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Abstract

People make eye movements while interacting with objects, and these behaviors are
rich with information about how visual goals are represented in the brain and used
to prioritize sequential motor behavior. Here we adopt a real-world perspective and
define goal-directed attention control as the guidance (or biasing) of gaze to target-
object goals that have uncertain visual appearance. Specifically, we review models of
goal-directed attention control that have attempted to predict the behavioral fixations
made in the search for target-category goals in images. We will show how modeling
perspectives on this question changed over the decades. Using the year 2020 as a
reference, we will critically review the recent past of the categorical search modeling
literature (�2000–2010), the literature defining our present (�2010–2020), and specu-
late about the future of search models and the directions that the literature may turn in
the next decade (�2020–2030).

1. Defining the problem

In this section we aim to define the scope of our question, provide

some justification for why we defined it as we did, and argue for why asking

this question is important. Critical to a review is a clear definition of the spe-

cific question under consideration, and the situation of this question in

related literatures that are specifically not considered so as to create a context.

Our focus is on the goal-directed attention literature that attempts to predict

the fixations made by people searching for common object goals in contexts

that approximate the real world. In this section we elaborate on two of the

three key components in this problem definition. First, that visual search is

an ideal paradigm for studying goal-directed attention control. This is par-

ticularly true for categorical visual search, which, contrary to being a con-

trived laboratory task, is a cognitively meaningful goal-directed behavior

that we engage in probably hundreds of times each day. Second, that these

models must be able to predict changes in gaze fixations, which we consider

to be the most basic observable behavioral measure of visuo-spatial attention

control. We also consider fixation prediction to be a desirable level of gran-

ularity with which to study goal-directed behavior, and believe it to be an

achievable modeling goal given the methods currently available to modelers.

The third component to our definition is that this prediction of search fix-

ations must be in a reasonably realistic context. We elaborate on our defi-

nition of a realistic context in a section that we devote to the past, but

we believe part of this definition must include some non-trivial uncertainty

about the target’s appearance.
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1.1 Visual search: The simplest of goal-directed behaviors
Goal-directed attention control underlies all the things that we try to do.

Whether it is making dinner or navigating across town, the vast majority

of tasks that we perform require executing a coordinated sequence of goals

that produce coordinated sequences of motor behaviors. Goal-directed con-

trol also implies that different goals require different behavior. The arm con-

trol needed to drive a car would be of little use if the goal was to swim, and

vice versa. Researchers have studied goal-directed attention control for

decades, with classic demonstrations dating back to Yarbus (1967). Early

theoretical work also focused on the role of attention in controlling and

coordinating goal-directed behavior (e.g., Broadbent, 1957; Norman &

Shallice, 1986), with task performance believed to reflect the degree and

efficiency that this control can be enacted (Allport, 1980). More recently,

the study of goal-directed behavior has extended to highly naturalistic con-

texts and tasks, such as driving (Land, 1992), making a sandwich or a cup of

tea (Land & Hayhoe, 2001), and taking a walk (Foulsham, Walker, &

Kingstone, 2011). Among the many interesting findings from these studies

is that even seemingly simple tasks are nevertheless accompanied by highly

coordinated and complex movements of gaze fixation (Land & Tatler,

2009), and this complexity challenges a computational understanding of

how they all relate to a fluidly changing goal state. For the purpose of devel-

oping a tractable model the aim is in some sense the opposite, which is to

identify the goal-directed behaviors of least complexity. There are still sev-

eral candidates from which to choose, depending on one’s definition of a

goal. Even simple demonstrations of object-based attention (Scholl, 2001)

can be considered goal-directed control if the goal is to perceive an object

and the control is the top-down object bias. Our work has focused on visual

search, which explains in part our problem definition. We chose search

because it is arguably the simplest, and therefore best, goal-directed behavior

to model. In a visual search task there is a target goal and the task is to find it.

This simplicity, combined with its clear expression in eye movement behav-

ior, makes visual search a valuable paradigm for studying goal-directed atten-

tion control. If you show someone a kitchen scene and ask them to find the

microwave (Fig. 1A), you see a very different distribution of fixations than if

you ask them to find the clock (Fig. 1B). Critically, these different behaviors

are observed despite the visual input being identical. This demonstration,

and others like it, provide proof positive of the top-down, goal-directed

nature of the search task. Search researchers refer to this as target guidance
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(Wolfe, 1994), with the overt variety of guidance considered here being the

biasing of eye movements to the target goal by top-down attention control

(Zelinsky, 2008). Visual search is also a natural task, not a contrived labora-

tory paradigm, and it is fertile ground for the study of interacting top-down

and bottom-up processes and the information routing that leads up to object

recognition. Unlike an anti-saccade task (Munoz & Everling, 2004), or even

the attention control needed to overcome Stroop interference or other auto-

mated responses (Wright, 2017), visual search is a goal-directed behavior

that has a connection to the real world that these other tasks do not. We

are able to search for visually-complex objects, and even object categories.

It is difficult to imagine how other, comparably simple paradigms could be

scaled up to a real-world context, or how they could be modeled. Finally,

visual search is very theory rich, and this strong modeling literature has

taken up momentum over the last couple of decades, as we hope to show

in this review.

Visual search is not free viewing, and models of one are not models of

the other. Indeed, if visual search is the quintessential goal-directed task,

its antithesis is free viewing, the quintessential “taskless” viewing behavior

(see Borji (2019) for a recent review of work using a free-viewing para-

digm). There has been impressive growth in the modeling literature aimed

at predicting attention control in the context of free viewing, with the most

salient among these being the seminal work by Itti and colleagues (Itti &

Koch, 2001; Itti, Koch, & Niebur, 1998). They computed a feature-

contrast signal that they termed salience, and used saliency models to predict

the role of the bottom-up visual input in controlling the direction of spatial

attention. This focus on bottom-up control led naturally to use of the free-

viewing paradigm, which is a good marriage of methodology and modeling

objective. However, despite free-viewing fixation prediction being an

Fig. 1 The goal-directed control of gaze during visual search. (A) Fixation-density map
for a clock search. (B) Fixation-density map for a microwave search. (C) Saliency
map from the DeepGaze II model.
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active literature where there are even competitions and leaderboards for the

best models (https://saliency.tuebingen.ai/), saliency models are funda-

mentally not models of goal-directed attention. It therefore follows that

saliency models are poor predictors of search fixation behavior (Chen &

Zelinsky, 2006; Henderson, Brockmole, Castelhano, & Mack, 2007;

Koehler, Guo, Zhang, & Eckstein, 2014). Fig. 1C drives home this fact

by showing that even one of the best saliency models (K€ummerer,

Wallis, & Bethge, 2016) cannot predict the goal-specific biasing of gaze that

is at the heart of overt visual search. We therefore will not be considering

this literature in this review, other than in the context of the datasets and

metrics that were developed in the saliency modeling literature that have

applicability to models of search. To clarify this distinction from

bottom-up saliency models, we will adopt throughout this review the ter-

minology from Zelinsky and Bisley (2015), which referred to an image pri-

oritization based on bottom-up factors as a saliency map, and an image

prioritization based on a top-down target goal as a target map. Just as visual

search is very different from free viewing, target maps are not saliency maps,

and vice versa. We reserve the term priority map for models that combine

this top-down and bottom-up information, or when referring to the more

general concept of prioritization where the source of the bias is immaterial.

1.2 Predicting fixations: The higher bar
Researchers who choose to adopt oculomotor dependent measures in their

studies of search are often reminded that eye movements and shifts of spatial

attention are not the same thing. We get it. Yet, in this review we specif-

ically exclude models that predict only manual button press responses

(and more often just group means; e.g., (Bundesen, 1990; M€uller, Heller, &

Ziegler, 1995; Wolfe, 1994) and models that predict only modulatory

effects of attention and not the expression of this modulation in behavior

(e.g., Deco & Rolls, 2004; Hamker, 2004, 2005; Reynolds, Pasternak, &

Desimone, 2000). We do this because these studies are outside the scope of

our problem definition, but this begs the question of why we defined the

problem in exactly this way. There are several justifications for this reversal

of focus on the search fixations (Zelinsky, 2008), but here we will give three

that have stood the test of time.

First, for researchers interested in the mechanism of attention, the debate

over the exact relationship between eyemovements and shifts of spatial atten-

tion is important and lives on (Hunt, Reuther, Hilchey, & Klein, 2019).
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However, for the majority of cognitive scientists this debate is over, as indi-

cated by the explosive growth in the use of oculomotor measures of attention

over the last decade (Findlay, 2004). This widespread embrace of oculomotor

measures reflects a realization that eye movements are highly correlated with

shifts of attention, even in the laboratory (Williams,Reingold,Moscovitch, &

Behrmann, 1997; Zelinsky & Sheinberg, 1997), and when considered in

unconstrained real-world contexts differences between the two become neg-

ligible (Findlay, 2005; Findlay &Gilchrist, 2003; Itti, Rees, & Tsotsos, 2005).

For modelers whose focus is on the prediction of attention control, what this

correlation means is that the priority map used to guide gaze during search is

likely a good estimate of the priority map used by purely covert attention to

control the routing of inputs and information flow through the visual system.

Second, eyemovements are explicit in away that attention shifts are not. Each

eyemovement is a behavior, an observable decision aboutwhere to reposition

the high-resolution fovea, the visual system’s one indisputable limited

resource. Collectively, these saccadic eyemovements constitute ourmost fre-

quent behavior, with 4-5 occurring every second. If this was not already suf-

ficient motivation for a behavioral scientist, eye movements, and the brief

periods of relative eye immobility between each known as gaze fixations, have

long been thought of as a window into high-level cognitive processes, such as

reading (Clifton et al., 2016) and scene understanding (Henderson, 2003).

