difference that the along-track integration is now
performed over 500 m to achieve the level-1B sampling. The
resulting approximation of fEPRE

is coined as the analytical
approximation of fEPRE

and denoted fANA. The search space
obtained using fANA as an approximation for fEPRE

in (22)
and (23) is denoted IA, and the corresponding optimal filter is
written RVA. It is worth noting that fANA does not account for
the presence of residual NUBF velocity errors.

We also consider the filter RVE and its search space IE that
are obtained using the distribution fERR of EPRE = μPP −
μTRUE, i.e., derived from the measured μPP and assuming the
knowledge of μTRUE. In general, fERR will slightly differ from
the ideal fEPRE

since fERR may still be affected by remnants
of NUBF errors that could not be removed using the gradient-
based correction (6). All the filters described in Section IV-C
are listed in Table III.
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Fig. 8. Snowstorm measured by SPIDER. (Top) pdf of the prefiltering velocity error fEPRE
as estimated from the measured error (ERR) or analytically (ANA).

(Bottom) Target pdf of the residue obtained by convolving the estimates of fEPRE
with f−Eα,β

, for α = 0.5 km and β = 1.

V. RESULTS

A. Snowstorm Example

1) Filters: The methods described in Section IV are now
applied to the snowstorm case introduced in Section III-A. The
bank of filters considered here is obtained by letting α and
β vary in the domains A = [10−2, 103] km and B = [0.5, 3].
Fig. 5 showed how these ranges cover most of the filter shapes
of interest while allowing for a smooth variation of the filter
shapes as a function of (α, β). The spatial scales Xα,β of the
filters are plotted in Fig. 7.

Low-order filters (β<1) all have similar scales, i.e., ∼1 km,
and the values of (α, β) mainly command the smoothness of the
decay of the filters at larger frequencies. For higher orders, i.e.,
β≥2, varyingα leads to a transition from “all-pass” filters when
α≤0.5 km (top left corner), which basically leave the velocity
unfiltered, to “all-cut” filters whenα≥100 km (top right corner),
which perform a moving average over a very long baseline.

The pdf fERR of the prefiltering velocity error is plotted in
Fig. 8 together with the analytical approximation fANA. The
analytical estimate produces a narrower distribution (σANA =
0.64 m · s−1) than fERR(σERR = 1.28 m · s−1) because it does
not account for residual NUBF errors. In fact, when the Doppler
data are simulated without adding the NUBF effect but with
the EC-CPR spectral broadening, the analytical distribution
matches the actual prefiltering error distribution. The convo-
lution of these estimates of fEPRE

with the distribution of

the filtered velocity error f−Eα,β
smears the final distributions

fERR ∗ f−Eα,β
and fANA ∗ f−Eα,β

, as demonstrated by Fig. 8.
2) Filtered Velocities: The statistics of the filtered velocity

error and residue are computed over the set of points located
above the surface and such that SNR ≥ 6 (i.e., for reflectivi-
ties larger than −21.5 + 6 = −15.5 dBZ). The limit value of
SNR = 6 is a suitable choice between the region of high SNR,
where little dependence of the Doppler statistics on SNR is
observed, and the region of low SNR, where the results strongly
depend on the SNR [10]. The evolutions of these statistics, as
a function of α and β, are displayed in Fig. 9. For every type
of optimization method, the optimal filter is indicated by a star
(�). For the constrained optimizations RVE and RVA (bottom
row), the contours of the search spaces IE and IA are indicated
by dashed lines, for various values of the threshold Tmax used
in (23), viz., Tmax ∈ {0.02, 0.04, 0.06}.

