Average Connectivity and Average Edge-connectivity in Graphs

Suil O
joint work with
Jaehoon Kim

The State University of New York, Korea

CanaDAM 2019, Vancouver, May 30, 2019

Suil 0

- The connectivity of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G-S$ is disconnected.
- The connectivity of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G-S$ is disconnected.
- The edge-connectivity of a graph G, written $\kappa^{\prime}(G)$, is the minimum size of an edge set F such that $G-F$ is disconnected.
- The connectivity of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G-S$ is disconnected.
- The edge-connectivity of a graph G, written $\kappa^{\prime}(G)$, is the minimum size of an edge set F such that $G-F$ is disconnected.
The connectivity and the edge-connectivity of a graph measure the difficulty of breaking the graph apart. However, since these values are based on a worst-case situation, it does not reflect the "global (edge) connectedness" of the graph.

Figure: Two Graphs G_{1} and G_{2} with $\kappa=\kappa^{\prime}=1$

The average connectivity of a graph G with n vertices, written $\bar{\kappa}(G)$, is $\frac{\sum_{u, v \in V(G)} \kappa(u, v)}{\binom{n}{2}}$, where $\kappa(u, v)$ is the minimum number of vertices whose deletion makes v unreachable from u.

The average edge-connectivity of a graph G with n vertices, written $\overline{\kappa^{\prime}}(G)$, is $\frac{\sum_{u, v \in V(G)} \kappa^{\prime}(u, v)}{\binom{n}{2}}$, where $\kappa^{\prime}(u, v)$ is the minimum number of edges whose deletion makes v unreachable from u.

Figure: Two Graphs with $\bar{\kappa}\left(G_{1}\right)=\overline{\kappa^{\prime}}\left(G_{1}\right)=\frac{27}{7}$ and $\bar{\kappa}\left(G_{2}\right)=\overline{\kappa^{\prime}}\left(G_{2}\right)=\frac{12}{7}$

and Matching Number

In 2002, Beineke, Oellermann and Pippert introduced the average connectivity and found several properties of it.

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{\bar{d}^{2}}{n-1} \leq \bar{\kappa}(G) \leq \bar{d}$.

and Matching Number

In 2002, Beineke, Oellermann and Pippert introduced the average connectivity and found several properties of it.

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{\bar{d}^{2}}{n-1} \leq \bar{k}(G) \leq \bar{d}$.

We prove a bound on the average connectivity in terms of the matching number.

and Matching Number

In 2002, Beineke, Oellermann and Pippert introduced the average connectivity and found several properties of it.

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{\bar{d}^{2}}{n-1} \leq \bar{\kappa}(G) \leq \bar{d}$.

We prove a bound on the average connectivity in terms of the matching number.

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$, and this is sharp. Furthermore, if G is connected and bipartite, then $\bar{\kappa}(G) \leq\left(\frac{9}{8}-\frac{3 n-4}{8 n^{2}-8 n}\right) \alpha^{\prime}(G)$, and this is sharp.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

- If G has a perfect matching or is a complete graph, then we are done. Assume not.
- Let M be a maximum matching in G and let $S=V(G)-M$.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

- If G has a perfect matching or is a complete graph, then we are done. Assume not.
- Let M be a maximum matching in G and let $S=V(G)-M$.
- For $v v^{\prime} \in M$, put v and v^{\prime} into T, T^{\prime} and R as follows: If neither v nor v^{\prime} has a neighbor in S, then put both in T. If v^{\prime} has a neighbor in S and v does not, then put v in T and v^{\prime} in T^{\prime}.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

- If G has a perfect matching or is a complete graph, then we are done. Assume not.
- Let M be a maximum matching in G and let $S=V(G)-M$.
- For $v v^{\prime} \in M$, put v and v^{\prime} into T, T^{\prime} and R as follows: If neither v nor v^{\prime} has a neighbor in S, then put both in T. If v^{\prime} has a neighbor in S and v does not, then put v in T and v^{\prime} in T^{\prime}.
- If both have neighbors in S, put them both in R.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Suil 0

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

- Case 1: $u \in S$. If P and P^{\prime} are distinct internally disjoint u, v-paths, then both of them must visit $V(M)-T$ immediately after $u . \kappa(u, v) \leq 2 m-t$.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

- Case 1: $u \in S$. If P and P^{\prime} are distinct internally disjoint u, v-paths, then both of them must visit $V(M)-T$ immediately after $u . \kappa(u, v) \leq 2 m-t$.
- Case 2: $u, v \in T^{\prime} . \kappa(u, v) \leq n-1=2 m+s-1$.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