This window arguably sheds the most light on the understanding of goal-

directed attention, where each of these little behaviors is made in the service

of a top-down goal. Returning to the scenario suggested in Fig. 1, the eye

movements that you make while walking into your kitchen will depend

on whether your goal is to learn the time or to re-heat a tea. Indeed, tasks

can be inferred if only eye-movement information is available with the visual

input (Henderson, Shinkareva, Wang, Luke, & Olejarczyk, 2013; Zelinsky,

Peng, & Samaras, 2013). The relatively high frequency of eye movements

means that sequences of fixations can be observed during the execution of

a goal-directed behavior, making possible the characterization of the behavior

at a level of spatio-temporal resolution that far exceeds a manual response. In

the context of search, instead of obtaining only a single measure of when a

search ends, with eye movement paradigms you get to see how the search

unfolds over time. Until there is a machine that can measure the movements

of an attention-routing window over an image, eye trackers will remain a

valuable experimental tool, perhaps the most valuable to behavioral science

methodology since the birth of chronometry (Posner, 1978). Third, and fol-

lowing from the previous, the spatial locations of fixations made during
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search, and their temporal order, create a highly challenging dataset for model

development and testing. Most modeling work on search has aimed at rep-

roducing behavioral trends or neuro-modulatory responses, and not at

predicting the locations of search fixations or their sequence. Here, we bor-

row the bar set by models in the saliency literature by requiring models of

goal-directed control to make predictions at this finer-grained level—the

locations of individual fixations in an image. For search, this is done by using

targetmaps to predict the sequence of image locations that are fixated en route

to a target, much like saliency maps are used to predict fixations during free

viewing.

2. Overview

With the problem well defined, we now turn to our review of the

existing literature. Adhering to the problem definition that we have justified,

our goal was to attempt a comprehensive review of models satisfying that

definition. We sincerely wish to apologize to the makers of the models that

we undoubtedly missed. We adopt in this review a historical perspective

spanning the last two decades, and speculate on the decade in front of us.

However, more essential than chronology are the ideas that shaped the

research on search modeling, and how these ideas changed over time as

the field matured. We aim to use these methodological advances to carve

a past from the present with respect to modeling approaches.Whenever pos-

sible, we will also use our own work to illustrate examples of models that

have outlived their usefulness by relying on outdated methods and assump-

tions that would limit their capacity for true behavior prediction. The keen-

eyed reader will also notice that studies falling into the modeling “present”

may seem heavily biased to highlight work from our lab. We realize this

appearance, but contend that it is a fair application of the criteria defining

the problem. Given these criteria, the number of models in this review is

not extensive, so each can be described in some depth. In doing this, it will

unfortunately be necessary to introduce some jargon, particularly when

describing the methods used by a model or the dataset on which it was

trained. Our aim was to provide a context that can help the reader under-

stand broadly what these methods do, but not to de-focus the discussion

with too many details. In some sense, the methods and datasets are not

the most important things anyway, because they both have typically short

lifespans. In all cases, the interested reader can learn more about eachmethod

by doing a quick Internet search, and the very interested reader should
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consult the original sources for full details. Finally, wewill speculate as to some

future directions that the modeling literature might want to take, one of

which is the importance of developing large-scale datasets of behaviorally-

annotated images for training the search models of the future. In this context,

we will also describe some very recent work from our lab.

3. The past (�2000–2010)

By what criteria should previous models of visual search, irrespective

of their contribution and success, no longer be considered contemporary?

Model methods, after all, are constantly improving. These technical inno-

vations can come from many different literatures, and they can happen fast.

Deep networks are one example of this, and we will have more to say about

this topic later. Models of visual search have not been unaffected by these

methodological currents, and this is particularly true for models aimed at

predicting search fixations. In some sense the past must be defined by out-

dated methods and not just a number of years, although the two are corre-

lated. In particular, we consider the following three recent milestones in our

carving of past from present in the modeling of search fixations.

3.1 Does your model use visually-complex targets
in visually-complex images as search stimuli?

If your answer to this question is “no,” your model may be in need of

updated methods. Models of search can be designed to work extremely

well if they get to use carefully hand-crafted features, or if they can assume

highly predictable visual contexts. For example, the Guided Search models

(versions GS2 to GS6, Wolfe, 2020; Wolfe, Cain, Ehinger, & Drew,

2015; Wolfe, 1994; Wolfe & Gancarz, 1997; Wolfe, Horowitz, Palmer,

Michod, & Van Wert, 2010) were hugely influential in focusing the

literature on target guidance, which became a core construct in our under-

standing of visual search. But this contribution of the GS model is now quite

old, and newer versions of the model inherited weak modeling methods

from the previous millennium, namely an input that comes discretized into

only a handful of feature values. To be clear, we do not see GS’s reliance on a

narrow feature input as a weakness, but rather that the GS models were a

product of their time. In contrast, another model introduced within the

GS range of years, the Target Acquisition Model (TAM; Zelinsky, 2008),

accepted images as inputs. This means that TAM worked when patterns

were defined by a small number of features, but also for all the vagaries of
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patterns that can exist in natural images. On a measure of model applicabil-

ity, here defined as the range of search stimuli to which a model can be

applied, TAM would therefore be preferred to GS.

It is perhaps useful to think of this problem as one varying along a

dimension of scale. If a problem can be scaled down to a small enough fea-

ture dimension, then simple heuristics can be identified to find solutions,

such as distinguishing targets from non-targets to program eye movements.

The problem arises when this solution is scaled up to include greater var-

iability in visual context. When this happens, the simple heuristics used by

the scaled-down model often break, resulting in poor predictions. Model-

heavy literatures such as computer vision take scalability very seriously,

again because it directly impacts the range of tasks to which a model can

be applied. Models in the psychology literature tend to take scalability

and generalizability less seriously, and all too often adopt an approach that

seems based on the idea of a promissory note. Modelers ask researchers to

trust that a model developed at a simple scale will also work when scaled up

to more realistic inputs, but these promises are rarely kept. Modelers offer

three common retorts to this admittedly harsh criticism. One is that inter-

esting research questions can be framed purely within the scaled-down

scope of a model, and this is fair. However, it is also fair to ask why a model

that is specific to a simpler scale is interesting or important, given that that

scale is very different from the visual system’s everyday input. A second

argument is that such demonstrations of scalability are beyond the scope

of search models, which rightly should be focused on search. It is true that

scaling up to images introduces a host of highly non-trivial problems, such

as the potential for occlusion, variability in perspective, figure/ground seg-

mentation, etc., each of which is itself an open research question. However,

deciding to put these functions outside the purview of search models runs

the risk of not being able to model search as it exists in the real world, where

these functions are likely interwoven with target guidance and others as part

of highly interactive brain circuits. Concluding that these functions are

bridges too far is tantamount to concluding that understanding real-world

search is outside the scope of search models. It is in the confrontation of

how these functions are integrated into an end-to-end attention system that

the holes in our understanding of attention will become visible. A related

argument is that, yes, these functions are important, but in the interest of

keeping focus on “search” one might assume that lower-level processes

each perform their function well and pass a “cleaned” version of the visual

input up to higher-level processes, such as those engaged in the search for

239Changing perspectives on goal-directed attention control



an object in a scene. But in the absence of knowledge about how the input

was cleaned or reconstructed, these models must take as input something

other than images. These representations are different from model to

model, but the point is that they have become abstracted away from the

image input, and therefore cannot be meaningfully compared to image-

based models that predict search fixations amidst the noise in the real world.

For those models that failed to embrace the techniques needed to use

images of complex visual stimuli, they earn in this treatment the delegation

of being in the modeling past and no longer representative of current work

in predicting search fixations.

3.2 Can your model predict the search for targets of uncertain
visual appearance?

Again, your answer to this question may reveal something about your ambi-

tions as a modeler. Promissory notes have abounded in the search literature,

and another was a promise sold by modelers that their methods, most of

which assumed precise knowledge of the target’s appearance, would scale

up to the real-world search context where this precise knowledge is never

available outside of a laboratory. As shown in Fig. 2A, even car keys, the

proverbial target for which unique knowledge might exist from daily expo-

sure, nevertheless appear dramatically different when seen from different

perspectives, and depending on how they happened to land when tossed

onto the table. The attention literature sometimes refers to target represen-

tations as “templates” (Olivers, Peters, Houtkamp, & Roelfsema, 2011),

where the assumption is that these templates will rarely match perfectly

the target features extracted from a visual input. In the context of search,

Fig. 2 Objects vary in appearance. (A) Examples of variability in perspective and scale.
(B) Examples of variability among exemplars of an object category.
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there are clear search costs associated with introducing visual mismatch

between the target shown at cue and the target as it appears in a search display

(Alexander, Nahvi, & Zelinsky, 2019; Vickery, King, & Jiang, 2005; Wolfe,

Horowitz, Kenner, Hyle, & Vasan, 2004). However, in the modeling liter-

ature, now limited to those that take images as inputs, there is a disconnect

from this empirical reality, where they tend to think of the target represen-

tation as a literal template that is a pixel-perfect match to the search target.

TAM was one of these models. The attention literature, sold on the prom-

issory note, was largely silent on this issue (but see, Zelinsky, Peng, Berg, &

Samaras, 2013), perhaps because it recognized the modeling implications of

introducing visual uncertainty into the target template.

A related distinction exists between exemplar and categorical search

(Fig. 3; Malcolm & Henderson, 2009; Nako, Wu, & Eimer, 2014; Yang &

Zelinsky, 2009). Exemplar search is the paradigm in which participants have

exact knowledge of what the target will look like in a search display. This

target information can be communicated by either showing participants a pre-

view of the target before each search trial, grouping blocks of trials by the same

target type, or by using stimuli that are sufficiently simple to obtain precise

appearance information based on a verbal or written instruction (e.g., red-

vertical bar). By this definition, the majority of studies in the visual search

literature have used an exemplar-search paradigm.Models of search have also

assumed an exemplar paradigm, where TAM is again an interesting case in

point. The input to TAM was two images, one a small image patch of the

target and the other a much larger image in which those same target pixels

appeared in some search context. From the perspective of the behavioral

participant, the small image patchwould be presented as a pre-cue designating

the target, which would be embedded in the larger search image appearing

shortly thereafter. TAMworked by using a bank of linear filters to extract fea-

tures from the target image, doing the same for the search image, and then

taking the dot product between the two.This is a sort of a correlation between

Fig. 3 The designation of a target by category or by exemplar has important implica-
tions for models of search.
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the target feature vector and an array of like feature vectors computed for each

location in an image. This comparison was used to create a target map, which

in turn was used to generate a location for the next predicted search fixation.