The graph of σ[Eα,β ] (top left) identifies a region around
(αEVM = 3.2 km, βEVM = 1.75) as the set of filters that lead
to the smallest RMS error. The optimal EVM filter has a scale
XEVM = 1.2 km and yields accuracy of σ[EαEVM,βEVM

] =
0.53 m · s−1. The entropy of the residue (top right) reaches its
maximum for (αREM = 1.3 km, βREM = 2.75). The conser-
vative nature of the REM filter in terms of integration length,
which is discussed in Section IV-C2, transpires through its
scale XREM = 1.0 km < XEVM and the corresponding RMS
error σ[EαREM,βREM

] = 0.87 m · s−1 that is larger than the opti-
mum σ[EαEVM,βEVM

] = 0.53 m · s−1. This general behavior is
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Fig. 9. Snowstorm measured by SPIDER: statistics of the filtered velocity error Eα,β and residue Rα,β as a function of (α, β). Unconstrained filters: (top left)
EVM filter on the map of σ[Eα,β ]; (top right) REM filter on the map of S[Rα,β ]. Constrained filters: (bottom left) RVE filter and contours of IE on the map of
σ[Rα,β ]; (bottom right) RVA filter and contours of IA on the map of σ[Rα,β ]. The filters on the left (EVM and RVE) assume the knowledge of μTRUE, unlike
the filters on the right (REM and RVA).

observed in all our EC-CPR simulations, as will be shown in
Section V-B.

The map of σ[Rα,β ] (bottom) illustrates why constraints are
required to determine the optimal RV filters: an unconstrained
minimization of σ[Rα,β ] would lead to an all-pass filter (top
left corner of A× B), whereas an unconstrained maximization
of σ[Rα,β ] would lead to an all-cut filter (top right corner
of A× B). The search spaces IE and IA of the RVE and
RVA methods both correspond to areas where σ[Eα,β ] is also
small. This allows being confident about the rationale proposed
to constrain the optimization of the variance of the residue.
Moreover, the iso-Tmax contours on the map of σ[Rα,β ] show
that IE can be determined even by using a threshold as small
as Tmax = 0.02 in (23), i.e., allowing a maximum discrepancy
of 2% between the cdf of Rα,β and the target cdf F̂EPRE−Eα,β

.
This threshold Tmax = 0.02 would, however, be too selective to
identify IA, which requires Tmax ≥ 0.04. This smallest usable
value of Tmax represents the error budget that one needs to
tolerate in the test of (23) to account for the fact that fANA does
not include the effect of residual NUBF errors, as discussed
in Section V-A1. However, with a Tmax that is too large, the
corresponding set I would contain filters that no longer comply
with the criterion of statistical independence enunciated in (22).
In our simulations, we have used Tmax = 0.05.

More than the dependence of the statistics ofEα,β andRα,β on
(α, β), the bottom-line indicators of the performance of the filter
are the RMS error and the morphology of the filtered velocity.
The performance of the various filters is summarized in Table IV,
which lists the final RMS error of the filtered velocity together
with an efficiency coefficient. This coefficient, which is denoted

TABLE IV
PERFORMANCE OF THE OPTIMAL FILTERS (SPATIAL SCALE Xα,β , RMS
ERROR σ, AND EFFICIENCY η) FOR THE SPIDER SNOWSTORM EXAMPLE

η, compares the error reduction achieved by any of the filters
to the ideal error reduction achieved by the EVM filter. For
instance, the efficiency η(REM) of the REM filter is given by

η(REM) =
σ2
PRE − σ2 [EαREM,βREM

]

σ2
PRE − σ2 [EαEVM,βEVM

]
. (25)

The sign of η is positive if the filter improves the accuracy
of the velocity and vice versa. To put these numbers in
perspective, we also compute the efficiency of the standard
along-track integration methods discussed in Section III-A.

All the filters have spatial scales on the order of Xα,β ∼ 1 km
and lead to a bigger improvement in accuracy than a standard
1-km along-track integration. The RVE and RVA filters produce
error reductions similar to the ideal EVM filter. The high
performance of the RVA approach may appear surprising when
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Fig. 10. (Left) Mean Doppler velocity estimate and (right) associated error with respect to μTRUE: (top row) reference velocity μTRUE, (second row)
prefiltering velocity μPP, optimally filtered velocity according to (third row) EVM, (fourth row) REM, (bottom row) RVA logics.

considering that it leads to even better results than the RVE
approach, which uses fERR. However, unlike fERR, which
can be affected by residual NUBF errors, the construction
of fANA is entirely based on the random noise, making it a
more representative distribution of the statistics of the error one
should achieve if all corrections succeed.

