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Changes in photosynthetic and respiration rates in coastal marine habitats cause
considerable variability in ecosystem metabolism on timescales ranging from diel to tidal
to seasonal. Here, temporal and spatial dynamics of dissolved oxygen (DO), carbonate
chemistry, and net ecosystem metabolism (NEM) were quantified from spring through
fall in multiple, distinct, temperate estuarine habitats: seagrass meadows, salt marshes,
an open water estuary, and a shallow water habitat dominated by benthic macroalgae.
DO and pHT (total scale) measurements were made via high frequency sensor arrays
coupled with discrete measurements of dissolved inorganic carbon (DIC) and high-
resolution spatial mapping was used to document intra-habitat spatial variability. All
habitats displayed clear diurnal patterns of pHT and DO that were stronger than tidal
signals, with minimums and maximums observed during early morning and afternoon,
respectively. Diel ranges in pHT and DO varied by site. In seagrass meadows and the
open estuarine site, pHT ranged 7.8–8.4 and 7.5–8.2, respectively, while DO exceeded
hypoxic thresholds and aragonite was typically saturated (�Ar > 1). Conversely, pHT in a
shallow macroalgal and salt marsh dominated habitats exhibited strong diel oscillations
in pHT (6.9–8.4) with diel acidic (pHT < 7) and hypoxic (DO < 3 mg L−1) conditions often
observed during summer along with extended periods of aragonite undersaturation
(�Ar < 1). The partial pressure of carbon dioxide (pCO2) exceeded 3000 and 2000 µatm
in the salt marsh and macroalgal bed, respectively, while pCO2 never exceeded
1000 µatm in the seagrass and open estuarine site. Mesoscale (50–100 m) spatial
variability was observed across sites with the lowest pHT and DO found within regions
of more restricted flow. NEM across habitats ranged from net autotrophic (macroalgae
and seagrass) to metabolically balanced (open water) and net heterotrophic (salt marsh).
Each habitat exhibited distinct buffering capacities, varying seasonally, and modulated
by adjacent biological activity and variations in total alkalinity (TA) and DIC. As future
predicted declines in pH and DO are likely to shrink the spatial extent of estuarine refuges
from acidification and hypoxia, efforts are required to expand seagrass meadows and
the aquaculture of macroalgae to maximize their ecosystem benefits and maintain these
estuarine refuges.

Keywords: acidification, hypoxia, estuary, respiration, carbon dioxide, pH, dissolved oxygen, ecosystem
metabolism
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INTRODUCTION

Estuaries are among the most biologically productive ecosystems
on the planet and serve as critical habitats for early life
stage finfish and shellfish (Baird et al., 1991; Sogard and
Able, 1991; Able, 2005; Barbier et al., 2010). Estuaries play a
vital role by providing important ecosystem services including
acting as filtration barriers between terrestrial and marine
environments as well as buffer zones, protecting coastal regions
and stabilizing shorelines (Valiela, 2006). The habitats within
estuaries are biologically and metabolically diverse, ranging
from highly productive salt marsh ecosystems to mesotrophic-
to-oligotrophic open water estuaries (Caffrey, 2004). Primary
production is essential to the functioning of these aquatic
ecosystems and, depending on estuarine habitat, can be generated
from a variety of sources including macroalgae, seagrasses, salt
marsh grasses, benthic microalgae, and phytoplankton. Although
primary production (and thus O2 production) within estuarine
environments can be elevated on short timescales (hours to days),
respiration within these systems catalyzes energy production
sourced from allochthonous and autochthonous carbon, making
estuaries predominantly net heterotrophic ecosystems (Smith
and Mackenzie, 1987; Caffrey, 2004; Cloern et al., 2014).
However, there are many examples of net autotrophy where
shallow, macrophyte dominated estuaries with minimal organic
matter loading can be considered a net CO2 sink (Maher
and Eyre, 2012). Microbial metabolic rates driving ecosystem
metabolism can vary on hourly time scales in estuarine
environments causing rapid changes in dissolved gases (O2,
CO2), and changes in estuarine pH over short temporal and
spatial scales (Baumann and Smith, 2018).

Salt marshes are highly productive ecosystems well-known
for high rates of metabolic activity that increase dramatically
from winter to summer months (Nixon and Oviatt, 1973). Tidal
fluctuations can also have strong influences on shallow salt
marshes with high tides often transporting more oxygenated
waters into marshes (O’Boyle et al., 2013; Baumann et al., 2015).
Salt marsh-dominated estuaries generally have a detritus-based
food web (Odum, 1971) and respiration rates that are highly
accelerated, facilitating the net consumption of DO (Nixon and
Oviatt, 1973). In contrast to DO, substantially less is known
regarding the dynamics of carbonate chemistry in salt marshes
(Wang et al., 2016; Wang et al., 2018).

Seagrass meadows are found in the shallow waters of every
continent except Antarctica (Duarte et al., 2010) and provide
food, habitat, and nursery areas for a variety of invertebrate
and vertebrate species (Beck et al., 2001; Heck et al., 2003;
Orth et al., 2006). Seagrass beds can be important sources of
organic production, sequestering carbon within the surrounding
sediment and exporting detritus (Suchanek et al., 1985; Duarte
et al., 2005; Orth et al., 2006). Previous studies have shown that
low pH can also occur in seagrass beds at night, where periods
of undersaturation can cause carbonate-sediment dissolution
(Camp et al., 2016; Cyronak et al., 2018). In addition, organic
material within seagrass beds can degrade, increasing DIC and
enhancing carbonate dissolution in these shallow water habitats
(Unsworth et al., 2012). Photosynthetic rates in seagrass beds can

also be limited by carbon availability, specifically in the form of
CO2 (Beer and Koch, 1996) and this may be especially evident in
many northeast United States estuaries as much of the remaining
seagrass beds are now restricted to low turbidity areas (Dennison
et al., 1993) with minimal shoreline development (Roman et al.,
2000; Short et al., 2006; Blake et al., 2014), but also higher salinity
and lower CO2 (Wallace et al., 2014). The species of seagrass
indigenous to the Northeast United States (Zostera marina) has
been well-studied and much of the oxygen produced by this
species is released into the surrounding water column (Sand-
Jensen and Borum, 1983; Caffrey and Kemp, 1991). Conversely,
as a significant carbon sink (Orth et al., 2006) these highly
productive seagrass meadows rapidly assimilate CO2 and may
provide zones of elevated aragonite saturation (�Ar), even within
eutrophic estuaries (Hendriks et al., 2014; Pacella et al., 2018).

Macroalgae-dominated estuarine regions are common in both
tropical and temperate regions around the world and are often
dominated by chlorophytes such as Ulva spp. that can form
dense blooms referred to as “green tides” (Smetacek and Zingone,
2013). Regions commonly impacted by the accumulation of green
macroalgal biomass include the east coast of North America
(Ye et al., 2011), the Bohai Sea in China (Liu et al., 2009;
Liu et al., 2010), and Brittany, France (Ménesguen and Piriou,
1995) where blooms are often dominated by morphologically
indistinguishable species of the genus Ulva (Blomster et al.,
2002). Ulva-dominated ecosystems can drive large fluctuations in
DO on both diurnal and seasonal timescales via photosynthesis
and respiration. Middelboe and Hansen (2007a) found that
in a macroalgae-dominated, wave exposed area, DO was
supersaturated during the day (125% saturation) and near
saturated conditions at night (91% saturation). In more poorly
flushed, temperate regions, dense stands of macroalgae and Ulva
spp. blooms can promote diurnal and seasonal hypoxia and
anoxia (Valiela et al., 1992; Wallace and Gobler, 2015). Despite
the well-documented occurrence of hypoxia within macroalgal-
dominated communities (Valiela et al., 1992; Valiela, 2006),
no study to date has co-currently assessed DO dynamics and
carbonate chemistry within such temperate ecosystems, despite
previous studies that have shown that Ulva spp. can have negative
impacts on multiple calcifying animals (Magre, 1974; Johnson
and Welsh, 1985).