Iterating this process produced for each search image a scanpath of predicted

fixation locations by which search brings gaze to the target. However, the

features and feature-comparison method used by TAM were not robust

to changes in target appearance, such as those that exist between category

exemplars, making it largely a model of only exemplar search.

In a categorical search paradigm the search target is designated by cate-

gory, typically using a text cue preceding each search display (Schmidt &

Zelinsky, 2009), or by having a target category designated by instruction

and held constant over a block of trials (Yang & Zelinsky, 2009). Unlike

exemplar search, in which a person has a very good expectation for how

the target will appear, and therefore the specific features to search for, in cat-

egorical search this is very often not the case. However, using oculomotor

dependent measures it was found that the search for an object category

(teddy bears) can indeed be guided, as evidenced by an above-chance direc-

tion of initial search saccades to teddy bear targets (Yang & Zelinsky, 2009).

This study demonstrated that, even in the absence of scene constraints that

might masquerade as a categorical guidance signal (rendered impossible in

their study by randomization of target location in object arrays), people can

use visual features learned for the target category to guide their gaze to unseen

exemplars in a search task. Another study from about the same time showed

that the strength of this categorical guidance is proportional to the amount of

target-defining information that is provided in the cue (Schmidt & Zelinsky,

2009). For example, stronger categorical guidance was observed when the

target cue was “work boot” compared to “footwear” when the search array

depicted a work boot. Subsequent work also found that search is guided to

distractors that are visually similar to the target category (Alexander &

Zelinsky, 2011), for example guidance to a hand fan when searching for

a butterfly), that guidance improves with target typicality (Maxfield,

Stalder, & Zelinsky, 2014), for example stronger guidance to a dining room

chair than a lawn chair when cued with the word “chair”, and that guidance

becomes weaker as targets climb the category hierarchy (Maxfield &

Zelinsky, 2012), for example the guidance to “race car” being stronger than

the guidance to “car” and that the guidance to “car” being stronger than the

guidance to “vehicle.”

The modeling literature on categorical search is not extensive, partly

because the problem is so challenging. In addition to the appearance
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variability that exists between different views of the same object, there is also

appearance variability among the exemplars of an object category, and this

variability is often extreme in comparison (see Fig. 2B for exemplars of

“waste bins”). Note also that these two sources of variability are not mutually

exclusive, depictions of target exemplars in images can also be occluded or

viewed from an atypical perspective. So humbling was this problem in its

difficulty that researchers in computer vision have been trying to detect

objects in scenes for nearly half a century and have only recently achieved

what can be called good success (Fan et al., 2020; He, Gkioxari, Dollár, &

Girshick, 2017). What makes the problem of categorical search so challeng-

ing is that the methods that were developed for exemplar search will not

work. Turning to TAM again as an example, the simple V1-like features that

it used to represent a target made it very brittle to differences in the target’s

appearance between cue and test. Although to our knowledge the following

experiment was never conducted, one could apply TAM to categorical sea-

rch by using one of the previously seen exemplars (required because TAM

needs to see an image of a target) to create a target map, which can be used to

predict fixations in the search task. However, because the success of this pre-

diction would depend on the visual similarity between that specific target

exemplar and the one appearing in the search image, the expectation would

be that search would be unguided or very weakly guided by such an

exemplar-specific model, given our experience with the visual heterogene-

ity among object exemplars. At least, our level of optimism in reasonable

model performance never rose to the level of actually doing this experiment.

Here we argue that the movement from exemplar to categorical search is

another sufficiently large milestone in modeling that it justifies carving pre-

sent from past. The human search experience is that, on any given moment

and without need for visual cuing or re-training, we are able to search for

hundreds of different target categories. This means that the attention control

process must be able to use visual representations of these many different cat-

egories of common objects to direct gaze to their likely locations in a visual

input upon them becoming a target in a search task. Moreover, the vast and

persuasive literature on object-based visual attention and grouping suggests

that the visual system also attempts to create objects in the visual input

(Scholl, 2001). Moving from exemplar to categorical search is a large step

in this context of objects, and one having real cognitive significance. It

means that models of goal-directed attention designed to work in the real

world can extend to entire object categories, and such movement from

exemplars to object categories is likely prerequisite to further movement
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into the modeling of object relationships and more human-like seman-

tic structures, as well as the building of perceptual-motor (and robotic)

models that achieve a behavioral level of ability to interact with objects.

Contemporary models of goal-directed attention need to be engaging

the questions of how these object categories are represented and how these

representations are used to guide search fixations to targets, and models that

do not address this fundamental problem should now be delegated to the

past. TAM was progressive for its time in a number of ways. One was its

inclusion of a foveated retina in its pipeline of processing, referred to as a

retina transformation, which transformed the image input to reflect acuity

limitations in the visual periphery. TAM was also timely in its use of a rel-

atively high-dimensional feature space to represent visual inputs, was dem-

onstrated to be robust across different types of exemplar targets, and notably

was image-based, the other theoretical milestone used in this review. But as

discussed, TAM’s reliance on precise knowledge of the target’s appearance

is a fatal weakness, and for this reason it, and models like it (e.g., Pomplun,

Reingold, & Shen, 2003), now belong to the past. The problem of cate-

gorical search has been a theoretical cliff in the search literature, where

models of exemplar search made good progress up to the edge, but then

abruptly stopped. Those models of search that embraced the more power-

ful methods to overcome this obstacle are considered in this treatment to

belong in the modeling present.

3.3 Carving past from present
Fig. 4 shows a Venn diagram capturing the aforementioned distinctions in

the context of three partially overlapping literatures: fixation-prediction models,

image-based models, and categorical search models. Outside the scope of this

review are the models addressing goal-directed attention control, but satis-

fying only two of our three criteria. These honorable mentionmodels come in

three groups, depending on the missing criterion. The first group consists of

models that address the problem of identifying object classes in complex

images, but do not attempt to predict the accompanying fixation behavior.

In large part, these are the object detection models from the computer vision

literature. Object detection is their search task. The task is to locate all the

instances of a given category in an image, either by drawing a bounding

box around the object or a mask delineating its global contour (Fan et al.,

2020; He et al., 2017). Some of these studies even include "attention like"

mechanisms (Almeida, Figueiredo, Bernardino, & Santos-Victor, 2017;
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Lan, Ren,Wu,Davis, &Hua, 2020; Shrivastava &Gupta, 2016; Shrivastava,

Sukthankar, Malik, & Gupta, 2016), but they really use the concept of atten-

tion only as a metaphor for efficient region selection and are not focused on

validating model predictions against actual human behavior. In the interest

of keeping this review focused on models of fixation prediction, we there-

fore will not discuss these studies further unless they form the foundations

for other fixation prediction models. However, we do consider this fertile

ground for advances in search-fixation prediction, if common ground

(or application) can be found. Even more deserving of honorable mention

are those models that make a more meaningful connection to attention

and behavioral vision, some even in the adoption of a foveated input

(Akbas & Eckstein, 2017; Butko & Movellan, 2009; Elazary & Itti, 2010;

Navalpakkam & Itti, 2005; Yu, Mann, & Gosine, 2011). But given the

new bar of fixation prediction for attention models, these models failed

to take that final critical step of attempting to predict search fixations.

Another group of models that we omit from this review are those that pre-

dict fixations in images, but do so in the context of a free-viewing task rather

than search (e.g., saliency models; (Cornia, Baraldi, Serra, & Cucchiara,

2018, p. 20; Jia & Bruce, 2020; Jiang, Huang, Duan, & Zhao, 2015;

Kummerer, Wallis, Gatys, & Bethge, 2017; Liu & Han, 2018). Special

honorable mention goes out to those image-based models that predicted

search fixations, but did so only for an exemplar search task and not for

categorical search (Hwang, Higgins, & Pomplun, 2009; Zelinsky, 2008).

Fig. 4 Venn diagram of modelingmilestones, with the intersection of the three defining
the scope of this review.
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We already discussed both the fixation-prediction and categorical-search

milestones, and our motivations for using them as exclusion criteria.

Lastly, there is the group of models that can predict fixations and make cat-

egorical distinctions, but require as input either distributions of responses or

very simple patterns. This honorablemention group includes theGSmodels

(Wolfe, 1994; Wolfe, 2020; Wolfe et al., 2010; Wolfe et al., 2015; Wolfe &

Gancarz, 1997), among others (Bundesen, Vangkilde, & Petersen, 2015).

Again, we already discussed our rationale for excluding these models, and

the importance of amodel being able to scale to images. Thesemodels might

all be useful in highlighting the many factors that affect search, but their

methods are not state-of-the-art and this prevents us from considering them

as representative examples of contemporary models of search-fixation

prediction in this review.

Models are inherently transient things; they either evolve and turn into

different and better models, or they become outdated and are no longer

used. This realization helps to sweeten the bitter pill that even some of

our most beloved models may belong to the past. However, as distasteful

as this realization may be it is important to distinguish between past and pre-

sent to sustain an active literature on search-fixation modeling. Failing to do

so will defocus model comparison efforts and stifle the good work that usu-

ally results from this process. It makes no sense to compare contemporary

models to the GS models or TAM because these models made assumptions

or used information that would undermine any fair comparison. Modeling

literatures periodically need to update the playing field and set new rules for

the game, and in part this is what we hope to accomplish in this review.

4. The present (�2010–2020)

Satisfying the three modeling milestones that we discussed is the cen-

tral region of Fig. 4, which is the focus of this section. These are the models

attempting to predict the fixations made during the visual search of an image

for a target whose appearance is not precisely known. Because these contem-

porary models engage the enormously challenging problem of detecting

object categories in pixels, it is unsurprising that they borrow heavily from

methods for object detection developed in the computer vision literature.