To qualitatively illustrate the effects of the filters, the 2-D
curtain sections of the optimally filtered velocities are plotted
in Fig. 10 together with their error with respect to μTRUE.
These graphs highlight the general improvement both in terms
of clarity of the images and of accuracy, particularly when
compared with the prefiltering data. Although the EVM filter
leads to the smallest RMS error, the map of the filtered-velocity
error (3rd row right) shows that it eliminates some organized
features, e.g., around x ∈ [100, 120] km. On the contrary, de-
spite its higher RMS error, the REM-filtered velocity (4th row
right) preserves those features, as expected from the maximum-
entropy principle at the core of the REM approach.

3) Retrieval of the Mean Velocity CFAD: Contour frequency
by altitude diagrams (CFAD) offers a statistical representation

of the vertical distribution of the velocity within a regime or a
scene of interest. For instance, the CFAD of μTRUE is shown in
Fig. 11 (top left) together with the CFADs of the PP velocities in-
tegrated along track over 500 m (level-1B) and 1, 5, and 10 km,
which are denoted μPP(500 m), μPP(1 km), μPP(5 km), and
μPP(10 km), respectively. The main features of the CFAD of
μTRUE are summarized in the 5%, 50%, and 95% quantiles
(top right), which are denoted q5, q50, and q95, respectively. The
differences between the CFAD of μTRUE and the CFADs of the
PP velocities are quantified through the errors of the quantiles,
which are also plotted (second to fifth rows, right).

The CFAD of the true velocity shows that μTRUE is in
the range [−4, 4] m · s−1. As expected from a precipitating
event, the median velocity is negative, viz., between −2 and
−0.8 m · s−1. The localized convective regions, which can be
seen in Fig. 10 above h ∼ 2 km, appears in the CFAD as the
small set of points identified by the dashed box.

When considering the PP velocities, the general trend of
the distribution of μTRUE, assessed by q50, remains stable
even in μPP(500 m). This is consistent with the nature of the
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Fig. 11. Effect of the longer along-track integration and adaptive filtering on the distribution of the mean Doppler velocity: (top row) true mean velocity μTRUE,
PP velocity μPP integrated along track over (second row) 500 m, (third row) 1 km, (fourth row) 5 km, and (fifth row) 10 km and velocities filtered according to
(sixth row) EVM, (seventh row) REM, and (bottom row) RVA logics. (Left column) CFAD, (top right) quantiles of μTRUE and (second to seventh row, right)
quantile errors of the integrated μPP.

velocity noise, which does not introduce any systematic bias.
However, the noise causes the dynamic range of μPP(500 m)
to exceed the range of μTRUE, which translates in a broadening
of the CFAD, i.e., an underestimation of q5 by ∼1.2 m · s−1

and an overestimation of q95 by ∼1.3 m · s−1. Furthermore,
at lower range bins (h < 2 km), the CFAD of μPP(500 m)
erroneously indicates the presence of large updrafts, which
actually correspond to aliased velocities. As the integration
length is increased to 1 km, the errors of the upper and lower
quantiles drop by 60%; however, the contributions from aliased
velocities at lower range bins are still visible. The accuracy
of the quantiles significantly improves with μPP(5 km) and
μPP(10 km). However, the coarse spatial resolution of these

products appears in the CFAD where the ranges of μPP(5 km)
and μPP(10 km) are smaller than the actual range of μTRUE,
as shown by the overestimation (underestimation) of q5 (q95).
This clearly shows that an excessive integration leads to a
coarse averaging of the entire scene and, therewith, a loss of
information, as visible, for example, in the loss of information
inside the dashed box.

Similarly, the CFADs of the various filtered velocities are com-
pared with the CFAD of μTRUE in Fig. 11. The ideal EVM filter
reproduces the true CFAD accurately, as evidenced by the quan-
tile errors that are all smaller than 0.1 m · s−1. Moreover, the
filters have an antialiasing effect, as can be seen from the lowest
range bins that no longer exhibit excessively large positive
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Fig. 12. Distribution of the optimal filters on the map of filter scales Xα,β for the (left) SPIDER and (right) WACR data sets, at PRF = 7 kHz: optimal (top
row) EVM, (middle row) REM, and (bottom row) RVA filters. The sizes of the markers are normalized according to the number of pixels per scene. The various
markers correspond to the mean values of GV = IE[|∇xμTRUE|] in [m · s−1 · km−1].

velocities. A similar performance is achieved with the RVA
filter, for which the quantile error is smaller than 0.1 m · s−1.
Although the REM filter does not match the performance of the
RVA filter, it still reduces the quantile error to ∼0.7 m · s−1.