Tidal and metabolic variability can drive intense temperature,
pH, and DO fluctuations in coastal environments occurring
over short time scales (Wootton et al., 2008; Cai et al., 2011;
Riche et al., 2014). With recent advances in high frequency
in situ sensors (Bergveld, 2003; Hofmann et al., 2011; Fietzek
et al., 2014), biogeochemical cycles can be monitored with high
temporal resolution. Net metabolism in coastal ecosystems has
been studied for decades (Smith and Mackenzie, 1987; Gattuso
et al., 1998; Caffrey, 2004; Borges et al., 2008), although most
of these efforts lacked the high frequency, high resolution
data needed to resolve the temporal and spatial dynamics of
rate processes within these systems (Borges et al., 2008). In
addition, most studies of ecosystem metabolism in estuaries
have focused either on high frequency O2 measurements or less
frequent, lower resolution pH or carbon measurements. There
has been little focus on high frequency and high-resolution
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measurements of both O2 and pH (Rosenau et al., 2021) coupled
with measurements of carbonate chemistry. Studies that have
focused on the monitoring of high frequency carbonate chemistry
in coastal environments (Baumann et al., 2015; Saderne et al.,
2015; Wang et al., 2015), have lacked simultaneous comparisons
of distinct habitats. Such approaches would permit an evaluation
of the relative strength and direction (net autotrophic vs.
net heterotrophic) of ecosystem metabolism as well as their
comparative suitability as habitats for calcifying and other
marine organisms.

Therefore, this study was undertaken to compare four
common northeast United States coastal habitats within the same
general estuarine system, with respect to the dynamics of net
ecosystem metabolism (NEM), carbonate chemistry, DO, and
pHT . Questions addressed in this study included: How do rates
of NEM compare across estuarine habitat types? What are the
fine temporal and spatial scales of carbonate chemistry across
estuarine habitats? How do specific estuarine habitats compare
as refugia from coastal acidification? Continuous measurements
were specifically made within multiple salt marshes and seagrass
beds, as well as in macroalgae beds and open-water estuarine
regions over a 5-year period. Continuous measurements of DO
and pHT were complemented with discrete measurements of
carbonate chemistry, allowing for a comprehensive assessment
of the suitability of the various habitats for calcifying and other
marine organisms.

MATERIALS AND METHODS

Site Description
Four distinct coastal habitat types within a ∼200 km2 region
on eastern Long Island were examined for this study; two
seagrass meadows in eastern Shinnecock Bay (SG-1; 40.85849,
−72.45107 and SG-2; 40.86001, −72.49834; Figure 1), one salt
marsh in western Shinnecock Bay (SM-1; 40.81992, −72.56497;
Figure 1), two salt marshes in the Peconic Estuary (SM-2;
40.90555, −72.59280 and SM-3; 40.92970, −72.42583; Figure 1),
an open water location in the Peconic Estuary (OW-1; 40.97672,
−72.46638; Figure 1), and a shallow water ecosystem dominated
by benthic macroalgae (Ulva spp.) in the Peconic Estuary
(MA-1; 41.01861, −72.47134; Figure 1). In addition, cruises
were performed across the Peconic Estuary and Shinnecock
Bay to place habitat-specific observations in a larger, estuary-
wide perspective.

The seagrass sites were located at the southeastern extent of
Long Island’s South Shore Estuary Reserve, which hosts some of
the most expansive seagrass (Z. marina) stands remaining on
Long Island (∼81 km2; Carlson et al., 2009). Z. marina shoot
density at site SG-1 was 827 shoots m−2 (SD ± 148.3, n = 30)
and was 224 shoots m−2 (SD ± 27.9, n = 18) at site SG-2, a
density range considered typical of healthy stands (Olesen and
Sand-Jensen, 1994). Site SG-1 is a ∼2 km2 seagrass bed located
∼2.6 km ENE of Shinnecock Inlet where water is exchanging with
the Atlantic Ocean and SG-2 is a ∼1 km2 bed that runs along
the western shoreline located∼2.5 km NNW of Shinnecock Inlet
and has extensive macroalgae interspersed within the seagrass

bed. The mean depth at SG-1 was 1.26 m with a mean daily
range of 1.02 m and the mean depth at SG-2 was 1.09 m with
a mean daily range of 1.06 m. Salt marsh site SM-1 was located
along the southwest shore of Shinnecock Bay, where there are
dense stands of salt marsh islands and tidal creeks stretching for
∼ 6 km and extending up to 0.8 km wide. The mean depth at
SM-1 was 0.59 m with a mean daily range of 0.75 m. The two
additional salt marsh sites lie at opposite ends of the Peconic
Estuary. Site SM-2 lies along the south shore of Flanders Bay and
represents the northern boundary of a 3.23 km2 protected salt
marsh known as Hubbard County Park. The mean depth at SM-
2 was 0.94 m with a mean daily range of 0.84 m. Site SM-3 is
located in the Scallop Pond Preserve, one of Long Island’s least
developed coastal wetlands encompassing an area of ∼2 km2.
Site SM-3 was slightly deeper than the other two marsh sites
with a mean depth of 1.68 and a 1.01 m mean daily range. The
open water location is in the north shore of Robin’s Island in
a mesotrophic to oligotrophic section of the Peconic Estuary,
strongly flushed by tides (Hardy, 1976) and known to host robust
bay scallop (Argopecten irradians) populations (Tettelbach et al.,
2013). The mean depth at this location was 2 m with a mean
daily range of 0.92 m. The macroalgae-dominated site was located
in the Haywater Cove, Cutchogue, NY, which receives extensive
nutrient loads from adjacent residential and agricultural areas.
The study area exhibited 100% benthic coverage with Ulva spp.
at 101 ± 13 g−1 DW m−2 during this study and the mean depth
was 1.08 m with a mean daily range of 0.84 m.

Time Series
At all locations a Satlantic SeaFET Ocean pH sensor and a
YSI EXO2 multiparameter sonde were affixed horizontally atop
a 0.3 m polycarbonate cage that permitted complete flow of
water and prevented interaction with sediments. The sensor
array at the open water location (site OW-1; Figure 1) was
suspended from a fixed bulkhead ∼1 m (low tide) above
the sediment surface. The EXO2 multiparameter platform had
sensors for temperature (◦C), conductivity (µS cm−1), DO
(optical; mg L−1 and % saturation), pHNBS (National Bureau
of Standards), and chlorophyll a fluorescence (RFU) that
made measurements at 10 min intervals from ∼May through
∼October, over multiple years, 2014–2018. Copper mesh was
fitted over all sensors and a central wiping mechanism was
attached to the multiparameter sondes (180 min. wipe interval)
to minimize biofouling. The SeaFET pH sensor measured pHT
(total H+ scale), is designed specifically for long term field
deployments (e.g., Martz et al., 2010; Hofmann et al., 2011)
and, like the multiparameter sensors, logged pHT levels every
10 min from ∼May through ∼October. The NBS scale measures
H+ activity and the total H+ scale measures H+ concentration
where converting between scales can introduce significant error.
The differences between scales can range from hundredths to
tenths of a pH unit where the total H+ scale is generally
considered to be the most appropriate for estuarine and coastal
systems (Pimenta and Grear, 2018). Maintenance and data
transfer on each sensor array were performed on a weekly
to bi-weekly basis during which sensors and brackets were
removed, cleaned, and tested. Additionally, discrete sampling
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and field calibrations were performed on a weekly to bi-
weekly basis. Discrete measurements were made using a YSI
600QS fitted with a temperature/conductivity sensor, a rapid
pulse polarographic DO sensor, and a pH electrode/Ag/Ag-Cl
reference probe that provided pH measurements on the NBS
scale. The handheld DO sensor was calibrated on a weekly to
bi-weekly basis using a 2-point calibration technique in which
the sensor was inserted into a 100% air saturated chamber
until the sensor reached temperature equilibrium. Following
the air-saturated calibration, the sensor was submersed in a
saturated sodium sulfite solution (O2 scavenger) to achieve
a zero-point calibration. This two-point calibration technique
improves accuracy of DO measurements in estuarine systems
that are prone to intense diurnal fluctuations (Baumann et al.,
2015). Conductivity sensors were calibrated at the beginning
of the field season using a 50,000 µS cm−1 conductivity
solution and only calibrated again if significant drift was
observed in the data (>0.2 psu). The pH sensor affixed to
the EXO2 was calibrated at 25◦C on a weekly to bi-weekly
basis using a 3-point calibration procedure in which sensors
were submerged in three NIST certified pH buffer solutions
(4, 7, and 10: ±0.02). In addition, discrete measurements of
pHT were made using a Honeywell DuraFET III pH electrode
(Ion Selective Field Effect Transistor; ISFET) integrated to a
Honeywell Analytical Process Analyzer (APT) 4000PH series.
The DuraFET was calibrated seasonally and when significant
drift was observed (±0.02) by submersion in a 25◦C equimolal
Tris buffer in synthetic seawater of salinity 35 prepared by
Dr. Andrew Dickson’s lab (University of California San Diego,
Scripps Institution of Oceanography; Batch 26). The pHT of
field samples were corrected for temperature and salinity as per
Martz et al. (2010). Post-processing of data was conducted to
account for fouling errors and/or sensor calibration drift. In
order to adjust for potential data inconsistencies, data corrections
were applied when combined absolute values due to errors
exceeded water quality data correction criteria as described by
USGS (see Supplementary Table 2; Wagner et al., 2006). Data
errors resulting from biofouling were assessed by determining
differences between pre- and post-cleaning measurements and
a sensor fouling error would then be applied to the data as
necessary (Wagner et al., 2006). Similarly, calibration drift was
assessed pre- and post-calibration by determining a drift error
based on the sensor measurements in standard/buffer solutions
and the temperature-compensated value of the standard/buffer
solution (Wagner et al., 2006). Data corrections were applied
between maintenance intervals where drift corrections are
assumed to occur at a constant rate and therefore linearly
interpolated between maintenance intervals (Bartholoma, 2003).
Generally, a single variable data correction was applied unless the
data range was significant relative to the maintenance interval, in
which case a second data correction based on percent error was
applied (see Supplementary Table 2 descriptions for formulas
applied; Wagner et al., 2006). There were a few occasions during
this study in which sensors failed due to fouling and other issues
in which case data was removed. Spatial and temporal trends
in chemical sensor data was assessed using a Spearman rank
order correlation.