Note that this does not mean that we endorse these methods as realistic

models for the corresponding behavioral process. Rather, we see them as

tools that allow engagement of the question of interest. Tellingly, the com-

puter vision literature, as model rich as it is, has no model comparable to
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what behavioral scientists think of as an exemplar search model. Using TAM

one last time as an example, the fact that it is image-based does not make it a

computer vision model. Indeed, it is not, and for the simple reason that it

used methods that would be considered trivial in that literature. If TAM

didn’t retina transform its image input, the features extracted from a target

preview would perfectly match those extracted from the target’s location in

the search image, resulting in attention moving immediately to the target

location almost every time. These perfect matches happen because the target

pixels are the same between preview and test, TAM’s assumption of perfect

knowledge about the target’s appearance.With this assumption, even simple

V1-like filters can be used to generate a priority map (Rao, Zelinsky,

Hayhoe, & Ballard, 2002). But this simplicity comes with the price of very

few real-world applications, which is the focus of computer vision. But

whereas TAM and models of search behavior have largely failed to advance

computer vision methods, the opposite is not true, where computer vision

methods have led to significant advances in the prediction of search fixations.

Current models of search unashamedly incorporate methods from machine

learning to obtain robust feature representations for object goals, and by

doing so have achieved some success in predicting fixations in images and

under conditions of target-appearance uncertainty. Here we will review

the fixation prediction models that have crossed over this bridge to the real

world and are now computationally modeling search-fixation behavior in

the context of visually complex images.

4.1 Early work using object arrays and pre-deep-network
methods

The first image-based fixation-prediction model of categorical search was by

(Zhang, Yang, Samaras, & Zelinsky, 2006). Their study used a categorical

search paradigm having 6, 13, or 20 images of common objects appearing

arrayed into a search display. There was only one target category—teddy

bears—and a teddy bear target appeared on half of the trials. For training,

color histogram and texture features were extracted from 180 teddy bears

and 500 non-bear objects from assorted categories, and AdaBoost (Freund

et al., 1996), an algorithm for classification popular then in computer vision,

was used to learn a teddy-bear/non-bear classifier. Testing used an addi-

tional 180 different teddy bears (the targets in the search arrays), and

new non-bear objects served as distractors over the set size conditions.

The search array images were input to the teddy bear classifier to create cat-

egorical target maps, and these were piped into a version of TAM to
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generate sequences of eye movements. These authors compared model fix-

ations to the fixations of people searching for teddy bears in the same object

arrays, and found promising agreement using multiple eye movement mea-

sures of search efficiency, which included the number of fixations to

the target, the cumulative probability of fixating the target as a function

of each new search fixation, and the scanpath ratio, which is the ratio of

the Euclidean distance between the initial fixation location and the target

to the summed Euclidean distances of the eye movements made while

searching for the target (i.e., a scanpath ratio of 1 would mean the first

eye movement went directly to the target). By predicting this search behav-

ior, this model took the difficult step from exemplar to categorical search,

and it did so in the context of visually-complex image stimuli. However,

this study was an outlier in the sense that image-based models were at that

time still uncommon in the search literature, and much of the recent exper-

imental literature using the categorical search paradigm was yet to be col-

lected. Some time was therefore needed before the modeling literature on

categorical search fixations could gain more solid experimental footing,

with much of this work appearing in the years surrounding 2010

(Alexander & Zelinsky, 2011; Malcolm & Henderson, 2009; Schmidt &

Zelinsky, 2009; Yang & Zelinsky, 2009). Another factor contributing to

slow progress was the availability of object datasets at that time for training

classifiers. In contrast to the wealth of object datasets that are available

today, in 2005 there were very few. Indeed, the reason why teddy bears

were used as the target category in the Zhang et al. (2006) study was because

one of the authors stumbled upon the Teddy Bear Encyclopedia (Cockrill,

1993) one day in a bookstore, and then ripped out its pages and scanned

them to create training and testing image datasets.

In another forward-looking study, Ehinger, Hidalgo-Sotelo, Torralba,

and Oliva (2009) had participants search for people in 900 images of outdoor

scenes, then evaluated several models in their ability to predict categorical

guidance in this person search task. This makes their study the first to predict

fixation behavior for a target category in natural scenes. Ahigh degree of inter-

observer agreement was reported in the search behavior, and the aim of the

study was to identify the source of this categorical guidance signal. Three

sources of guidance were considered: bottom-up guidance from saliency

maps, top-down guidance from target features, and top-down guidance from

scene context. To model this behavior the authors modified the contextual

guidance model from (Torralba, Oliva, Castelhano, & Henderson, 2006).

This model predicted fixations by combining a saliency map, indicating
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contrast in local image features, with a bias from a global-scene-context fea-

ture. This feature consisted of learned spatial priors reflecting the locations of

pedestrians in scenes, which was implemented by a band of heightened pri-

ority extending horizontally across an image. The Ehinger et al. (2009) study

added to this model a person detector from computer vision (Dalal & Triggs,

2005), which used a texture-based classifier to capture the fact that most

pedestrians stand upright and are therefore vertically oriented. It is this addi-

tion that makes their model a model of categorical search. In comparing these

components, they found that the scene context feature was most important in

predicting guidance. This finding is perhaps unsurprising given that people in

outdoor scenes often appear on streets or near doors, and that the small size of

pedestrians in many images challenged the person detection methods that

were available at the time. This study’s use of only one target category, and

specifically one that is likely not representative of most search targets, also

raises concerns about the generalizability of the approach. Nevertheless, this

model was an important contribution to the fixation-prediction literature,

particularly with respect to the role that scene context can play in categorical

guidance.

It wasn’t until Zelinsky, Adeli, Peng, & Samaras (2013) that modeling

work resumed on categorical search (but see Alexander & Zelinsky, 2011).

Similar to Zhang et al. (2006), they extended TAM to the task of categorical

search (resisting the urge to call it TAM2) by using a teddy bear classifier to

create a categorical target map for the prediction of search fixations. This

model used a biologically-plausible and image-based model of object rec-

ognition (Serre, Wolf, & Poggio, 2005) to extract features from training

images of teddy bears, once again the target category, and random-category

non-bear objects. A linear Support Vector Machine (SVM), a classification

method that finds a hyperplane best separating labeled data (i.e., teddy bears

versus non-bears), was used to train a bear/non-bear classifier. Training and

testing used the dataset from Yang and Zelinsky (2009), which had 12 par-

ticipants search for teddy bears in randomly arranged 6, 13, and 20-object

search arrays. Testing consisted of extracting the same features for the

objects in the search array, and finding for each object a distance between

it and the SVM teddy bear classification boundary. Fig. 5 may be helpful

in forming an intuition for the method. The idea is that the features for

two object classes, here teddy bears and non-bears, can be separated

by a learned boundary in a high-dimensional space (shown for only three

dimensions), such that the distance between a given object to this boundary

reflects a confidence that the object is a member of the object class.
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This is why the pumpkin and doll and black bear objects are positioned

close to this boundary, to reflect the fact that they may have visual features

in common with teddy bears and that there is lower confidence that these

objects are on the correct side of the boundary. Indeed, for the teddy bear

dressed in a ball gown, this classification was incorrect. Likewise, the lamp

and scale objects are farther from this boundary, reflecting a greater confi-

dence that these objects do not belong in the teddy bear category. From

these distances, a categorical target map was created for each search display,

and this map of prioritized evidence for the target was piped into TAM to

generate saccades. These authors found a near perfect agreement between

human behavior and the model with respect to the mean number of fixa-

tions made during search across the three set sizes, and the proportion of

trials in which initial saccades landed on the target. The Zelinsky, Adeli,

et al. (2013) model was in a sense the slow conceptual culmination of the

Zhang et al. (2006) model of fixations during categorical search from years

before. Related work using thismethod showed that distance to an SVMclas-

sification boundary also predicted the rated typicality of a target exemplar

(Maxfield et al., 2014), and could be used to decode the fixationsmade during

target-absent categorical search to classifywhether a personwas searching for a

teddy bear or a butterfly (Zelinsky, Peng, & Samaras, 2013).

Fig. 5 A simplified illustration of how distance from a learned SVM classification bound-
ary (green line) can be used to prioritize objects for selection in a teddy-bear/non-bear
categorical search task.
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In another study from about the same time, Zelinsky, Peng, Berg, et al.

(2013) asked whether the categorical guidance signal might largely be object

recognition attempted on peripherally viewed inputs. To address this ques-

tion, these authors trained nine SVM-based teddy-bear detectors, each using

different features and methods of the time, on high-resolution images of

teddy bear and non-bear objects, a condition that they argued typically exists

during recognition only after the high-resolution fovea has moved to an

object. They then applied these detectors to teddy bear and non-bear objects

that were blurred to approximate viewing in the visual periphery during sea-

rch, the conditions that exist during target guidance. Using a similar method

as in Zelinsky, Adeli, et al. (2013), they found that the most biologically

plausible of these teddy bear detectors, and specifically the one which used

features extracted by the same object recognition model from the other

study, predicted almost perfectly both categorical guidance to the target,

measured by the proportion of trials in which the teddy bear was the first

fixated object, and the pattern of recognition errors following these initial

target fixations. These authors speculated from this finding that categorical

search guidance and object recognition may not be substantially different

processes, and may in fact be a single process performed on blurred and

non-blurred visual inputs, separated by an eye movement. However, and

like Zhang et al. (2006) and Ehinger et al. (2009), this modeling work used

only one target category and is therefore of untested generalizability.

To study the visual features used to represent target categories, Yu,

Maxfield, and Zelinsky (2016) used an unsupervised learning method to

extract, directly from images of a category’s exemplars, what they referred

to as category-consistent features (CCFs). They defined CCFs as the features that

appear both frequently and consistently across the exemplars of a category,

and they extracted CCFs from 4,800 closely-cropped images from 68 com-

mon object categories. These 68 categories spanned three hierarchical levels

and consisted of 48 subordinate-level categories (e.g., sailboat), which were

grouped into 16 basic-level categories (e.g., boat), which were grouped into

4 superordinate-level categories (e.g., vehicle). To identify theCCFs for a cat-

egory, a scale-invariant texture feature (Lowe, 2004) and a feature consisting

of a histogram of color hues (Swain & Ballard, 1991) were extracted from

100 image exemplars making up each of the 48 subordinate-level categories.