- Case 1: $u \in S$. If P and P^{\prime} are distinct internally disjoint u, v-paths, then both of them must visit $V(M)-T$ immediately after $u . \kappa(u, v) \leq 2 m-t$.
- Case 2: $u, v \in T^{\prime} . \kappa(u, v) \leq n-1=2 m+s-1$.
- Case 3: $u \in R \cup T$. For the vertex after u on a u, v-path, at most one vertex of S is available. Thus, $\kappa(u, v) \leq 2 m$.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\bar{\kappa}(G) \leq \frac{(2 m-t)\left[\binom{s}{2}+s(n-s)\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\binom{n}{2}-\binom{s}{2}-s(n-s)-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}}
$$

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\begin{aligned}
\bar{\kappa}(G) & \leq \frac{\left.(2 m-t)\left[\binom{s}{2}+s(n-s)\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\begin{array}{l}
n \\
2
\end{array}\right)-\binom{s}{2}-s(n-s)-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& \leq \frac{(2 m-t)\left[\binom{s}{2}+s t\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\binom{n}{2}-\binom{s}{2}-s t-\binom{t^{\prime}}{2}\right]}{\binom{2}{2}}
\end{aligned}
$$

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\begin{aligned}
\bar{\kappa}(G) & \leq \frac{(2 m-t)\left[\binom{5}{2}+s(n-s)\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\binom{n}{2}-\binom{5}{2}-s(n-s)-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& \leq \frac{(2 m-t)\left[\binom{s}{2}+s t\right]+(2 m+s-1)\left(\begin{array}{c}
t^{\prime}
\end{array}\right)+2 m\left[\binom{n}{2}-\binom{s}{2}-s t-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& =2 m+\frac{(s-1)\binom{t^{\prime}}{2}-t\binom{s}{2}-t^{2} s}{\binom{n}{2}} \leq 2 m-t \frac{s^{2}+t-1}{n(n-1)} \leq 2 m .
\end{aligned}
$$

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\begin{aligned}
\bar{\kappa}(G) & \leq \frac{\left.(2 m-t)\left[\binom{s}{2}+s(n-s)\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\begin{array}{l}
n \\
2
\end{array}\right)-\binom{s}{2}-s(n-s)-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& \leq \frac{\left.(2 m-t)\left[\binom{s}{2}+s t\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\begin{array}{l}
n \\
2
\end{array}\right)-\binom{s}{2}-s t-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& =2 m+\frac{(s-1)\binom{t^{\prime}}{2}-t\binom{s}{2}-t^{2} s}{\binom{n}{2}} \leq 2 m-t \frac{s^{2}+t-1}{n(n-1)} \leq 2 m .
\end{aligned}
$$

To have equality in the last inequality, $t=0$ or 1 .

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\begin{aligned}
\bar{\kappa}(G) & \leq \frac{(2 m-t)\left[\binom{5}{2}+s(n-s)\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\binom{n}{2}-\binom{5}{2}-s(n-s)-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& \leq \frac{(2 m-t)\left[\binom{s}{2}+s t\right]+(2 m+s-1)\left(\begin{array}{c}
t^{\prime}
\end{array}\right)+2 m\left[\binom{n}{2}-\binom{s}{2}-s t-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& =2 m+\frac{(s-1)\binom{t^{\prime}}{2}-t\binom{s}{2}-t^{2} s}{\binom{n}{2}} \leq 2 m-t \frac{s^{2}+t-1}{n(n-1)} \leq 2 m .
\end{aligned}
$$

To have equality in the last inequality, $t=0$ or 1 .
$t=1$ requires $s=0$, which is a contradiction.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}(G) \leq 2 \alpha^{\prime}(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\begin{aligned}
\bar{\kappa}(G) & \leq \frac{(2 m-t)\left[\binom{5}{2}+s(n-s)\right]+(2 m+s-1)\binom{t^{\prime}}{2}+2 m\left[\binom{n}{2}-\binom{5}{2}-s(n-s)-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& \leq \frac{(2 m-t)\left[\binom{s}{2}+s t\right]+(2 m+s-1)\left(\begin{array}{c}
t^{\prime}
\end{array}\right)+2 m\left[\binom{n}{2}-\binom{s}{2}-s t-\binom{t^{\prime}}{2}\right]}{\binom{n}{2}} \\
& =2 m+\frac{(s-1)\binom{t^{\prime}}{2}-t\binom{s}{2}-t^{2} s}{\binom{n}{2}} \leq 2 m-t \frac{s^{2}+t-1}{n(n-1)} \leq 2 m .
\end{aligned}
$$

To have equality in the last inequality, $t=0$ or 1 .
$t=1$ requires $s=0$, which is a contradiction.
$t=0$ requires $s=1$. G is the complete graph with n vertices.