B. General Statistics and Discussion

The efficiency of the velocity-filtering approach is now as-
sessed using a larger set of EC-CPR simulations done at PRF
values of 6.1, 7, and 7.5 kHz. These simulations are performed
starting from high-resolution W-band Doppler measurements
obtained from ground-based and airborne radars. Apart from
localized occurrences of moderate convection similar to the
example of Section V-A, neither data set contains strong con-
vective cases.

The airborne data sets were acquired by NICT’s SPIDER
radar in January 2003 in Wakasa Bay, Japan. On average,
each SPIDER record lasts 23 min. The events recorded mainly
consist of precipitation either in the form stratiform rain or
snowstorms. The ground-based data sets were obtained be-
tween 2006 and 2009, during field campaigns of the W-band
Atmospheric Radiation Measurement Program Cloud Radar

(WACR) of the U.S. Department of Energy [20]. Every WACR
data set represents 24 h of data, which are translated into spatial
coordinates using the local advection speed. These measure-
ments cover a larger variety of scenarios, including cirrus and
cumulus clouds and tropical and stratiform rain.

The SPIDER and WACR data sets are segmented into records
that are all 100 km long in the along-track direction. Hence, all
the filters are sampled at the common spectral resolution Δf =
1/100 km−1. On the one hand, this segmentation allows having
enough pixels per scene to compute meaningful statistics of the
velocity (variance, entropy), which are then used to optimize
the filter. On the other hand, this segmentation produces enough
test cases (16 SPIDER scenes and 41 WACR scenes) for the
evaluation of general statistics of the filtering method. One
could also consider a segmentation of the data set based on the
modulus of the along-track gradient of the velocity, i.e., |∇xμ|.
However, the value of ∇xμPP is affected by the noisiness of the
measured velocity itself. Even assuming that |∇xμTRUE| could
be estimated, the effect of the adaptively changing window size
would contaminate the analysis of the filter performance.

1) Distribution of the Optimal Filters: Fig. 12 displays the
distribution of the optimal EVM, REM, and RVA filters on the
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TABLE V
GENERAL STATISTICS FROM SPIDER- AND WACR-BASED EC-CPR SIMULATIONS

map of filter spatial scales Xα,β , at PRF=7 kHz. This graph is
also representative of the results obtained at PRF=6.1 kHz and
PRF=7.5 kHz. The optimal filters are indicated by different
markers depending on the value of GV=IE[|∇xμTRUE|], i.e.,
the average modulus of the along-track gradient of the reference
velocity (stars for GV ≤ 0.2 m · s−1 · km−1, asterisks for GV ∈
[0.2, 0.5] m·s−1 ·km−1 and circles for GV≥0.5 m·s−1 ·km−1).
The variable GV is a bulk indicator of the spatial variability
of the velocity field. Furthermore, the sizes of the markers are
proportional to the number of pixels present in each scene.
This figure shows that the SPIDER simulations comprise cases
with higher spatial variability (indicated by the stars) than the
WACR data.

The distribution of (αEVM, βEVM) shows that the scale
XEVM is mainly driven by the magnitude of the spatial gra-
dients of the Doppler data, i.e., the amount of information
contained in the scene: the smaller the value of GV, the larger
the scale of the filter, i.e., the longer the along-track averaging
performed by the filter. In terms of the EVM markers, this
translates into the fact that, generally, the stars are on the left
of the asterisks, which, in turn, are on the left of the circles
in the A× B-plane. It is worth noting that for one of the
scenes measured by WACR (top right), the EVM approach
leads to an “all-cut” filter, which integrates the scene entirely
in the along-track direction. This scene actually corresponds
to a 100-km segment of homogeneous cloud with very little
along-track variability of the Doppler velocity (as testified by
the circle identifying the scene in Fig. 12) and for which one can
afford a very long along-track integration. This illustrates the
adaptive nature of the filter scale with respect to the along-track
variability of the velocity field. Moreover, the diversity of filter
orders βEVM shows that there is not necessarily a universal filter

that can accommodate all the various measurements. Hence,
the adaptive order of the filter captures the variability of the
meteorological event recorded by the CPR.