This was done using yet another image classification method known as

Bag-of-Words (BoW; Csurka, Dance, Fan, Willamowski, & Bray, 2004).

BoW works by extracting local image features from the exemplars of a cate-

gory, and then clustering (k-means) these features to obtain a reasonably-sized
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vocabulary of “visual words,” 1064 in their study. Similar to how text data can

be represented using the frequency of words from a vocabulary, representa-

tions can be obtained for each exemplar by simply counting how frequently

each of these 1064 visual words occurred in a given image, thereby providing

a common feature space within which exemplars can be meaningfully com-

pared. Yu et al. (2016) computed BoWhistograms for each exemplar of a cat-

egory, and then determined those features that appeared both frequently and

consistently across the category exemplars, a form of signal-to-noise ratio

(SNR). The features of an object category having the highest SNRs were

selected as the CCFs for that category. The behavioral task was categorical

search, where the cue was a category name designating the target in a

6-object search array at a particular hierarchical level. Behavioral responses

showed that the time taken by gaze to first land on the target (time-to-target)

increased with movement up the hierarchy, replicating the subordinate-level

advantage in target guidance reported earlier by Maxfield and Zelinsky

(2012). The BOW-CCF model captured this subordinate-level advantage

by a simple count of the number of CCFs extracted for object categories,

grouped at each hierarchical level. Thismeans thatmoreCCFswere extracted

from categories at the subordinate level than for categories at either the basic

or superordinate levels. The authors interpreted this result as suggesting that

the number of CCFs used to represent a visual category is a potential factor

affecting the degree of control exerted by that categorywhen it is a target goal.

More recently in the present, Adeli, Vitu, and Zelinsky (2017) developed

MASC, an acronym for Model of Attention in the Superior Colliculus.

MASC is broadly a model for projecting a cortically-derived priority map

onto the surface of the SC, a brain area implicated in eye movement control

(Krauzlis, Lovejoy, & Z�enon, 2013). Its focus therefore extends beyond sea-
rch to include free-viewing behavior. MASC’s core contribution is that it is

a brain-inspired model that takes a priority map as input, be it a saliency map

or a target map, and generates sequences of fixations using computations

informed by neurophysiological investigations of the SC. In a sense, it is

TAM now moved into the brain (see also, Zelinsky, 2012). MASC’s pipe-

line begins with a retina-transformation of the input image, meaningMASC

has a foveated retina, and a priority map is computed from this retina-

transformed input. This priority map is then projected onto the SC, which

is organized into visual and motor spatial maps. In these maps, the priority

signals undergo two cascaded stages of Gaussian blurring reflecting popula-

tion responses known to exist in SC neurons. Winner-take-all is finally used

to select the peak in this averaged priority activity, and this location is
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selected for the next saccade. Sequences of fixations were produced by iter-

ating this process, inserting an inhibitory spatial tag (Klein, 1988; Mirpour,

Arcizet, Ong, & Bisley, 2009) after each movement, and these model fixa-

tions were compared to human fixation behavior. To demonstrate the

flexibility of their model, the authors reported the success of saliency maps,

exemplar target maps, and categorical target maps in predicting the respec-

tive behavior from free-viewing, exemplar search, and categorical search

tasks, with the lattermost being the reason for its inclusion in this review.

In the categorical search task used for behavioral data collection, one target

category (from 25 target categories in total) was cued on each trial by name,

and this was followed by a search display consisting of randomly-arranged

arrays of objects at five levels of set size. The BoW method and texture

and color features were used to train 25 target/non-target linear SVM clas-

sifiers, one for each of the 25 target categories. Training used only 12 exem-

plars from each category, none of which were used as targets at test, and 450

random-category non-target objects as negative training samples, also a

disjoint set from testing. The authors evaluated MASC on a trial-by-trial

basis by computing the feature distances between each search display object

and the target’s SVM classification boundary, and then converting these

distances to probabilities to obtain a categorical target map to make fixation

predictions. Search efficiency was measured by summed saccade distance

before first target fixation, a measure related to scanpath ratio, where

MASC’s fixations matched human behavior very well for each of the set

sizes tested. In the current context, MASC has the distinction of being

the first brain-inspiredmodel of categorical search, even though its categor-

ical target map was simply inherited as a top-down signal.

4.2 More recent work using scenes and deep neural networks
to predict categorical search fixations

Even a goal as modest as building fixation prediction models by borrowing

already-developed methods from computer vision can be challenging given

how rapidly that literature has been changing. Most shocking is the transi-

tion that occurred in 2012, the year that AlexNet (Krizhevsky, Sutskever, &

Hinton, 2012), an 8-layer convolutional neural network (CNN), decisively

beat all competitors in a large-scale object classification competition. This

competition was ImageNet; the classification of 1000 different object cate-

gories in 1.2 million images (Deng et al., 2009). In the span of one year, the

core computer-vision literature abandoned its mainstay methods and shifted

almost entirely to deep neural networks (DNNs). This rate of change,
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uncommon in behavioral science, meant that features and methods such as

color histograms and BoW, along with the models that used them, were

flung into the computer vision past, replaced with the more robust features

that can be learned by a deep network. Of course, and as already reviewed,

categorical search fixations can be predicted without the latest state-of-the-

art methods from computer vision, but we would be shortsighted to ignore

the wave that is deep learning. The performance benefits from using DNNs

are real, and there is no sign of this wave ending soon.

Behavioral scientists interested in visual perception and attention control

should care about DNNs because this methodology directly impacts the abil-

ity of models in these literatures to use images of scenes as inputs. Using

MASC as an example, it is objectively a goodmodel, meaning it is reasonably

predictive, demonstrably flexible, and highly explainable. However, there

are good reasons why it, and most models before it, used arrays of objects

in their predictions of categorical search. For one, these objects, most of

which were from the now dated Hemera object collection (Hemera

Technologies, 1997), were very well behaved in the sense that objects were

photographed from reasonably typical perspectives and were entirely

un-occluded. This is not true for visual objects in the wild. Second, using

object arrays enables modelers to avoid the problem of object segmentation,

itself an open question in computer vision. Hemera objects are again a good

example, which come with masks that allow just the object pixels to be

placed onto a background, typically a uniform white, to create a search dis-

play. This is an important difference from real-world visual scenes, where it

is often unclear what should be considered an object or where an object ends

and a background begins. Models aimed at predicting goal-directed fixa-

tions in realistic contexts must confront these problems or risk not per-

forming very well when tested on scenes. MASC’s use of object arrays to

test its search predictions therefore exposes a weakness of MASC; the fea-

tures and methods that it used were able to scale to images of object arrays,

but probably not to images of scenes. DNNs are, and will be, an important

tool in taking this step because they learn rich representations in their deeper

layers that are more abstracted away from the pixel input, arguably how

visual-object percepts are more abstracted away from the luminance and

color-linked responses of opponent-process retinal ganglion cells.

There are a couple of related literatures using DNNs that will not be

covered in this review. One is the excellent literature using DNNs to pre-

dict several neural and behavioral responses (e.g., Bao, She,McGill, &Tsao,

2020; Kell, Yamins, Shook, Norman-Haignere, & McDermott, 2018;

254 Gregory J. Zelinsky et al.



Kriegeskorte, 2015; Lotter, Kreiman, & Cox, 2016; Ma & Peters, 2005;

Richards et al., 2019; Wang et al., 2018; Yamins & DiCarlo, 2016).

These studies do not address goal-directed attention or the problem of

predicting fixations, and are therefore well outside our scope. Another is

the medical imaging literature that engages the question of fixation predic-

tion during search and uses DNNs to predict cancer diagnoses, but to our

knowledge has not yet put these two topics together. However, we give this

work more than honorable mention because it comes very close to satisfy-

ing the criteria defining our problem, although with caveats. For one,

although a radiologist interpreting a mammogram for a nodule is a search

task, what this person is actually doing is gathering evidence to reach a deci-

sion about the presence of cancer, or its severity. The same is true for the

digital pathologist viewing a giga-pixel slide of prostate. This fixation

behavior differs from behavior observed in a standard search task, where

there is usually a single target located at a single image location. This fixation

behavior is also more complex, with visual search often described as

being only one of several interacting decision processes (Krupinski et al.,

2006; Krupinski, Graham, & Weinstein, 2013; Kundel & Nodine, 1978;

Kundel, Nodine, Conant, & Weinstein, 2007). Complicating this goal-

directed behavior even further, in mammography it is typical to see multi-

ple views of a case, meaning that the target is distributed across each, and in

digital pathology the decision to grade a case as a particular level of cancer is

usually reached only after inspection at multiple magnifications. Both of

these factors make the definition of the cancer target qualitatively different

than that of everyday search targets, such as microwaves. Similarly,

although inputs to these models are images, these images are highly special-

ized and very different in their visual statistics from real-world scenes. The

goal of these studies is also not fixation prediction per se, but rather some

determination of how close fixation came to target regions during an inter-

pretation and/or how these fixations factored into the medical decision.

For example, in a study by Mall, Brennan, and Mello-Thoms (2019) the

fixation behavior of 8 radiologists was monitored while they interpreted

mammograms from 59 cases of breast cancer. These mammograms were

then segmented into three categories of regions: those that were directly

fixated, those that were peripherally fixated, and those that were never fix-

ated. A DNN, one pre-trained on ImageNet, was then re-trained on these

regions to predict the three categories in a test set of mammograms. The

authors found that their model could predict this classification with high

accuracy, and concluded that their model enables radiologists to know
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whether a particular region in a mammogram is likely to attract foveal or

peripheral attention, or no attention at all. This study, and others like it

(Bruny�e, Mercan, Weaver, & Elmore, 2017), therefore have a very differ-

ent goal than the other studies of fixation prediction discussed in this

review. So, whereas the medical imaging literature does engage the ques-

tion of categorical search in images, we believe that the nature of the target

category, the image, and the task makes these efforts different enough from

everyday search that they should be considered addressing different

problems.