Proof (

and Matching Number)

Theorem (Kim and O 2013)

If G is connected and bipartite, then $\bar{\kappa}(G) \leq\left(\frac{9}{8}-\frac{3 n-4}{8 n^{2}-8 n}\right) \alpha^{\prime}(G)$. This is sharp only for $K_{q, 3 q-2}$ for a positive integer q.

and Matching Number

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{\bar{d}^{2}}{n-1} \leq \bar{\kappa}^{\prime}(G) \leq \bar{d}$.

and Matching Number

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{\bar{d}^{2}}{n-1} \leq \bar{\kappa}^{\prime}(G) \leq \bar{d}$.

Theorem (Kim and O 2013)

For a connected graph $G, \bar{\kappa}^{\prime}(G) \leq 2 \alpha^{\prime}(G)$, and this is sharp. Furthermore, if G is connected and bipartite, then $\bar{\kappa}^{\prime}(G) \leq\left(\frac{9}{8}-\frac{3 n-4}{8 n^{2}-8 n}\right) \alpha^{\prime}(G)$, and this is sharp.

and Average Connectivity

Figure: $\mathrm{K}(\mathrm{G})=1+\mathrm{O}\left(\frac{\mathrm{q}}{\mathrm{s}}\right)$ and $\overrightarrow{\mathrm{K}}(\mathrm{G})=\mathrm{q}-1$
The above graphs show that there can be a huge gap between average edge-connectivity and average connectivity.

and Average Connectivity

Question 1. What is the largest gap between the average edge-connectivity and the average connectivity in an n-vertex connected graph?

and Average Connectivity

Question 1. What is the largest gap between the average edge-connectivity and the average connectivity in an n-vertex connected graph?

Question 2. What is the largest ratio of the average edge-connectivity and the average connectivity in an n-vertex connected graph?

in Regular Graphs

An extremal problem: What is the smallest average edge-connecitivity of an n-vertex connected r-regular graph?

in Graphs

We found the best lower bound for the first nontrivial case $r=3$.

in Graphs

We found the best lower bound for the first nontrivial case $r=3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$.

in Graphs

We found the best lower bound for the first nontrivial case $r=3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in the following family.

in Graphs

We found the best lower bound for the first nontrivial case $r=3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in the following family.

If a graph G has a cut-edge, then we get components after we delete all cut-edges of G.

in Graphs

We found the best lower bound for the first nontrivial case $r=3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in the following family.

If a graph G has a cut-edge, then we get components after we delete all cut-edges of G. We define an i-balloon to be such a component incident to i cut-edges.

in Graphs

We found the best lower bound for the first nontrivial case $r=3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in the following family.

If a graph G has a cut-edge, then we get components after we delete all cut-edges of G. We define an i-balloon to be such a component incident to i cut-edges. Let $B_{1}=P_{3}+K_{2}$ and let $B_{1}^{\prime}=K_{4}-e$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G. $\kappa^{\prime}(G)=1$: If not, then $\kappa^{\prime}(G)\binom{n}{2} \geq 2\binom{n}{2} \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Every 1-balloon of G is B_{1} : If not, then there exists an 1-balloon D_{1} of G such that $D_{1} \neq B_{1}$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G. $\kappa^{\prime}(G)=1$: If not, then $\kappa^{\prime}(G)\binom{n}{2} \geq 2\binom{n}{2} \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Every 1-balloon of G is B_{1} : If not, then there exists an 1-balloon D_{1} of G such that $D_{1} \neq B_{1}$. Let $\left|V\left(D_{1}\right)\right|=5+a$.
Let G^{\prime} be the graph obtained from G by replacing D_{1} with B_{1}.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G. $\kappa^{\prime}(G)=1$: If not, then $\kappa^{\prime}(G)\binom{n}{2} \geq 2\binom{n}{2} \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Every 1-balloon of G is B_{1} : If not, then there exists an 1-balloon D_{1} of G such that $D_{1} \neq B_{1}$. Let $\left|V\left(D_{1}\right)\right|=5+a$.
Let G^{\prime} be the graph obtained from G by replacing D_{1} with B_{1}. Then $\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2} \geq\binom{ n-1}{2}+\frac{7(n-1)+58}{4}$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G. $\kappa^{\prime}(G)=1$: If not, then $\kappa^{\prime}(G)\binom{n}{2} \geq 2\binom{n}{2} \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Every 1-balloon of G is B_{1} : If not, then there exists an 1-balloon D_{1} of G such that $D_{1} \neq B_{1}$. Let $\left|V\left(D_{1}\right)\right|=5+a$.
Let G^{\prime} be the graph obtained from G by replacing D_{1} with B_{1}. Then $\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2} \geq\binom{ n-1}{2}+\frac{7(n-1)+58}{4}$. $\kappa^{\prime}(G)\binom{n}{2}=\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2}-\kappa^{\prime}\left(B_{1}\right)\binom{5}{2}-5(n-a-5)+\kappa^{\prime}\left(D_{1}\right)\binom{5+a}{2}$ $+(5+a)(n-a-5)$