Discrete Samples
Discrete water samples were collected using a 2-L handheld
WildCo R© Van Dorn horizontal water sampler and/or peristaltic
pump during daylight hours. Dissolved inorganic carbon (DIC)
samples were obtained by inserting Tygon R© tubing from the
Van Dorn bottle into 330 mL borosilicate glass BOD bottles
and allowing sample water to overflow with two full volumes
of water. All samples were preserved on site by adding 100 µL
of saturated HgCl2 solution and were sealed with a glass
stopper using Apiezon L ultra-high vacuum grease. Poisoned
DIC samples were analyzed by coulometric titration using a UIC
Inc. CM5017O coulometer interfaced to a VINDTA 3D delivery
system. As a quality assurance measure, certified reference
material generated by Dr. Andrew Dickson’s lab (University
of California San Diego, Scripps Institution of Oceanography)
was analyzed immediately before and after sample titration and
yielded full recovery during this entire study (99.99% ± 0.05).
Carbonate chemistry parameters were calculated from measured
levels of DIC, pHT , temperature, salinity, phosphate, silicate,
concentrations of boron (Lee et al., 2010), sulfate (Morris and
Riley, 1966), fluorine (Riley, 1965), the dissociation constant of
potassium fluoride (Dickson and Riley, 1979), the dissociation
constant of potassium sulfate (Dickson, 1990), the solubility
coefficient of CO2 (Weiss, 1974), the vapour pressure of H2O
above seawater (Weiss and Price, 1980), and the first and second
dissociation constants of carbonic acid in seawater (Millero,
2010) using the program CO2SYS.1 Additional water samples
were collected for analysis of chlorophyll a, nitrate/nitrite,
ammonium, orthophosphate, particulate organic carbon (POC),
and particulate organic nitrogen (PON). Chlorophyll a samples
were filtered in triplicate through 0.2 µm polycarbonate filters
and were extracted via organic solvent (acetone) and quantified
using a Turner Designs© Trilogy Laboratory Fluorometer with
an excitation wavelength of 485 nm and an emission wavelength
of 685/10 nm. Water collected for dissolved inorganic nutrient
analyses was filtered on site through pre-combusted (2 h at
450◦C) glass fiber filters (GF/F) and filtrate was colorimetrically
analyzed via a Hach QuikChem 8500 Flow Injection Analysis
system. Water collected for POC/N were processed by collecting
particles onto pre-combusted, GF/F and were analyzed using a
CE instruments Flash 1112 elemental analyzer (Sharp, 1974).
Differences in the chemical characteristics of sites were compared
by means of one-way ANOVAs with Bonferroni tests used
to assess difference among groups. Non-normal data was
transformed prior to statistical tests.

Spatial Mapping
Surface water DO, pHNBS, and pCO2 levels were horizontally
profiled across several systems and estuaries during the day to
characterize spatial patterns within each distinct habitat. In situ
pCO2 levels were measured using a Contros HydroC CO2 sensor.
The HydroC measures pCO2 levels via non-dispersive infrared
spectrometry (NDIR) after dissolved gasses within seawater
permeate a hydrophobic membrane and equilibrate with the
inner pumped gas circuit (Fiedler et al., 2012; Fietzek et al., 2014).

1https://cdiac.ess-dive.lbl.gov/ftp/co2sys/
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Surface water mapping cruises encompassed the Peconic Estuary
in its entirety, with additional secondary cruises conducted in
the Haywater Cove region (site MA-1), and the Scallop Pond
region (site SM-3) using a 1′′ diameter rigid ram intake (Madden
and Day, 1992) affixed to the rear transom of a small vessel,
extending 0.5 m below the air-sea interface with 3–4 flow
chambers customized to specific sensor arrays. A debubbler
was installed in-line where the system was first primed to
generate laminar flow. If significant bubbling was detected via
pressure sensor, data was removed. In order to examine fine
scale variations within the seagrass meadow, a rigid intake
was developed for the seagrass sampling location (SG-1) in
which water was sampled continuously from 10 cm above the
sediment water interface using a laminar flow pump. All sampling
locations were geo-referenced using a GPS receiver (GlobalSat
BU-353S4; SiRFstar IV) transmitting at 1 Hz. Horizontal survey
data was interpolated using the simple kriging method and
the semivariogram function was used to relate semivariance
to sampling lag (Curran, 1988). Additional point data was
interpolated using a diffusion kernel technique with an additive
raster barrier. This diffusion interpolation was useful as high
resolution data warranted an interpolation that uses a distance
metric (optimally varying kernel) that calculates the cost of travel
from one cell of a raster to the next (Krivoruchko and Gribov,
2004). This technique yielded predictions based on a grid matrix
and accounted for any region with insufficient data or areas
that have non-transparent barriers (i.e., coastlines) for chemical
propagation (Gribov and Krivoruchko, 2011).

Habitat Metabolism
Ecosystem metabolism was calculated at five sampling locations
(SG-1, SG-2, SM-3, MA-1, and OW-1), enabling comparison
of distinct metabolic rates throughout the entire field season.
Diffusion of oxygen (O2d) across the air-sea interface (kg s−1)
was calculated at 10 min intervals using a bulk liquid-phase mass
transfer coefficient (Eq. 1) as described in Ro et al. (2007), where
DOA is the DO concentration at equilibrium with the atmosphere
(kg m−3), DOw is the DO concentration in the water (kg m−3),
A is the mass transfer area (m2), and kL is the bulk liquid-phase
oxygen mass transfer coefficient (m/s). kL was derived using
Eq. 2 as described by Ro et al. (2007) where Sc is the Schmidt
number, defined as the kinematic viscosity of water divided by
the diffusion coefficient of O2 gas (Wanninkhof, 1992). U10 is the
wind speed at a reference height of 10 m (m/s), which was derived
from continuous data collected at the Stony Brook Southampton
Marine Sciences Center, Southampton, NY, United States which
is <15 km from all study sites,2 ρA indicates the density of air, and
ρW indicates the density of water.