To our knowledge, the first work using a DNN to predict fixations in a

search context was by Wei, Adeli, Zelinsky, Hoai, and Samaras (2016). The

study used a VGG16 model (Simonyan & Zisserman, 2014), which is a

16-layer (13 convolutional, 3 fully-connected) deep network that performs

well in large-scale object classification, to predict the fixations in images

from the POET dataset (Papadopoulos, Clarke, Keller, & Ferrari, 2014).

This dataset consists of the fixations made by five people viewing 6270

images, where the participant’s task was two-alternative forced-choice,

meaning deciding which of two target categories from blocked object-

category pairs (e.g., cat or dog; five pairs total) appeared in an image.

Because this task is not the same as categorical search (and arguably more

similar to an object-classification task for these specific object pairs), and

because the focus of the study was a new optimization method in machine

learning rather than behavior prediction, we consider this study more

squarely belonging to the computer vision literature and will not describe

it here in detail. However, the study is notable in that it was one of the earlier

attempts to use principles of primate attention to build more efficient com-

puter vision models of object detection. Such “attention” models have since

grown in popularity in computer vision (Fu, Zheng, & Mei, 2017; Zamir

et al., 2017; Zheng, Fu, Mei, & Luo, 2017; Zoran et al., 2020), making this

study a small and long overdue payback to that literature.

The computer vision literature has been evolving at breakneck speed,

and it is no coincidence that advances in fixation-prediction models of

search have followed shortly behind. In the tradition of first-rate thieves,

contemporary models of categorical search have continued seizing upon

advances in computer vision methodology with the goal of using these

methods to make models of goal-directed attention that are more “end to

end,” starting with a pixel input and ending with fixation behavior. One

of these advances was the use of a convolutional DNN architecture, the

CNN architecture used by AlexNet. CNNs are loosely inspired by
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the architecture of the brain. They compute features at each network layer

by passing filters over an input, a computation similar to what is performed

by neurons arranged into retinotopically-organized visual structures. Adeli

and Zelinsky (2018) integrated an AlexNet into a model of the broader net-

work of brain structures underlying primate attention control. They did this

using the framework of biased-competition theory (Desimone &Duncan, 1995;

Tsotsos et al., 1995), which captures the currently best understanding of how

attention control is mediated by the brain. The theory suggests that a top-

down goal state biases a competition among object representations for the

selective routing of a visual input for classification. Deep-BCN (Biased-

Competition Network) advances this theory by making it explicit as a

DNN, and by using it to predict the preferential fixation of categorically-

defined search targets. Fig. 6A shows the pipeline of Deep-BCN’s neuro-

computation, loosely mapped onto processing by early visual structures

(V1, V2/V3, and V4), two ventral areas, posterior inferotemporal (PIT) and

anterior inferotemporal cortex (AIT), the frontal-eye field (FEF) and the

dorso-lateral prefrontal cortex (DLPFC), and the superior colliculus (SC),

which recall is the midbrain visuo-motor structure important for eye move-

ment control. Green boxes indicate convolutional DNN layers, yellow

Fig. 6 (A) The pipeline of Deep-BCN. (B) The top panel shows search behavior (model in
red, participants in cyan) for the target "pants." The middle panel shows shows the
corresponding priority map without the top-down bias, and the bottom panel shows
the priority map with the bias for this target category.
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boxes indicate fully-connected DNN layers, and black boxes indicate

non-DNN processing. Blue and red arrows indicate feedforward and feed-

back connections, respectively. In this metaphor for the brain, the early

visual and ventral components were intended to correspond to the 8 layers

of an AlexNet that was pre-trained on ImageNet and fine-tuned on the

25 target-object categories from (Adeli et al., 2017). Deep-BCN’s concep-

tual pipeline assumed that a word cue in a categorical search task activates

one of these 25 object categories, and this activity serves as a top-down signal

biasing the bottom-up early visual processing in order to prioritize the

target location. More specifically, an image of a search display was input

to five convolutional layers (green boxes) and three fully-connected layers

corresponding to PIT and AIT, brain areas known to be important for

object recognition in primates. Importantly, Deep-BCN preserved a coarse

retinotopy among units up to its fifth convolutional V4 layer, which is the

structure assumed to be biased for the purpose of controlling spatial atten-

tion and gaze. This spatial bias was modeled by a feedback connection from

the DLPFC layer, and specifically the gradient signal exerted by the learned

object category (one of the 25) designated to be the target. The FEF then

selected a winner in the biased V4 activity, and this prioritized activation

was projected to the SC to generate the search saccade. This final step of

generating the eye movement was accomplished by MASC, which was

integrated into Deep-BCN’s architecture. Fig. 6B (top) shows some of

Deep-BCN’s eye movements (in red), plotted with representative behavior

for a “pants” target on a representative trial. Also shown are two V4 priority

maps for this trial, one reflecting purely bottom-up early visual processing

(middle) and the other reflecting that processing after it was biased by top-

down input (bottom). The authors showed that Deep-BCN’s eye move-

ments agreed well with those of people searching the same object arrays

for the same categorical targets. They interpreted this agreement as showing

how a DNN can model goal-directed attention control in the brain within

the context of a biased-competition framework.

In another recent study related to Deep-BCN, Zhang et al. (2018) con-

ducted an impressive data collection effort encompassing three different sea-

rch contexts. In one task they used arrays of six grayscale objects, one of

which was the cued target and the other five of which were exemplars from

the five other categories (six categories of targets were tested). They also used

a search task inwhich a target was specified prior to display of a natural image,

and a Waldo search task, where the Waldo character was designated as the

target once at the start of the experiment, but appeared somewhat differently
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in each cluttered and colorfully illustrated search display. Behaviorally, their

study largely confirmed what was already known from the previous work

on categorical search reviewed here. Specifically, they found that search fix-

ations are guided to categorically defined targets in object arrays (Yang &

Zelinsky, 2009), natural scenes (Ehinger et al., 2009), and in a Where’s

Waldo search task (Smith & Henderson, 2011). The greater contribution

of this work was their model, which was the first DNN to predict categorical

search guidance in the context of scenes. Conceptually, theirmodel works by

using a single category exemplar, the one shown to participants at cue, to

represent the entire target category. It is therefore categorical search, but

instead of using a text cue to designate the target their participants got to

see a category exemplar. This is similar to our previous suggestion about

how TAM could have been extended to categorical search by using one

of its previously viewed target images to extract features. They called this

model the invariant visual search network (IVSN). It obtained the acti-

vation from the top layer of a pre-trained VGG-16 in response to the

target exemplar shown at cue, and used this as a top-down bias for target

features in an unseen image. This is similar to the back projection from

Deep-BCN’s DLPFC layer to its V4 layer, making this method the con-

sensus approach to generating a top-down attention bias in a DNN.

Despite their concurrent conception and similarity in design, IVSN

and Deep-BCN were developed independently. And there are significant

differences. The authors of IVSN interpreted their model as evidence for

zero-shot learning, which as the term is used in the computer vision lit-

erature means that a model trained to classify exemplars from category a

is also able to classify exemplars from category b, despite never having

been trained on b. However, this was not entirely true in the case of

the Zhang et al. (2018) study, where both participants and IVSN “saw”

an image exemplar of the target category, albeit one that differed in appear-

ance from the target in the search displays, and used this target information

to guide their search fixations. This type of appearance information is not

typically used by computer vision models claiming zero-shot learning,

nor was this information available to Deep-BCN or even models dating

back toZhang et al. (2006). This use of target appearance information there-

fore makes IVSN difficult to situate precisely in the current context. We

placed it in the present, both based on its use of DNNmethods and its chro-

nology, but, although not nearly as problematic as the methods used by

TAM and models like it, IVSN hints at the same problem that caused these

models to be delegated to the past.
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Brain-inspiration in model design can take many forms, with Deep-

BCN and IVSN being two examples. But it is also fair to ask what it was

about these models that was particularly brain inspired? Both used pre-

trained DNNs to extract the visual features of object categories, and, at least

in the case of Deep-BCN, the mapping between network layers and brain

areas was intended to illustrate only coarse parallels to the functional connec-

tivity existing between structures in the brain. However, a recent model by

Yu, Liu, Samaras, and Zelinsky (2019) was perhaps the most extensive

attempt thus far to predict categorical search using a CNN model designed

after the brain. This study built on the earlier work by Yu et al. (2016) in two

respects. First, it used the same behavioral dataset, which recall was 26 people

categorically searching object arrays for each of 68 target categories spanning

three levels in a category hierarchy. Second, they borrowed the idea of a

category-consistent feature (CCF), which recall is a feature that appears

both frequently and consistently across the image exemplars of an object

category. One contribution of the Yu et al. (2019) study was the extension

of the CCF idea to the features extracted by a DNN. DNNs are powerful

because they extract robust feature representations for object categories,

more robust compared to previous methods such as BoW, the method used

in Yu et al. (2016). Yu et al. (2019) simply replaced the BoW features with

the features extracted by a CNN, keeping the CCF extraction algorithm

the same. Whereas the BoW-CCF model from Yu et al. (2016) could pre-

dict the effect of category hierarchy on search guidance (stronger guidance

to targets cued at the subordinate level), using the more powerful CNN-

CCF model it was possible to predict search guidance to individual target

categories (e.g., stronger guidance to taxis).