Similar observations can be made about the scales of the RVA
filter, which is usable in practice, unlike the EVM filter. As for
the REM filter, its scale remains close to ∼1 km. Despite this
conservative integration scale compared with XEVM, the REM
filter still outperforms a standard 1-km along-track integration
in terms of improvement of the accuracy of the velocity, as will
be shown in the next section. All these results indicate that the
scale of the filter is a bulk variable that provides qualitative
information about the performance of the filter, but does not
capture the full effect of the filter when applied to the measured
velocity.

2) Accuracy of the Filtered Velocity: Table V provides the
final RMS errors of the various filters for the SPIDER- and
WACR-based simulations. For every scene in the SPIDER
and WACR data sets, the accuracy of the Doppler velocity is
computed for three ranges of SNR, viz., the low-SNR range
[1.5,6] (i.e., ZPP ∈ [−20,−16.5] dBZ), the mid-SNR range
[6, 16.5] (i.e., ZPP ∈ [−16.5,−5] dBZ), and the high-SNR
range [16.5,∞) (i.e., ZPP≥−5 dBZ). The results reported in
Table V correspond to the averages of these SNR-binned statis-
tics weighted by the number of pixels present in each data set.

The results in both data sets are consistent, with the errors in
the SPIDER simulations being slightly larger (by ∼0.2 m · s−1)
than in the WACR due to the larger dynamic variations of
the SPIDER data. This larger variability also implies a larger
impact of NUBF residuals that persist even after applying
NUBF corrections.

For the weak signals (SNR ≤ 6), where the intrinsically
uncorrelated thermal noise plays an important role, a standard
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longer along-track integration reduces the RMS error of the
velocity with respect to μTRUE (sampled at 500-m along-track
spacing as in Section III-A). However, as the SNR increases,
the advantage of a longer integration beyond 5 km disappears,
particularly for SNR ≥ 16.5, where the RMS error is larger
after a 10-km integration than after a 5-km integration. These
results show the limited gain in accuracy achievable by longer
along-track integration. Similar to Section V-A, this is due to
the fact that, beyond a certain integration length, most of the
dynamics of Doppler signal is lost and leads to a constant RMS
error that represents the energy of the true mean velocity lost in
the process of integrating.

The results obtained with the ideal EVM filter show the
large gains in accuracy potentially achievable via the filtering
method across the ranges of PRF and SNR. Even with the
practical RVA filter that does not rely on μTRUE, an accuracy of
0.4–0.5 m · s−1 is achievable at SNR ≥ 6, while preserving the
500-m horizontal sampling and a horizontal resolution of 2 km
or better. The high resemblance between RVE and RVA results
shows that the RVA filter matches the best performance achiev-
able by using this type of constrained-optimization approach.
These encouraging results comfort the postulate that we made
about the statistical independence of the prefiltering and ide-
ally filtered velocity to elaborate the constrained-optimization
method. The residual NUBF errors have a stronger impact on
the performance of the RVA filter at lower SNR values, as can
be seen by comparing the SPIDER and WACR RMS errors.
Indeed, these smaller SNR values include transition regions
between clear-air and clouds and precipitation, i.e., regions that
are prone to uncompensated NUBF biases.

Despite its conservative integration length (∼1 km), the
entropy-based REM filter improves the accuracy of the velocity
more than a traditional 1-km integration, particularly at higher
PRF. The improvement at higher PRF partly stems from the
fact that more (I,Q) samples are used to compute the level-1B
PP velocity (96 more (I,Q) samples at PRF = 7.5 kHz than
at PRF = 6.1 kHz), and these samples have a stronger mutual
correlation. Both factors contribute to reducing the effect of the
finite radar sampling on the accuracy of the velocity estimate.
As a result, the errors in the Doppler velocity are mainly
due to the fluctuations caused by the random reshuffling of
hydrometeors within the radar resolution volume and thermal
noise. This is a type of uncertainty for which the maximum
entropy principle of the REM filter is well suited.