O2d = kL ∗ A(DOA − DOW) (1)

kL =

[
170.6 ∗ Sc−1/2U1.81

10

(
ρA
ρW

)1/2
]

2.78 ∗ 10−6 (2)

2https://lishore.org/l17/latest.php

For each 10 min interval, O2 diffusion (O2d) was subtracted from
the change in DO concentrations (g m−3) multiplied by depth
(z) of measurement (m), resulting in time-integrated oxygen flux
(O2f g m−2) as described in Caffrey (2004) (Eq. 3).

O2f =

t∑
i=1

(DOt − DO(t-1)) ∗ z − (O2d) (3)

Estimates of daily metabolic rates were calculated by subtracting
total respiration from gross production. Oxygen fluxes during
daylight hours (net production) were calculated and summed
oxygen fluxes at night were multiplied by −1 to determine
evening respiration rates (Caffrey, 2004). Gross production and
total respiration rates were estimated using net production and
evening respiration values (Caffrey, 2004). Day and evening
hours for all calculations were determined using daily civil
twilight times (Sun is 6◦ below azimuth; EDT) at each
sampling location.

Calculated metabolic rates based on fixed sensor deployments
may be susceptible to error due to tidal advection where water
masses with distinct DO histories may influence observed DO
sensor measurements (Beck et al., 2015). In order to address
this issue, we calculated an NEM error range for each site based
on the distance between sites sampled and adjacent monitoring
arrays (Van Dam et al., 2019). Mean spatial concentration
gradients were estimated for each site by dividing the mean DO
concentration by the distance between sites in km (x), multiplied
by water velocity (v; Van Dam et al., 2019). We used a mean water
velocity of 2.5 cm/s for all stations, which was the mean velocity
over a tidal cycle at station SG-2. This error range,

[(
4DO
4x

)
∗ v

]
,

was then calculated for each 10 min interval and the summation
per day was incorporated into our NEM calculations (Van
Dam et al., 2019). Due to the shallow depth at most sites, the
impact of gas transfer on water column DO concentrations may
also be significant and therefore NEM is subject to additional
error related to O2 re-aeration. To account for this re-aeration
adjustment, the calculated gas transfer velocity (Eq. 2) was
added to the error range and the summation per day was
further incorporated into the NEM calculations. Therefore, the
resulting uncertainty bounds presented in Figure 5 represent
the combined effects of lateral mixing and variability in gas
transfer velocities.

RESULTS

Continuous, Multi-Day Deployments in
Salt Marshes and Seagrass Beds
During the summer and fall of 2014, high frequency
measurements of DO and pHT were made over short temporal
scales at seagrass station 1 and salt marsh stations 1 and 2 (SG-1,
SM-1, and SM-2; Figures 1, 2). During the mid-summer seagrass
deployment, salinity ranged from 27 to 30, DO ranged from 6
to 10 mg L−1, and pHT ranged from 7.7 to 8.1, with minimum
DO and pHT values occurring in the early morning (Figure 2A)
while maximum values were recorded during the early evening
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FIGURE 1 | (A) Map of Northeastern United States with (B) Long Island, (C) Shinnecock Bay, and Great Peconic Bay inset. Black shapes indicate sampling
locations and shapes correspond to distinct habitats sampled.

FIGURE 2 | High frequency diurnal measurements of pHT (Black lines; total H+ scale) and dissolved oxygen (Blue lines; DO mg L−1) in (A) a seagrass bed (SG-1) in
August, (B) a salt marsh (SM-1) in August, (C) a seagrass bed (SG-1) in September, and (D) a salt marsh (SM-2) in October of 2014.

and coincided with a high tide on August 6 (Figure 2A). During
the same time period, sensors at the salt marsh detected values
that were lower and more dynamic, with DO ranging from
2 to 10 mg L−1, pHT ranging from 7.0 to 8.2 (Figure 2B),
with both parameters being tightly coupled with each other
(ρ = 0.67; p < 0.0001) and tidal height (ρ = 0.36 and 0.24 for

DO and pHT , respectively, p < 0.0001 for both; Figure 2B).
During fall, the seagrass meadow displayed a slightly larger pHT
and DO range, 7.6–8.1 and 6–11 mg L−1 relative to summer,
with similar diurnal patterns (Figure 2C). The fall salt marsh
deployment revealed weaker diurnal patterns, higher minimum
DO concentrations (min. DO 4–5 mg L−1), but continued low
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pHT conditions, within a minima of 7.0 and maximum pHT
values never exceeding 8.0 (Figure 2D).

Continuous, Seasonal Deployments
Across Four Habitat Types
In 2015, a multi-habitat study was established from May to early
October for three locations: salt marsh station 3 (SM-3), seagrass
station 1 (SG-1), and a macroalgae station (MA-1), with an open
water station studied from late June to mid-November (OW-1;
Figure 1). Analysis of high-frequency DO and pHT data revealed
substantial differences in means and variances between sites
(Table 1 and Figure 3). Within the salt marsh habitat, DO steadily
decreased from ∼7 to ∼5 mg L−1 throughout the summer,
before increasing slightly in fall (Figure 3A) while mean pHT
values were dynamic but low, ranging from 7.0 to 7.7 from May
through October (Figure 3B). Mean DO over the entire sampling
season in the salt marsh was 5.3 mg L−1 and mean pHT was 7.4
(Table 1 and Figures 3A,B). Within the macroalgae-dominated
system, pHT and DO were highly dynamic over diurnal time
scales (Figures 3C,D) with DO supersaturated (DO > 8 mg L−1)
and pHT ranging from 7.5 to 8.4 during much of May and
June (Figure 3C). During late June and July, this site began
to experience nocturnal hypoxia (<3 mg DO L−1; Figure 3C)
and acidified conditions (pHT < 7.5; Figure 3D). In September,
DO and pHT levels within the macroalgae-dominated site were
slightly higher than late summer conditions as mean DO ranged
from 4 to 10 mg L−1 and mean pHT ranged from 7.6 to 8.2
(Figure 3D). For the sampling season, the macroalgae station
had a mean DO of 8.53 mg L−1 and a pHT of 7.81 (Table 1
and Figures 3C,D). Within the seagrass bed, DO and pHT levels
were consistently higher than the salt marsh site and displayed
little seasonal variance compared to the macroalgae site. Mean
DO throughout the entire season was 7.85 mg L−1 and the mean
daily range was 4.5 mg L−1 while the mean pHT was 8.01 with a
mean daily range of 0.34 (Table 1 and Figures 3E,F). The open
water location exhibited the lowest seasonal variance among the
sites with mean values of DO and pHT of 7.34 ± 0.56 mg L−1

and 7.87 ± 0.06, respectively, and mean ranges of 2.19 mg L−1

and 0.25, respectively (Table 1 and Figures 3G,H).
All four habitats exhibited similar diurnal patterns in pHT

and DO, being lowest during the morning hours (Figure 4;
4:00–8:00 EDT), and highest in the afternoon (Figure 4; 12:00–
21:00 EDT). In the salt marsh, acidic (pHT < 7) and hypoxic
conditions (DO < 3 mg L−1) were common in the morning
hours, with a maximum pHT of up to 7.8 in the evening when
DO often exceeded 7 mg L−1 (Figure 4A). The macroalgal
dominated ecosystem had the largest pHT and DO range with
the pHT ranging from 6.9 to 8.8 and DO ranging from 0
to 20 mg L−1 (Figure 4B). Hypoxic / anoxic events were
most commonly observed from 04:00 to 09:00 EDT when pHT
values were usually 7.0–7.5 (Figure 4B). In contrast, pHT and
DO within the macroalgae site rarely decreased below 7.6 and
7 mg L−1, respectively, from 15:00 to 20:00 EDT, and was often
supersaturated with respect to DO at this time (Figure 4B).
The seagrass site was less dynamic than the salt marsh and
macroalgae-dominated sites with pHT values exceeding 8 and

TABLE 1 | Daily mean ± SD, maximum, minimum, variance, and range in four
distinct coastal habitats.