A second contribution of the Yu et al. (2019) study was its attempt to

design a CNN after the brain structures comprising the primate ventral

stream, a goal that motivated the model’s name—VsNet. VsNet had five

convolutional layers roughly mapping to areas V1, V2, V4, PIT, and

AIT, the same ventral areas as in Deep-BCN, followed by two fully-

connected layers. For VsNet this mapping meant that each of these layers

was engineered to the corresponding brain area in three respects. First,

the number of filters in the layer was proportional to the number of neu-

rons in the corresponding structure, based on brain surface area. This was

done to have VsNet reflect the brain’s distribution of computational

resources over the structures in the ventral pathway. Second, the range

of filter sizes in each layer was constrained by the range of receptive field

sizes for visually-responsive neurons in the corresponding structure.
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Third, VsNet implemented bypass connections reflecting known connec-

tivity between areas in the primate ventral stream. VsNet and comparable

CNN models were each trained on ImageNet for 2–4 days, then fine-tuned

on the SBU-68E dataset. This dataset, expanded from the one used in Yu

et al. (2016), has 500 training and 50 validation images for each of 48 object

categories. VsNet predicted the time until first target fixation (time-to-target),

and it did so both for individual categories as well as the categories grouped by

hierarchical level. Moreover, in model comparison these predictions were

better than those from other models, despite those models having more train-

able convolutional filters. Yu et al. (2019) also probed VsNet to determine the

image patches that elicited the maximum responses from filters in its “IT”

layers, and observed that many of these images depicted object parts (e.g., a

police car siren) that allowed the category to be discriminated from its siblings

(e.g., taxis). These authors concluded that CCFs extracted from a brain-

inspired CNN, one trained for object classification, were useful in predicting

goal-directed attention control. Methods like CCF extraction are potentially

useful in adding much-needed explainability to the object representations

learned and used by DNNs to predict attention. However, this study focused

only on the identification of the ventral stream features that could be used for

categorical guidance, and not the source or implementation of the attention-

control bias itself. It therefore lacked Deep-BCN’s system’s level perspective.

VsNet’s evaluation was also limited only to time-to-target, and not the actual

x,y locations of the fixations, or their sequences.

In another study approaching the contemporaneous present, Zelinsky

et al. (2019) reported one of the latest efforts to apply DNNmethods to pre-

dict fixation scanpaths in a categorical search task. The goal of this study was

to establish a benchmark for scanpath prediction by applying existing state-

of-the-art methods from computer vision to the problem. In an effort pur-

posefully unmotivated by biological plausibility, their approach was to treat

the prediction of a search scanpath as a multi-class classification problem.

Images were discretized into a 10�16 grid, for problem tractability, and

models were trained to classify the grid cell that would be selected (from

160 possible grid locations) for each fixation in the search scanpath. Each fix-

ation prediction in the scanpath also used information from the previous

fixations, meaning that these models accumulated foveal information with

each search movement. This was done to reflect a memory for fixated objects

accumulating over eyemovements (Hollingworth&Henderson, 2002), even

though the visual details from previous fixations are likely lost once integrated

into the new state (consistent with Irwin, 1996). Two approaches were
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considered for representing this accumulated information. The first used a

newer generation of CNN, a ResNet-50 (He, Zhang, Ren, & Sun, 2016),

which was trained with retina-transformed images of the sort described for

TAM. However, and different from previous uses of retina transforma-

tion, these movements of a foveated retina accumulated. This is shown

in the Fig. 7 example, where each of three shifts of the simulated retina

(top) results in the accumulation of high-resolution foveal information

from the fixation before (bottom). As the scanpath lengthens, the search

image therefore becomes progressively de-blurred. A second approach for

representing spatio-temporal search scanpaths used recurrent neural net-

work (RNN) methods, which use a circuit-level memory to process

variable-length sequences unfolding over time. The authors reasoned that

scanpaths might therefore be a reasonable behavior to predict using this

method. Multiple RNN methods were implemented and tested (Cho

et al., 2014; Hochreiter & Schmidhuber, 1997), but before diving into

their details the authors found that they were not among the most predic-

tive models in their benchmark. Separate models were trained for each

target category, and for each model a 6-fixation scanpath was generated

for each search image. These scanpaths were compared directly to behav-

ioral scanpaths obtained by people searching the same images for the same

target categories. The authors found that all of the models did a good job

of predicting the categorical search-fixation scanpaths, relative to a perfor-

mance ceiling defined by agreement among the behavioral searchers, with

the best of these models being a CNN trained with a cumulative foveated

retina. But benchmarks of the sort attempted by Zelinsky et al. (2019) are

Fig. 7 Cumulative foveated retina. As fixations accumulate in a scanpath (top, left to
right), so too does the high-resolution foveal views obtained at each fixation (bottom,
left to right).
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limited in that they reflect methods existing at only a moment in time, and

methods change very quickly in the computer vision literature.

Reaching the current calendar year, Zelinsky et al. (2020) took the novel

approach of modeling search-fixation behavior by simply using a DNN to

mimic it. We will defer discussion of this technical novelty to the section on

the future, where we will make clearer the motivation for this modeling

approach. Here we will focus on another methodological contribution of

this study, namely the creation of a significant new dataset of categorical

search fixations. Details about model training were omitted from the discus-

sion of theZelinsky et al. (2019) study,most conspicuouslywhere the behav-

ioral fixations came from that were used to train the scanpath-prediction

models. These training fixations came from the Microwave-Clock-Search

(MCS) dataset, aptly named because it consisted of just two target-object

categories—microwaves and clocks. These authors set out to predict

goal-directed attention control by training a DNN on previous observations

of search-fixation behavior, but before they could do this they needed to col-

lect a lot of categorical search behavior for model training. Two categories

were chosen largely arbitrarily fromMSCOCO (Lin et al., 2014) for behav-

ioral annotation, with two being the minimum number of categories needed

to demonstrate different expressions of attention control in the same images.

Specifically, 16,184 fixations were collected from people searching for either

microwaves or clocks in a training dataset of 4,366 images of scenes, many of

which were kitchens because of the microwave category. They used this

fixation-labeled dataset with an imitation-learning method from the

machine-learning literature called inverse-reinforcement learning (IRL;

Abbeel & Ng, 2004) to learn target-specific reward functions and policies

for these two target goals. The trained IRL model then used these learned

policies to predict the fixations of 60 new behavioral searchers, 30 searching

for a clock and the other 30 searching for amicrowave, in a disjoint test dataset

of kitchen-scene images depicting both a microwave and a clock. This design

thus perfectly controlled for differences in low-level image contrast, which

would be the same regardless of the target. The taskwas to search for the target

category in 80 images, half of which were target-present. As in Zelinsky et al.

(2019), this IRL model used a cumulative-foveated image as input and a

ResNet-50 backbone to extract object features. Indeed, these two studies dif-

fered only with respect to their modeling approach; both used the MCS

dataset for model training and testing. They found that the predictions from

the IRLmodel compared favorably to the noise ceiling, based again on agree-

ment in search behavior, and this was true for both fixation-density maps

(FDMs) and search-fixation scanpaths. Fig. 8A shows this comparison for
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search efficiency, quantified here as the cumulative probability of fixating the

target in the first six fixations. This probably increased very rapidly over the

first three new fixations for both human searchers (solid lines) and the IRL

model (dashed lines), although the behavioral searchwas still clearlymore effi-

cient. Butmore fundamentally, the IRLmodel learned target-specific policies

that produced target-specific prioritization and guidance in unseen test

images, as shown in Fig. 8B in a comparison of representative behavioral

and predicted scanpaths. The patterns of fixations made by people and the

IRL model clearly depended on whether the target was a microwave or a

clock, and this studywas the first use of an imitation-learningmodel to predict

this goal-directed control of categorical-search behavior.

5. The future (�2020–2030)

What can we reasonably expect of fixation-predictionmodels over the

next ten years? The past decade has seen good progress in the prediction of

goal-directed search fixations, so there is reason to be optimistic and to set

our expectations high. But the current state of modeling is also very explor-

atory, and some time will be needed for the literature to find its footing. The

attention modeling literature is experiencing some methodological growing

pains. The writing on the wall is clear. If models of attention are to remain

relevant and useful, they must be able to predict fixations in realistic con-

texts. As hopefully captured in this review, the literature has made slow

but steady progress from simple search stimuli to images of fully realistic

scenes, with arrays of objects serving as a useful stepping-stone along the

way. Relatedly, because modeling methods are not yet being developed

by and for behavioral scientists, the fixation prediction literature remains

tethered to computer vision. While it is unlikely that this will fundamentally

change in the foreseeable future, there are things that can be done now to

make this tethering less disorienting. As a case in point, the recent and inev-

itable use of DNNs to predict neural and behavioral responses have almost all

used CNNs that were pre-trained to perform object classification. This is

because the computer vision literature cares about object classification, so

they invested the effort and resources to create datasets and train models that

now predict object classification quite respectably. Comparable efforts

should be made in the behavioral and neuroscience literature to train

DNNmodels on the specific tasks and behaviors to be predicted. In the cur-

rent context, this means creating datasets of behavior large enough to train

DNN models of search-fixation prediction. DNNs are also a broad class of
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models, and its members differ with respect to their architectures and objec-

tive functions. There is little consensus among attention and recognition

researchers as to which is best for a given task, or what being “best” would

even mean. In the absence of data to take a more informed direction, the

fixation-prediction literature simply went with the latest pre-trained object

classification model that was easily available; Deep-BCN used an AlexNet,

IVSN used a VGG-16, and the IRL model used a ResNet-50 backbone.

This model evolution was marked by small advances in object classification

performance, none of which are likely to be important in the current con-

text. These architecture decisions need to become better motivated by brain

or behavior, or both. Relatedly, imitation-learning methods, such as those

used in the IRL model, might predict fixations very well, but should pre-

diction be the sole goal of an attention-control model or should a goal also

be to understand something about this behavior? What will be the right bal-

ance between model performance and interpretability for behavioral

attention-control models? If we begin this decade by asking the right ques-

tions, hopefully by its end we will emerge from this exploratory phase with a

clearer sense of modeling directions. Here we speculate on directions that

we see research on attention control taking over the next ten years.

5.1 Search-fixation datasets
DNNs are not magic. To work well, they require training data, and typically

a lot. The importance of large-scale datasets for model training is being real-

ized in the attention control literature. This is particularly true in the case of

the substantial literature that has developed around the prediction of fixations

made during the free-viewing of scenes (https://saliency.tuebingen.ai/). The

currentlymost predictive of thesemodels areDNNs thatwere pre-trained on

SALICON ( Jiang et al., 2015), which is a crowd-sourced dataset of 10,000

images that were annotatedwith�4,600,000mouse clicks from people indi-

cating salient image locations. To the extent that SALICON’s mouse clicks

are comparable to free-viewing fixations, these models are therefore trained

on observations of the behavior that they will attempt to predict. Without

SALICON, DeepGaze II (K€ummerer et al., 2016) and saliency models like

it would not have been possible, and the insights into bottom-up attention

control arising from these models might never have occurred.