The final accuracy of 0.4–0.5 m · s−1 obtained using the
matched filters could be improved by resorting to more ad-
vanced filters such as height-adaptive or multiresolution filters.
However, the largest gains would be obtained by improving the
quality of the NUBF corrections. This would only be feasible
through a finer along-track sampling of the Doppler data to
increase the chance of capturing the subbeam variation of the
radar reflectivity within the radar footprint, which causes the
NUBF velocity biases.

VI. CONCLUSION

Here, a method for filtering the random noise that affects
spaceborne Doppler measurements of atmospheric velocities

has been presented. The proposed method hinges on an adaptive
statistical low-pass filter that applies to the PP correlation func-
tion of the Doppler data and therefore sidesteps potential alias-
ing artifacts. The parameters of the filters are found by solving
optimization problems formulated in terms of the statistics of
the prefiltering and filtered Doppler velocities. This adaptive
matched filtering method has been applied to EarthCARE CPR
simulations, which do not include strong convective cases.

The optimal performance of the filters were established by
assuming the knowledge of the true velocity. These results
show that the accuracy of the Doppler velocity, which is
∼1.5 m · s−1(∼0.9 m · s−1) at PRF = 6.1 kHz (7.5 kHz) after
applying the NUBF corrections, could be improved to as low
as ∼0.4 m · s−1 in RMS sense, with minor PRF dependence.
The practical implementation of the filters does not assume the
knowledge of the true velocity and simply uses the measured PP
data. These practical filters achieve more than 90% efficiency in
terms of reduction of the variance of the velocity error and yield
an RMS error of ∼0.5 m · s−1, with minor dependence on the
PRF of EC-CPR and for SNR ≥ 6. These performances could
be further improved by improving the quality of the NUBF
corrections that are applied prior to the filtering. Overall, our
results indicate that the RVA filters are well suited for cases
of uniform beam filling, whereas the REM filters are better for
preserving the spatial features of the velocity field and therefore
well indicated for scenes with higher spatial variability.

Despite being more computationally involved than a classical
along-track integration, the filtering approach produces a larger
improvement in the accuracy of the Doppler data both in terms
of the RMS error and in terms of the spatial resolution of the
data. These gains in the accuracy of the velocity have been
shown to help postprocessing tasks such as dealiasing or the
retrieval of the vertical distribution of the atmospheric velocity.

This work could potentially revert the paradigm of traditional
spaceborne Doppler data filtering, which implies increasing the
integration length and sacrificing the horizontal resolution to
reduce the random noise of the Doppler data. While a long
along-track integration is justifiable in terms of noise reduction
when the scene exhibits minimal along-track variability, our
results, which typically involve integration scales smaller than
5 km, show that there is a lot to be gained by avoiding excessive
along-track integration, viz., longer than 5 km for the cases
studied in this paper.

The bank of filters used in this paper are real-valued and
involve two degrees of freedom, viz., the constant and the
order of the filter. More advanced filters could be considered,
either by allowing for more degrees of freedom in the shapes
of the filters or by considering complex-valued filters. More-
over, multiresolution filters could be employed to better take
into account the spatial variability of the Doppler data. For
instance, in an operational context, the spectral resolution of
the filters or, equivalently, the along-track length of the scene
being analyzed, could be chosen according to the type of scene
being observed, estimated using a cloud mask, or the spatial
variability of the velocity field, provided that it can be ac-
curately estimated. In all these cases, the same optimization
strategy can be employed, i.e., using the variance or the entropy
of the residue of the filters.
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TABLE VI
LIST OF SYMBOLS

APPENDIX A
DISTRIBUTION OF THE FILTERED VELOCITY ERROR Eα,β

The list of symbols is presented in Table VI.
Given a filter Lα,β , the distribution fEα,β

is approximated by
generating an ensemble of realizations of the random process
Eα,β . This is done by simulating equivalent (I,Q) voltage
samples that represent the effect of the filter.