DO (mg L−1) SM-3 MA-1 SG-1 OW-1

Mean 5.26 8.53 7.85 7.34

Mean daily SD 1.81 3.26 1.18 0.56

Mean daily max 8.17 14.68 10.44 8.42

Mean daily min 1.90 4.33 5.93 6.23

Mean daily var 3.51 15.15 1.67 0.37

Mean daily range 6.28 10.36 4.51 2.19

pHT SM-3 MA-1 SG-1 OW-1

Mean 7.38 7.81 8.01 7.87

Mean daily SD 0.18 0.24 0.09 0.06

Mean daily max 7.66 8.14 8.19 7.99

Mean daily min 7.04 7.36 7.85 7.74

Mean daily var 0.04 0.07 0.01 0.00

Mean daily range 0.62 0.78 0.34 0.25

A salt marsh (SM-3), a macroalgal bed (MA-1), a seagrass bed (SG-1), and an
open water estuary (OW-1).

supersaturated DO values commonly observed between 13:00
and 20:00 EDT (Figure 4C). In contrast to the salt marsh and
macroalgae site, neither hypoxic nor acidic conditions were
observed within the seagrass meadow throughout this study
(Figure 4C). The open water location exhibited the lowest diurnal
variability as pHT ranged from 7.5 to 8.2 and DO ranged from
5 to 10 mg L−1 with mild afternoon increases in pHT and
DO (Figure 4D).

Daily ecosystem metabolism rates further highlighted
differences between habitats. The salt marsh was predominantly
net heterotrophic (NEM < 0) with production exceeding
respiration on only a handful of days over the deployment
(Figure 5A). NEM averaged −2.22 ± 3.54 g O2 m−2 d−1 within
the salt marsh over the entire sampling season (Figure 5A).
In contrast, the macroalgae station was primarily autotrophic
(NEM > 0), but highly variable, ranging from >20 to −7 g O2
m−2 d−1 (Figure 5B). The highest rates of net productivity
were observed in June and July before decreasing and becoming
slightly net heterotrophic by September (Figure 5B). The seagrass
sites exhibited lesser variability than the macroalgae and salt
marsh sites and was a more metabolically balanced ecosystem
averaging 0.65 ± 1.73 g O2 m−2 d−1 through the sampling
season (Figure 5C). NEM increased and became slightly more
variable during late summer, as the mean NEM before July 15
was 0.40± 1.11 and nearly doubled to 0.76± 1.93 g O2 m−2 d−1

from mid-July through August (Figure 5C). By October, NEM
within the seagrass meadow was consistently positive and less
variable (Figure 5C). NEM was the least dynamic within the
open water site, being slightly net heterotrophic, −0.13 ± 0.85 g
O2 m−2 d−1 (Figure 5D).

Inter-annual, inter-month, and intra-habitat variability of
seagrass metabolism was assessed by comparing month-by-
month, diurnal dynamics of DO and pHT in two seagrass
meadows (SG-1 in 2015 and SG-2 in 2016; Figure 1). At both
sites, DO and pHT showed consistent diurnal patterns that
intensified through summer, with site two displaying a larger
degree of diel variation during the sampling period (Figure 6).
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FIGURE 3 | Time series plots representing mean (A) DO mg L−1 d−1
± SD and (B) pHT d−1

± SD (black lines and error bars) in a salt marsh (SM-3), (C) DO
mg L−1 d−1

± SD and (D) pHT d−1
± SD (black lines and error bars) in a macroalgae-dominated creek (MA-1), (E) DO mg L−1 d−1

± SD and (F) pHT d−1
± SD

(black lines and error bars) in a seagrass bed (SG-1), and (G) DO mg L−1 d−1
± SD and (H) pHT d−1

± SD (black lines and error bars) in an open water estuary
(OW-1). The gray shaded area represents the maximum daily range each day.

Through the summer, the second seagrass site displayed stronger
daytime super-saturation of DO (>10 mg L−1) and during
August and September, this site frequently displayed pHT and
DO values below 7.7 and 5 mg L−1 in the early morning
hours (Figure 6).

Dynamics of Carbonate Chemistry
Distinct differences in the carbonate system and total alkalinity
(TA) were apparent across habitats (Figure 7). The salt marsh
(n = 15) and seagrass (n = 25) sites had similar medians with
respect to TA (∼2150 µmol kg−1 SW) and a large seasonal range
(Figure 7A and Supplementary Table 3; 600 and 550 µmol kg−1

SW, respectively) where the seagrass site had a greater salinity
range and higher peak salinity (Supplementary Table 3). TA
at the macroalgae station was significantly lower (p < 0.001;
Supplementary Table 3; Figure 7A; median ∼1850 µmol kg−1

SW, n = 9) and reached a minimum of ∼1600 µmol kg−1 SW
(Figure 7A). The macroalgae station also had the lowest salinity
compared to all other sites sampled, decreasing to 24 during
periods of intense precipitation (Supplementary Table 3). TA
at the open water site was more consistent, remaining between
∼1900 and ∼2000 µmol kg−1 SW (Figure 7A; n = 19) and
was also significantly lower than the salt marsh and seagrass
habitats (p < 0.001; Supplementary Table 3), but the mean
was not statistically distinguishable from the macroalgae site
(p > 0.05; ANOVA; Bonferroni test; Supplementary Table 3).
DIC exhibited patterns similar to TA although the salt marsh
had a significantly larger range and higher median than the other
three sites (p < 0.0001; Supplementary Table 3; Figure 7B;
range ∼700 µmol kg−1 SW, median ∼ 2100 µmol kg−1 SW).
The larger DIC range and higher values at the salt marsh site
were, at least in part, due to greater metabolic CO2 fluxes
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FIGURE 4 | Diurnal patterns of pHT (y-axis) and DO (mg L−1; color) in an (A) salt marsh, (B) macroalgal dominated (Ulva sp.) region, (C) seagrass meadow, and (D)
open water estuary, May–October, 2015. Sites identical to Figure 3.

FIGURE 5 | Daily net ecosystem metabolism (NEM; g O2 m−2 d−1) in a (A) salt marsh (SM-3), (B) a macroalgae bed (MA-1), (C) a seagrass bed (SG-1), and (D) an
open water estuary (OW-1), May – October, 2015. Sites identical to Figures 3, 4. Shaded region bound by dashed lines indicates the calculated uncertainty due to
the combined effects of lateral mixing and variability in gas transfer velocity.

emanating from the salt marsh (Figure 7C). Mean pCO2 levels
in the salt marsh were 2,315 ± 1,228 µatm, significantly higher
than all other sites (p < 0.0001; Supplementary Table 3;

Figure 7C). The pCO2 levels displayed large variation at the
macroalgae location, fluctuating from <200 to 2,000 µatm
(mean = 1,060 ± 637 µatm) and were lowest at the open water
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FIGURE 6 | Diurnal patterns of pHT (y-axis) and DO (mg L−1; colormap) in two seagrass meadows (SG-1 and SG-2), May–September, 2015 and 2016, respectively.

and seagrass sites (mean= 500± 140 µatm and 498± 184 µatm,
respectively; Figure 7C). Although the macroalgae site was often
undersaturated with respect to aragonite (�Ar < 1), it also
exhibited the largest range (<0.5–>4.5), whereas the seagrass bed
was always saturated (�Ar 1–3.5) and had the highest �Ar while
the site was almost always undersaturated (�Ar < 1; Figure 7D).
Mean �Ar levels within the seagrass beds and open water sites
were significantly higher than the salt marsh site (p < 0.001;
Supplementary Table 3) and �Ar within the seagrass beds was
also significantly higher than the macroalgae site (p < 0.01;
Supplementary Table 3). The Revelle factor (Rf) can be useful
for assessing an environment’s ability to buffer against increasing
CO2 with a higher Rf yielding a lower buffering capacity.
Increases in Rf indicate a decreased buffer capacity allowing for
the fractional change in pCO2 in relation to the fractional change
in DIC to increase (Revelle and Suess, 1957; Egleston et al., 2010).

The Rf exhibited by the salt marsh and macroalgae-dominated
sites were significantly higher than those of seagrass and open
water sites (p < 0.05; Supplementary Table 4; Figure 7E). The
macroalgae station had a much larger range in which the Rf
decreased to <8 and exceeded 18 (Figure 7E). In contrast,
the seagrass and open water location were between 10 and
16 (Figure 7E).