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G. $\kappa^{\prime}(G)=1$: If not, then $\kappa^{\prime}(G)\binom{n}{2} \geq 2\binom{n}{2} \geq\binom{ n}{2}+\frac{7 n+58}{4}$.
Every 1-balloon of G is B_{1} : If not, then there exists an 1-balloon D_{1} of G such that $D_{1} \neq B_{1}$. Let $\left|V\left(D_{1}\right)\right|=5+a$.
Let G^{\prime} be the graph obtained from G by replacing D_{1} with B_{1}. Then $\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2} \geq\binom{ n-1}{2}+\frac{7(n-1)+58}{4}$. $\kappa^{\prime}(G)\binom{n}{2}=\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2}-\kappa^{\prime}\left(B_{1}\right)\binom{5}{2}-5(n-a-5)+\kappa^{\prime}\left(D_{1}\right)\binom{5+a}{2}$ $+(5+a)(n-a-5) \geq\binom{ n-a}{2}+\frac{7(n-a)+58}{4}-26-5(n-a-5)+$ $2\binom{5+a}{2}+(5+a)(n-a-5)$

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \geq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G. $\kappa^{\prime}(G)=1$: If not, then $\kappa^{\prime}(G)\binom{n}{2} \geq 2\binom{n}{2} \geq\binom{ n}{2}+\frac{7 n+58}{4}$.
Every 1-balloon of G is B_{1} : If not, then there exists an 1-balloon D_{1} of G such that $D_{1} \neq B_{1}$. Let $\left|V\left(D_{1}\right)\right|=5+a$.
Let G^{\prime} be the graph obtained from G by replacing D_{1} with B_{1}. Then $\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2} \geq\binom{ n-1}{2}+\frac{7(n-1)+58}{4}$. $\kappa^{\prime}(G)\binom{n}{2}=\kappa^{\prime}\left(G^{\prime}\right)\binom{n-a}{2}-\kappa^{\prime}\left(B_{1}\right)\binom{5}{2}-5(n-a-5)+\kappa^{\prime}\left(D_{1}\right)\binom{5+a}{2}$ $+(5+a)(n-a-5) \geq\binom{ n-a}{2}+\frac{7(n-a)+58}{4}-26-5(n-a-5)+$ $2\binom{5+a}{2}+(5+a)(n-a-5)>\binom{n}{2}+\frac{7 n+58}{4} n$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \leq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \leq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.
$\kappa^{\prime}(G)=1:$
Every 1-balloon of G is B_{1}.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \leq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.
$\kappa^{\prime}(G)=1:$
Every 1-balloon of G is B_{1}.
Every 2-balloon of G is B_{1}^{\prime}.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_{4}, then $\binom{n}{2} \bar{\kappa}^{\prime}(G) \leq\binom{ n}{2}+\frac{7 n+58}{4}$. Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.
$\kappa^{\prime}(G)=1:$
Every 1-balloon of G is B_{1}.
Every 2-balloon of G is B_{1}^{\prime}.
There are no i-balloons in G for $i \geq 3$.

Questions

Question 3. What is the best upper bound for $\bar{\kappa}^{\prime}(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Questions

Question 3. What is the best upper bound for $\bar{\kappa}^{\prime}(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Suppose that r is odd. Let $B_{r}=\overline{P_{3}+\frac{r-1}{2} K_{2}}$ and $B_{r}^{\prime}=K_{r+1}-e$. For odd r, we guess that the graph obtained from the graph in the special family by replacing B_{1} and B_{1}^{\prime} with B_{r} and B_{r}^{\prime} are the extremal graphs.

Questions

Question 3. What is the best upper bound for $\bar{\kappa}^{\prime}(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Questions

Question 3. What is the best upper bound for $\bar{\kappa}^{\prime}(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Suppose that $r=4$.

Questions

Question 3. What is the best upper bound for $\bar{\kappa}^{\prime}(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Suppose that $r=4$.

Thank you

Thank You:)

Suil 0