1) We start by determining the range DSNR = [SNRlo,
SNRhi] of SNR for which the statistics of the velocity are
computed. The pdf fSNR of the SNR is also computed.
The pdf of Eα,β can be then expressed as a mixture
density as follows:

fEα,β
(v) =

∫
DSNR

fSNR(s0)fEα,β
(s0, v) ds0, ∀ v ∈ R (26)

in which fEα,β
(s0, ·) is the conditional pdf of Eα,β

knowing SNR = s0.
2) To approximate fEα,β

(s0, ·) for any z0 in DSNR, a
so-called “error Doppler spectrum” is simulated. This
spectrum has a total area equal to s0, a mean equal to
μ0 = 0 m · s−1 and a width consistent with EC-CPR’s
specifications, which is analytically computed. A Doppler
broadening ∼1 m · s−1 is added to the spacecraft-induced
broadening to account for moderate turbulence and the
spread in terminal velocities [11]. The thus obtained
analytical estimate of the spectral width is constant for
the entire scene. Although the spectral width of EC-CPR
does not change much, it is sensitive to the turbulence
broadening. Hence, instead of a constant analytical value,
one could consider using pointwise PP estimates of the
spectral width, which will be an EC-CPR product [10].
However, one has to weigh the accuracy of this estimate,
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which is noisy, versus the variability of turbulence. More-
over, due to the nonlinear dependence of the (I,Q)
samples on Doppler width, one would need to simulate
new sequences of (I,Q) samples for each point. This
would pose a significant challenge to the computational
efficiency of the filters and is therefore not considered in
the scope of this paper.

3) The EC-CPR (I,Q) resulting from the error Doppler
spectrum are random and temporally sampled at the rate
of EC-CPR’s PRF. These (I,Q) samples are horizontally
integrated over a distance Xα,β = [2Θα,β ]

−1, which cor-
responds to the scale of Lα,β , where the bandwidth Θα,β

is defined in (24). Thus, Nα,β = Xα,β/(TSVSAT) voltage
samples are used in the PP processing to obtain one ran-
dom realization of Eα,β . By repeating this process Nstats

times, an ensemble of Nstats velocity error estimates is
obtained, from which fEα,β

(s0, ·) can be evaluated. In
our simulations, we use Nstats = 500.

4) This process is applied to all the values of SNR s0 in
DSNR, and the resulting set of distributions is mixed
according to (26) to obtain fEα,β

.

To reduce the computational cost of this approach, the in-
tegral in (26) is approximated by a discrete sum, e.g., using
a trapezoidal rule. Furthermore, given an SNR s0, rather than
simulating new (I,Q) samples for every (α, β) in A× B, we
first simulate a large data set that contains NstatsNmax samples,
where Nmax = max

(α,β)∈A×B
Nα,β . Despite the size of this data

set, the advantage is that it has to be evaluated only once. Then,
for every filter Lα,β , a subset of NstatsNα,β voltage samples
is used to determine the Nstats realizations of Eα,β at s0 and,
therewith, the pdf fEα,β

(s0, ·).

APPENDIX B
DISTRIBUTION OF THE PREFILTERING

VELOCITY ERROR EPRE

An analytical approximation of fEPRE
is obtained by ap-

plying the method described in Appendix A. In this case, the
along-track integration is performed over 500 m to achieve
the level-1B sampling, i.e., using N500 = floor[500/(TSVSAT)]
voltage samples if TSVSAT is expressed in meters. The resulting
approximation of fEPRE

is denoted fANA.

APPENDIX C
CONSTRAINED MAXIMUM ENTROPY FILTERS

Similarly to the constrained filters that minimize the variance
of the residue, one can also consider maximizing the entropy of
the residue over the search space. Thus, once the space IA has
been determined using fANA in (23), the optimal “constrained
residue entropy maximizing” (REA) filter is defined as

(αREA, βREA) = argmax
(α,β)∈IA

S [Rα,β ]. (27)

The general statistics of this REA filter, which are provided in
Table VII, show that the REA filter produces results that are

TABLE VII
ALTERNATIVE CONSTRAINED FILTERS: MAXIMUM ENTROPY FILTERS

(REA), MINIMUM RESIDUE VARIANCE FILTERS CONSTRAINED BY

UNCORRELATEDNESS (RVUA), AND SURFACE-BASED

FILTERS (RVS, RES, AND RVUS)

almost identical to those of the RVA filter and, therefore, nearly
optimal. Hence, the REA filter is an alternative and equivalent
implementation that can be considered for the adaptive matched
filtering.