High-Resolution Mapping of Coastal
Habitats
The spatial variability within each habitat was examined via
high-resolution, horizontal mapping. Across the open waters
of the Peconic Estuary (Great Peconic Bay) in August, DO
ranged from 6.5 to 8.7 mg L−1, while pHNBS ranged from
7.82 to 7.98 (Figure 8) with values generally increasing from

Frontiers in Marine Science | www.frontiersin.org 10 December 2021 | Volume 8 | Article 611781

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-611781 December 6, 2021 Time: 14:49 # 11

Wallace et al. Acidification/Hypoxia in Marine Habitats

FIGURE 7 | Box and whisker plots of (A) TA (µmol kg−1 SW), (B) DIC
(µmol kg−1 SW), (C) pCO2 (µatm), (D) �Ar , and (E) Revelle factor for four
habitat types (SM-3, MA-1, SG-1, OW-1). On each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted
individually using the “+” symbol.

west to east toward the mouth of the estuary. Levels of pCO2
ranged from 580 to 700 µatm (Wallace, unpublished data). In
contrast, the macroalgae and salt marsh along the northern and

FIGURE 8 | High resolution surveys of (A) DO (mg L−1) within the macroalgae
(MA-1) sampling region, (B) pH within the macroalgae (MA-1) sampling region,
(C) DO (mg L−1) in the Peconic Estuary (OW-1), (D) pH in the Peconic
Estuary (OW-1), (E) DO (mg L−1) within a salt marsh habitat (SM-3), and (F)
pH within a salt marsh habitat (SM-3). All cruises were conducted in August.

southern shores in the same estuary, respectively, were more
spatially heterogeneous. Daytime DO within the macroalgae
region ranged from >6.5 mg L−1 at the mouth of the cove to
<5 mg L−1 toward the head while daytime pHNBS ranged from
7.48 within the cove to 7.82 at the mouth (Figure 8). Within
the salt marsh region, similar spatial differences were detected
as daytime DO ranged between 5.6 and 6.2 mg L−1 within
the marsh to >7 mg L−1 in the tributary exchanging with the
Peconic Estuary, a total distance of only ∼400 m (Figure 8).
The pHNBS trends were similar with daytime pHNBS ranging
from 7.6 to 7.7 within the marsh and exceeding 7.8 within
the deeper navigational channel toward the estuary (Figure 8).
The salt marsh pHNBS and DO values during the cruise were
slightly elevated compared to the continuous measurements
in this system as the salt marsh cruise was conducted during
the late afternoon when DO and pHNBS values are generally
at their peak (Figure 4A; O’Boyle et al., 2013; Baumann
et al., 2015; Wang et al., 2016). In addition, sampling was
conducted during a flood tide, two conditions that increase both
pHNBS and DO.

The seagrass bed (SG-1) in Shinnecock Bay displayed sharp
spatial differences in pCO2 (Figure 9). Surface waters of
Shinnecock Bay in August had pCO2 levels that ranged from 550
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FIGURE 9 | (A) High resolution survey of pCO2 in eastern Shinnecock Bay. (B) High resolution depth measurements (3 m horizontal resolution), (C) high resolution
drone imagery, and (D) pCO2 measurements sampled at 10 cm above the sediment-water interface encompassing a 6300 m2 region surrounding seagrass site
SG-1.

to 600 µatm (Figure 9). Within the seagrass bed, regions with a
depth <1 m and dense patches of seagrass had pCO2 levels as low
as 400 µatm whereas deeper regions with no seagrass had pCO2
exceeding 700 µatm (Figure 9).

DISCUSSION

High frequency pHT and DO measurements coupled with
discrete sampling across four distinct coastal habitats revealed
stark differences in carbonate chemistry and ecosystem
metabolism during this study. High-resolution sampling
conducted across each habitat highlighted acute spatial
variability present within each environment. While each
habitat displayed similar relative diurnal patterns of pHT and

DO, the intensity of variance of these conditions differed
significantly among habitats. Spring through fall is a period
of maximal metabolic rates in estuaries (D’Avanzo et al.,
1996; Caffrey, 2004; Middelboe and Hansen, 2007b; Baumann
et al., 2015). Such rates will interact with other factors such
as volume of estuarine waters, residence time, and tidal
forcing to shape differing local extrema of DO and pHT .
The coastal habitats examined here are representative of
many temperate estuaries that harbor juvenile finfish and
shellfish (Nixon and Oviatt, 1973; Sogard and Able, 1991;
Roman et al., 2000; Beck et al., 2001; Duffy, 2006), making
an understanding of the DO and carbonate chemistry
dynamics within these systems important for fisheries
management and aquaculture practices (Wallace et al., 2014;
Tomasetti and Gobler, 2020).
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FIGURE 10 | Comparison of (A) depth (y-axis), pHT (x-axis), and DO (mg L−1; color) in a macroalgal dominated (Ulva sp.) region (MA-1), May–October, 2015. Blue
dashed box indicates low pHT and DO during low tides and red dashed box indicates high pHT and DO during low tides. Frequency distribution of (B) depth and
(C) pHT samples are indicated by adjacent histograms.

Seasonal Inter-Habitat Variability in Net
Ecosystem Metabolism and Carbonate
Chemistry
The open water habitat of this study was the most metabolically
balanced region (Figure 5D) and displayed temporal stability
(Figures 3G,H, 4D) and spatial homogeneity (Figure 8)
representative of tidally dominated estuaries where vertical
mixing prevents stratification of the water column (Hardy, 1976;
Fischer et al., 2013). This system was slightly net heterotrophic
over the course of this study (mean NEM = −0.14 ± 0.9)
as sampling was conducted primarily during summer months
when respiration rates are maximal in temperate coastal systems
(D’Avanzo et al., 1996; Iriarte et al., 1997; Tait and Schiel,
2013) and the spring phytoplankton bloom has since subsided
in Long Island coastal waters (Riley and Conover, 1967; George
et al., 2015). Both pHT and DO ranges were consistent with
other estuarine or near-shore environments that have been
examined on both the east and west coast of the United States
(Caffrey, 2004; Hofmann et al., 2011; Baumann and Smith,
2018), but certainly was greater than open ocean environments
(Hofmann et al., 2011; Sutton et al., 2019). Correspondingly,
the Rf is in the range expected for this class of environments
(Feely et al., 2018).

The seagrass meadows examined here exhibited slightly larger
diurnal ranges of both pHT (0.34 vs. 0.25) and DO (4.51 vs.
2.19 mg L−1) compared to the open water site (Table 1 and
Figures 4C,D) and were generally net autotrophic over diel

timescales from the late spring through the early fall (Table 1
and Figures 5C, 6). The seagrass systems were also distinctive in
hosting the lowest levels of pCO2 (<400 µatm) and the highest
�Ar (�Ar > 3), conditions that would make them localized
refuges against coastal ocean acidification (Hendriks et al., 2014;
Wallace et al., 2014; Camp et al., 2016; Pacella et al., 2018). During
warm and calm conditions, seagrass meadow photosynthesis will
locally increase DO and decrease pCO2 levels above and below
the solubility in the water column, respectively (Dennison, 2009).
This would account for the higher increase in DO and pHT at
seagrass bed 2, as this region is more sheltered from prevailing
southwesterly winds that are common on Long Island during
the summer months (Blumberg and Galperin, 1990). In addition,
while both seagrass meadows were the same species (Z. marina),
a greater macroalgal biomass at seagrass bed 2 resulted in more
elevated community photosynthetic rates thus resulting in higher
DO and pHT levels (Jackson, 1987; Beer and Koch, 1996; Chung
et al., 2011). Furthermore, the calmer conditions coupled with the
seasonal decomposition of this mixed macrophyte community
contributed toward the lower DO and pHT levels during the
late summer months.

Diel Inter-Habitat Variability in Net
Ecosystem Metabolism and Carbonate
Chemistry
In contrast to the open water and seagrass sites, the salt marshes
and the macroalgae sites exhibited significantly larger diel ranges

Frontiers in Marine Science | www.frontiersin.org 13 December 2021 | Volume 8 | Article 611781

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-611781 December 6, 2021 Time: 14:49 # 14

Wallace et al. Acidification/Hypoxia in Marine Habitats

in both pHT and DO throughout the season (Table 1 and
Figures 5A,B) with these parameters being tightly coupled
at both sites (ρ = 0.674 and 0.837, p < 0.0001). Although
both locations tidally exchange with the adjacent Peconic
Estuary, strong metabolic processes within these habitats drove
significant variation on diel timescales (Wootton et al., 2008).
In addition to rapid rates of photosynthesis and respiration,
restricted exchange with the larger Peconic Estuary maximizes
the influence of these metabolic processes on water column
chemistry (Wallace et al., 2014).

During peak daylight hours, both pHT and DO were
consistently depressed within the salt marsh (pHT < 7.8,
DO < 8 mg L−1), resulting from the cumulative effects of
both biological respiration (Turner, 1978; Burnett, 1997) and
tidal exchange (Gardner and Gorman, 1984; Baumann et al.,
2015). While the signature of diurnal metabolism was clear, tidal
exchange played a lesser, but significant role as pHT and DO
tended to increase during increasing tidal height (ρ = 0.242
and ρ = 0.357, p < 0.0001 for both). Similarly, Baumann
et al. (2015) reported that during the summer months in a
Long Island salt marsh, pHT and DO declined during the
ebbing tide whereas the flooding tide increased pHT and DO
due to lower biological activity within an adjacent open water
estuarine system (Long Island Sound). In addition, hypoxic and
acidified conditions are maximized when low tides occur during
peak hours of net heterotrophy (Figure 4C; ∼4:00–8:00 EDT).
Although photosynthetic rates of Spartina in salt marshes are
high, most oxygen within blades is lost to the atmosphere and
oxygen produced from the root system is rapidly reduced within
the sediment (Gleason et al., 1982). Hence, the net transport of
oxygen from the marsh to the water column is small and confined
to higher tidal cycles which is distinct from other estuarine
submerged aquatic vegetation studied here.

In contrast to salt marshes, the shallow macroalgae-dominated
system was net autotrophic throughout most of the season,
although periods of net heterotrophy became more common
late in the season and under extreme tides. The tidal range at
the macroalgae site was ∼2 m (0.4–2.4 m) and as water depth
decreased below 1.4 m, both pHT and DO reached extreme
values. For example, DO only exceeded 200% saturation and
only decreased below 50% saturation when tidal height was
<1.4 m (Figure 10). In addition, these lower tidal periods were
the only periods in which pHT exceeded 8.4 and when both
hypoxic and acidified conditions were observed (DO < 3 mg L−1

and pHT < 7.4; Figure 10). Super saturated O2 conditions and
elevated pHNBS (pHNBS > 9) have been synchronously observed
in other shallow macroalgal dominated marine ecosystems
(Howland et al., 2000; Menéndez et al., 2001; Middelboe and
Hansen, 2007b), but such shallow, highly productive habitats
are not ordinarily associated with acidification and hypoxia.
Coastal macroalgal habitats have long been considered nutrient
buffer zones that can alter shallow water biogeochemistry
and exchange solutes at the sediment-water interface (Duarte
et al., 2013; Sundbäck and McGlathery, 2013). In shallow tidal
systems, such as described here, large macroalgal aggregations
can intensify water column DO and pHT extremes during
lower tide cycles on diel and seasonal timescales. During

summer months when macroalgal biomass accumulates in calm,
shallow water habitats, DO fluctuations can be large and DO
concentrations are high (Middelboe and Hansen, 2007b). At the
end of the summer and/or during extreme heat waves, macroalgal
communities decay, creating the potential for hypoxia, anoxia,
and acidification via respiration (Apinis et al., 1956; Han and Liu,
2014; Lenzi, 2014).

Buffer Capacity in Distinct Coastal
Habitats
As CO2 concentrations increase seasonally in coastal zones
(Wallace et al., 2014), buffering capacity has become an important
ecosystem service in estuaries. Each habitat examined here
differed in their buffering capacities that changed seasonally and
were modified through biological activity, salinity, and variations
in TA and DIC. TA was highest within the salt marsh and seagrass
locations (TA > 2400 µmol kg−1 SW; Figures 7A,B) with
seagrass having significantly lower DIC (DIC < 1700 µmol kg−1

SW) and pCO2 (<400 µatm) due to increased carbon uptake
and its closer proximity to ocean water with higher salinity
(and thus TA) and lower CO2 concentrations. All sites examined
during this study, with the exception of the open water site, had
large ranges in Rf likely associated with biologically mediated
CO2 uptake and drawdown. The Rf in ocean surface waters
generally ranges from 8 to 18 (Feely et al., 2018) and these values
can provide valuable insight into the discrete responsiveness
of pHT , TA, DIC, and �Ar when considering future changes
in pCO2 (Egleston et al., 2010). Although the mean Rf at the
open water site (mean Rf = 13) was lower than both the salt
marsh (mean Rf = 17) and macroalgae site (mean Rf = 16.5;
p < 0.0001 and p < 0.05, respectively), the open water site
never decreased below 11 and exhibited a narrow range (11–14;
Figure 7). Considering the lower buffer capacity of the Peconic
Estuary and the limited influence of biological activity, increases
in CO2 uptake will both accelerate and intensify acidification
within this larger, open water system. In addition to the potential
for increased CO2 uptake via the atmosphere, further increases
in CO2 could emanate via transport of carbon from wetlands
and/or areas with dense stands of macrophytes (Cai, 2011; Najjar
et al., 2018) and with a lower buffer capacity, as pCO2 increases,
Rf would also increase, increasing the likelihood of this estuary
being inhospitable for bivalve populations (Grear et al., 2020).

While TA and DIC are key indicators of buffering capacity
and are often intimately linked in estuaries (Hagens et al.,
2015), intense metabolic activity can decouple these pools,
altering habitat buffering and suitability for calcifying organisms.
For example, TA and DIC within the salt marshes became
decoupled in the late summer (Supplementary Tables 2, 3),
likely associated with increased anaerobic activity. Higher TA
was observed when samples were collected at lower tidal levels
suggesting TA production via anaerobic processes (Wang and
Cai, 2004) such as the net production of bicarbonate (HCO3

−)
by sulfate reducing microorganisms (Berner et al., 1970; Hu
and Cai, 2011) and TA generation via denitrification (Hu and
Cai, 2011). Although ebbing tides from salt marshes yielded low
pHT water, this water will also have a higher buffering capacity
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compared to higher pHT waters observed during flood tides
(Wang et al., 2016). This increased buffering capacity during
lower tidal states coupled with increased oxygen production
during higher tides when marsh grasses were submerged,
resulted in occasional late summer net autotrophy (Figure 5A)
and may further buffer against increased acidified conditions
commonly observed in Northeast United States estuaries during
the late summer (Wallace et al., 2014). A decoupling of
DIC and TA was also observed in the late summer/early fall
at the macroalgal dominated site during periods of pCO2
undersaturation and decreasing HCO3

− concentrations, as
CO3

2− concentrations increased, resulting in a transformed DIC
speciation (Supplementary Table 3). When pCO2 levels reached
a minimum (<200 µatm), a drawdown in HCO3

− was also
evident, indicating the potential utilization of HCO3

− when
pCO2 levels were low to support increased photosynthetic rates
(Axelsson et al., 1995; Rautenberger et al., 2015). This seemed to
be further enhanced during periods of increased solar radiation
when DIC concentrations decreased as light intensity increased,
indicating increased photosynthetic rates (Nejrup et al., 2013).
TA was consistently lower at the macroalgal location and this
was primarily due to the close proximity to the head of the
creek where freshwater input decreased both salinity and TA
(Supplementary Table 2), especially after heavy precipitation
events where TA variations associated with freshwater addition
can account for up to 80% of TA variability (Lee et al., 2006).
Additionally, increased HCO3

− uptake by macroalgae may have
contributed to decreased TA via release of H+ by macroalgae via
active extrusion pump as pHT in the surrounding water column
reaches extreme levels (Uusitalo, 1996; Axelsson et al., 2000).