APPENDIX D
OPTIMIZATION CONSTRAINED BY UNCORRELATEDNESS

In Section IV-C3, the optimization was constrained by en-
forcing the independence between the prefiltering and filtered
velocity errors Eα,β and EPRE, respectively. A looser assump-
tion could be made to arrive at (20) by requiring that Eα,β and
EPRE be mutually statistically uncorrelated. This amounts to
restricting A× B to the set U of filter parameters such that

σ2[Rα,β ]=σ2[EPRE]+σ2[Eα,β ], for any (α, β)∈U . (28)

Therefore, the optimal “residue variance minimizing filter con-
strained by uncorrelatedness” (RVU) is obtained by solving

(αRVU, βRVU) = argmin
(α,β)∈U

σ2 [Rα,β ]. (29)

The search space U for the RVU filter is determined by finding
the parameters (α, β) that minimize the difference between
σ2[Rα,β ] and an estimate of the right-hand side of (28), i.e.,

U =
{
(α, β) ∈ A× B,

∣∣∣σ2[Rα,β ]− σ2[ÊPRE]− σ2[Êα,β ]
∣∣∣

≤ Vmax} (30)

with Vmax ≥ 0 a threshold value. The term σ2[Êα,β ] is the
variance of f̂−Eα,β

, which is defined in Appendix A, whereas

σ2[ÊPRE] represents either the variance of fERR (RVUE filter),
which assumes the knowledge of μTRUE, or the variance of the
analytical pdf fANA (RVUA filter).

The results obtained with these filters are also listed in
Table VII. The accuracy of the RVUE results confirms that
the optimization can indeed be constrained by uncorrelatedness
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rather than independence. However, this type of optimization is
highly sensitive to the accuracy of the estimate of σ2[ÊPRE],
as highlighted by the suboptimal RVUA results due to the fact
that fANA is NUBF free. Hence, by using the entire distribution
of the residue rather than its variance only, the assumption of
independence in the RVA approach leads to an optimization that
is more robust to the imperfections of the NUBF corrections
than the assumption of uncorrelatedness.

APPENDIX E
CONSTRAINED OPTIMIZATIONS USING

THE SURFACE RETURN

In the constrained optimization algorithm described in
Appendix B, instead of approximating fEPRE

analytically with
fANA, one can take advantage of the Doppler measurements
from the surface. Indeed, provided that the true vertical velocity
at the surface vanishes, the measured μPP at the surface actually
represents a velocity error that is readily available. The corre-
sponding distribution of surface velocities, which is denoted
fSFC, can be then used as a surrogate for fEPRE

. To avoid
areas where the surface Doppler data are strongly attenuated
by precipitation of clouds aloft, fSFC is derived using only the
surface points above which the average reflectivity factor does
not exceed the threshold −10 dBZ. Evidently, approximating
fEPRE

by fSFC is a first-order approximation that does not
capture the entire variability of the velocity error versus the
SNR since the surface SNR is significantly larger than the
typical values of atmospheric SNR [10].

Using fSFC, and similarly to the RVA, REA, and RVUA
filters, the following three surface-based filters are built, viz.,
1) a minimum residue variance (RVS) filter constrained by
independence, 2) a maximum residue entropy (RES) filter con-
strained by independence, and 3) a minimum residue variance
filter constrained by uncorrelatedness (RVUS). The perfor-
mances of these filters on the SPIDER data set are summarized
in Table VII (these filters cannot be applied to the WACR data,
due to the absence of surface return in the input ground-based
measurements).

Interestingly, the use of the surface return yields also accurate
results. Both the RVS and RES filters produce results that are
similar to the analytical RVA and REA filters. Moreover, with
regard to the filters based on uncorrelatedness, the RVUS filter
outperforms the RVUA filter and reaches the accuracy of the
RVUE filter, built using the actual velocity error. This feature
stems from the fact that the surface velocity is also affected by
some uncompensated NUBF biases, which, in turn, affects the
shape and width of fSFC unlike fANA.

Despite these encouraging results for the usability of the
surface return to build the matched filters, a finer analysis must
be conducted to assess the sensitivity of the matched filters
to the differences in SNR and turbulence regimes between the
surface and the atmospheric velocities.
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