Intra-Habitat Variation in DO, pH, and
pCO2
Beyond inter-habitat differences revealed during this study, high
resolution sampling showed significant intra-habitat variation.
More restricted regions sampled within the salt marsh and
macroalgae-dominated sites exhibited the lowest surface DO
(<5.5 and <5 mg L−1, respectively) and pHNBS (<7.65 and <7.5,
respectively), indicating that tidal mixing of adjacent waters with
higher DO/pHNBS would alleviate these conditions. Conversely,
these fringing habits may significantly influence carbonate
chemistry within larger adjacent systems via export of low DO -
pH, DIC enriched waters (Chu et al., 2018). This inorganic carbon
pump is especially evident in salt marsh-dominated systems
(Wang and Cai, 2004) and may be a significant contributor
of CO2 to the surrounding estuary (Wang et al., 2018). The
flux from other habitats such as macroalgal beds can also
seasonally contribute DIC to surrounding estuarine systems
while sequestering carbon during periods of intense growth
(Krause-Jensen et al., 2018). During the summer and fall,
temperature marine habitats such as salt marshes and dense
macroalgal assemblages, and especially the most restricted
regions within these habitats with the lowest DO and pH, are high
risk environments for early life stage finfish and shellfish that are
known to be highly sensitive to these conditions (Talmage and
Gobler, 2010; Baumann et al., 2012; Gobler and Baumann, 2016).

High resolution surface mapping across Shinnecock Bay
revealed spatial homogeneity with respect to pCO2 for much of
the estuary but a high degree of spatial heterogeneity within the
seagrass bed (Figure 9). Specifically, pCO2 levels were reduced by
∼200 µatm below ambient levels within shallow, dense stands
of seagrass (Figure 9). These trends were driven by increased
production within the dense seagrass beds, drawing down pCO2
levels and increased pCO2 in deeper regions associated with
increased bacterial degradation of leaf litter and associated
organic matter (Churchill and Riner, 1978; Mateo and Romero,
1996; Liu et al., 2017). It has been hypothesized that as coastal
marine systems continue to acidify, seagrass habitats will become
increasingly vital for buffering the surrounding water column
(Pacella et al., 2018), creating refuges for many marine organisms,
acting as potential CO2 sinks in coastal habitats (Smith, 1981;
Duarte et al., 2010; Camp et al., 2016). Determination of localized
carbon budgets and carbonate chemistry will be of increasing
importance as CO2 concentrations in coastal waters continue
to rise. The mesoscale variation observed here highlights the
complex spatial and temporal patterns in the capacity of coastal
habitats to buffer against metabolically driven acidification.

Ecological Implications
Habitats examined during this study harbor wild and
aquacultured populations of multiple species of calcifying
bivalves (A. irradians, Crassostrea virginica, Mercenaria
mercenaria, Mytilus edulis) that are sensitive to low �Ar
values, even when �Ar is above the thermodynamic
calcification/dissolution threshold (�Ar > 1; Barton et al.,
2012; Stevens and Gobler, 2018). Given the expected 0.3–0.4 unit
decrease in pH in the world’s oceans by the end of this century
(Orr et al., 2005) and the potential for such changes to extinguish
local bivalve populations (Grear et al., 2020) management
agencies must identify habitats favorable for sustaining wild
and aquacultured bivalves. Within the ∼200 km2 coastal region
examined during this study, we observed that differing habitats
displayed distinct ranges in �Ar . Seagrass meadows exhibited
significantly higher �Ar (mean �Ar > 2) compared to the salt
marshes (mean �Ar < 1) and macroalgae dominated habitats
(mean �Ar = 1; p < 0.0001 and p < 0.05, respectively). While
the larger Peconic Estuary was never undersaturated during
this study, during the late summer and early fall �Ar values did
regularly decrease below 1.7 (Supplementary Table 3), a level
known to reduce the growth and survival of larval aragonitic
bivalves (Figure 7; Talmage and Gobler, 2010; Barton et al.,
2012) whereas these species will transition to precipitation of
calcite in juvenile and adult stages (Haley et al., 2018). Chronic
exposure to acidified conditions can cause increased mortality
and depressed growth in larval bivalve species (Talmage and
Gobler, 2010; Gobler and Talmage, 2013) whereas diel exposure
to acidified conditions may alleviate some of these negative
effects (Gobler et al., 2017). Regardless, if hypercapnia intensifies
as anticipated in the future (Pachauri et al., 2014), restricted
open water coastal systems such as the Peconic Estuary will
be more vulnerable to the assimilation of atmospheric CO2
than waters adjacent to wetlands and macrophyte-dominated
regions where acute biological activity modulates carbon fluxes,
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increasing atmospheric CO2 sinks via increases in productivity
(Langley et al., 2009). Given this system hosts a large aquaculture
leasing program as well as a large bay scallop (A. irradians)
fishery, future acidification could potentially result in significant
economic loss (Mangi et al., 2018; Grear et al., 2020).

Recently, multi-trophic ocean farming has been considered
as a remedial aquaculture practice whereby macroalgae are,
for example, co-cultivated with bivalves (Neori, 2009; Clements
and Chopin, 2017). Recent laboratory experiments have shown
that bivalves grown under elevated pCO2 conditions experience
increased shell and tissue growth when co-cultivated with green
algae of the genus Ulva when compared to bivalves grown
without exposure to this alga (Young and Gobler, 2018). While
Ulva spp. could also acidify the water column on diel timescales if
in a period of decay (Figure 4B), multi-trophic systems whereby
macroalgae such as kelp or other seaweeds (Chopin et al.,
2001; Kim et al., 2015) are grown and harvested prior to decay
periods could protect calcifying bivalves and thus may become an
increasingly important aquaculture approach in coastal systems
as oceans continue to acidify.

In the Northeast United States during summer months,
intense diel fluctuations in DO and pH have been documented
within salt marshes (Baumann et al., 2015; Wang et al., 2016,
this study). The combined effects of hypoxia and acidification
on the growth and survival of early life stage shellfish has
been documented in recent years (Gobler et al., 2014; Stevens
and Gobler, 2018) and the levels and intensity of diel changes
in pHT and DO observed in both the salt marshes and
the macroalgae site during this study (Figure 4), have been
shown to depress growth rates and decrease survival of bivalve
larvae (A. irradians., M. mercenaria, C. virginica) in laboratory
experiments (Clark and Gobler, 2016; Gobler et al., 2017).
Presently, wild populations of A. irradians, C. virginica, and
M. mercenaria are primarily restricted to open water habitats
or within seagrass beds in the Peconic Estuary and Shinnecock
Bay (NYSDEC, 2015). Conversely, salt marshes examined during
this study were dominated exclusively by the ribbed mussel
(Geukensia demissa), an intertidal species that is able to tolerate
extended exposure to the atmosphere, extreme temperatures,
and hypoxic conditions (Jost and Helmuth, 2007; Fields et al.,
2014). G. demissa specifically relies on anaerobic respiration
during periods of atmospheric exposure (Fields et al., 2014), and
when submerged, this physiological mechanism would enable
this species to be more tolerant of hypoxia and perhaps increased
CO2 concentrations when compared to other bivalves. Hence,
future bivalve restoration efforts within nearshore habitats that
may be vulnerable to current or future acidification may be
more successful building populations of G. demissa which is
clearly tolerant of a wide range of pH and DO conditions found
in salt marshes.

CONCLUSION

This study highlights the temporal and spatial variation of DO
and carbonate chemistry parameters observed during months
associated with peak productivity as well as the onset and

demise of hypoxia in temperate coastal habitats. Importantly,
these are also periods where larval and juvenile stage fish and
shellfish are vulnerable to acidification and hypoxia (Clark and
Gobler, 2016; Stevens and Gobler, 2018) and are present in
these habitats (Chambers and Trippel, 1997; Ishimatsu et al.,
2008; Salisbury et al., 2008). While the co-occurrence of hypoxia
and acidification within coastal systems has been documented,
these conditions are frequently associated with deeper coastal
regions that experience intense eutrophication and/or upwelling
(Borges and Gypens, 2010; Feely et al., 2010; Cai et al., 2011;
Wallace et al., 2014). Concurrent hypoxia and acidification in
shallow water habitats that experience moderate nutrient loading
is poorly understood and generally related to seasonal and diel
ecosystem metabolism (Baumann and Smith, 2018; Lowe et al.,
2019). This study highlights the suitability of various habitats
as refuges from present and future hypoxia and acidification, as
well as regions that are already inhospitable for many resource
bivalves. Future efforts that seek to expand seagrass meadows
and the aquaculture of macroalgae are likely to expand local
refuges from hypoxia and acidification and thus maximize their
ecosystem benefits.
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