There is no dataset comparable to SALICON for the training of goal-

directed fixation behavior, and certainly nothing approaching this scalewhen

the context is restricted to the fixations made during categorical search.
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POET (Papadopoulos et al., 2014) has 6,270 images across 10 target catego-

ries, annotated with over 178,000 fixations. However, as discussed in the

context of the Wei et al. (2016) study, the participants’ task was two-

alternative forced-choice object discrimination, which is not the same as

object category search. There is also the PET dataset (Gilani et al., 2015),

which consists of six categories of target animals in 4,135 images, totaling

�30,000 fixations. The task was categorical search, but it was non-standard

in that participants were searching for any exemplar from any of the six target

categories, a sort of superordinate categorical search that is known to be

poorly guided (Maxfield & Zelinsky, 2012). There were also often multiple

exemplars of targets in images, and no images without a target. The MCS

dataset from Zelinsky et al. (2019, 2020) consists of �16,000 fixations on

4,366 images, half of which contained either a microwave (689) or a clock

(1,494) target. These fixations were collected using a target-present versus

target-absent categorical search task, the standard for the field, but the images

varied greatly in search difficulty. This variability reflects a tradeoff in dataset

creation between a desire to get as many images as possible for model training

(because more is usually better) and a desire to get “good” images that will

elicit “good” search fixations. This means fixations that are actually guided to

the target categories, which in turn means that the targets should not be too

small, located at the center of the image, etc. Although the test images in the

MCS dataset were well controlled in this regard, the training images in this

dataset, the vast majority, were not. The same is true for all of the other

datasets mentioned thus far. Interestingly, the dataset having the most train-

ing search fixations (�55,000) for a target category is one of the oldest, the

People900 dataset from Ehinger et al. (2009). However, this dataset is com-

paratively small (912 images, half target-present) and limited to only a single

target category, people. Moreover, the people usually appeared in street

scenes, making this an atypical target category in that target locations were

highly constrained to be on sidewalks or by doors. This means that predic-

tions from search models trained exclusively on this dataset would unlikely

generalize to other target categories.

Future directions can sometimes be seen by looking critically at the pre-

sent, and it was such a realization of the weaknesses in existing datasets of

goal-directed attention control that motivated the creation of COCO-

Search18. COCO-Search18 is currently the largest dataset of search fixa-

tions, an order of magnitude larger than the previously described search

datasets. It consists of �300,000 search fixations collected for 18 target cat-

egories, all common objects (microwaves, cups, laptops, etc.), naturally
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embedded in a consistent scene context (kitchens, offices, etc.). Search

fixations were collected for 6,202 images of scenes selected from MS

COCO (Lin et al., 2014). This image selection followed strict inclusion

criteria (uncommon in the computer vision literature), and was possible

because COCO consists of over 200,000 labeled images and this far

exceeds a practical capacity for laboratory-quality eye-movement data col-

lection. Specifically, images were excluded if they depicted: (1) a person or

animal, to avoid known attention biases to these object categories (Cerf,

Harel, Einh€auser, & Koch, 2008; Judd, Ehinger, Durand, & Torralba,

2009), (2) more than one exemplar of the target, (3) a target that was

<1% or >10% of the image size, so as not to have the search be too hard

or too easy, (4) targets near the center of the image, because that was the

starting fixation location, and (5) an odd aspect ratio relative to the display

screen, which could distort search behavior. The creators of COCO-

Search18 also excluded images if the tightly-cropped target object failed

to be confidently detected by a trained object classifier, to exclude images

where the target is highly occluded or largely out of frame, and entire cat-

egories were excluded if they did not leave at least 100 image exemplars after

applying the above exclusion criteria. This latter constraint was introduced

because the authors believed that 100 exemplars was the minimum number

needed to train a DNN for a specific category. The original sources should

be consulted for the full list of criteria, but applying these largely resulted in

the selection of 3,101 target-present images from 18 of COCO’s 80 object

categories. An equal number of target-absent images were selected using

additional criteria, the most notable being that images could not contain

an exemplar of the target and that the image must depict at least two

instances of one of the target’s siblings, based on labels in COCO’s hierar-

chical organization. For example, a target-absent image selected for the

microwave target category might depict an oven and a refrigerator, both

siblings of microwaves under the parent category of appliances. The authors

introduced this sibling constraint to discourage searchers from making a

target-absent judgment based solely on the context of the scene. Search fix-

ations were collected from 10 participants searching each of these 6,202

images, an effort requiring about 12 hours per participant distributed over

the course of 6 sessions, each on a different day. COCO-Search18 belongs

in the future because this massive dataset of goal-directed behavior will cer-

tainly breed a new generation of models aimed at the prediction of search

fixations. Moreover, because COCO-Search18 is now part of the popular

MIT/Tuebingen Saliency Benchmark, these models can compete in a
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managed competition using withheld testing data. The hope is that such

competition will invoke a good-natured adversarial process, thereby accel-

erating the neurocomputational understanding of attention control.

COCO-Search18 can be downloaded from https://saliency.tuebingen.

ai/datasets/COCO-Search18/, and references to COCO-Search18 should

cite both Yang et al. (2020) and Chen et al. (2020).

5.2 Inverse-reinforcement learning and its applications
Behavioral scientists build and use models for different purposes, but one

purpose has always been to predict behavior. Throughout this review we

have used the term prediction to mean a generalization from seen to unseen

data. This is the definition used in computer vision, where training data typ-

ically refers to images for which themodel has labels and testing data typically

refers to different images for which these labels were not known to the

model. Note that behavioral scientists often use the term prediction to refer

to model fitting, but these are entirely different endeavors. In model fitting,

the model gets to see the test data, and the typical goal is to describe the data

pattern using fit parameters. When in doubt, if a study does not mention a

training/testing split of their data, which is required only for prediction,

chances are the model is data fitting. Returning to the topic of goal-directed

attention, essentially two methods for predicting categorical search fixations

have been discussed in this review. One is to take a model pre-trained for

object classification using object labels, re-train it on the target category with

new training labels, and then use this model to predict the fixations made

during the search for that target. This was the approach used by most of

the models that were discussed. A second method is to do the same, only

now also train on the search fixations. Labels can be anything, and just as

an image can be labeled with information about an object category, such

as “duck,” labels can also be behavioral, such as “the x,y location of the third

fixation in the search scanpath.” This was the approach used by Zelinsky

et al. (2020), who trained on observations of microwave and clock search

behavior in training images to predict microwave and clock search behavior

in unseen test images.

Recall that Zelinsky et al. (2020) used inverse-reinforcement learning

(IRL), an imitation learning method from the machine learning literature.

The original source should be consulted for details (Ho & Ermon, 2016), but

the basic method can be conceptualized as a generator network and a dis-

criminator network that are locked in an adversarial and highly iterative
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process, one that is fueled by reward. The generator inputs an image and

generates a sequence of fixations. These eye movements can be considered

fake actions that become paired with a state, mainly features extracted from

the input image, to create a specific state-action pairing. However, because

there are now behavioral fixations included with the training images, there is

also a real state-action pair that was generated by a person searching the same

image. The discriminator takes the model-generated and person-generated

state-action pairs as input and attempts to discriminate the fake from the real.

This starts easy, because the generated eye movements are initially random,

but each time the discriminator happens to guess wrong, that particular state-

action pair from the generator is rewarded, meaning that it will be more

likely to be generated in the future. Iterating this process over sufficient

training data, the generator becomes increasingly good at fooling the dis-

criminator, which means that it becomes increasingly good at generating

human-like fixations that are difficult to discriminate from real. Over train-

ing, the model learns a policy for mapping states to actions, such that when it

is input a new state (test image) it will be able to predict new actions (search

fixations).

Behavioral scientists may want to know about IRL for two reasons. First,

simultaneous with learning a policy, the model learns a reward function. The

reward function tells you how much total reward would be expected from

making a sequence of actions, in this case fixations given an image and a

learned target category. For the IRL model, the attention priority map is

neither a saliency map nor a target map, but rather a reward map indicating

where the next fixation should be directed, all with the goal of maximizing

with each fixation the total expected reward. Our premise is that reward

drives search behavior, as it does many others (Anderson, 2013), meaning

that people select fixation locations during search in the pursuit of a reward

that will be derived upon finding the target. This is that small jolt of dopa-

mine delivered by your reward system the moment your eyes finally land

on your keys after a frantic search when rushing to catch a train, and ima-

gine how more important efficient target acquisition would have been

throughout our evolution. All behavioral scientists are on board with

the idea that reward is an important force in shaping behavior, but is this

Skinnerian sense of reward the same reward that is learned by the IRL

model? As with many good questions, the answer is “yes” and “no.”

No, in the sense that what the model is reinforced for is imitating fixation

behavior, which is not the same as finding keys. But yes, in the sense that

the behavior that is imitated is categorical search, which by our premise is
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driven by the expectation of reward by the searcher. This is why the IRL

model from Zelinsky et al. (2020), although not rewarded directly for tar-

get fixation, nevertheless indirectly recovered separate reward functions

for predicting microwave and clock search. A second reason why behav-

ioral scientists should know about IRL is that it is a powerful tool for

predicting behavior in a task, perhaps because of its grounding in reward,

and this creates opportunities for new behaviorally-engineered applica-

tions. Very speculatively, with IRL it might be possible to obtain reward

functions for populations that have malfunctioning reward systems or spe-

cialized reward histories, and make testable predictions for how these peo-

ple prioritize visual inputs. For example, how would reward functions

recovered for a typically-developing population of children compare to ones

from children who are autistic, or how would the reward functions from

people with well-functioning reward systems compare to those from people

who are depressed, phobic, or who suffer from any anxiety disorder or

post-traumatic stress disorder that is believed to be expressed in changes of

fixation behavior (e.g., Armstrong & Olatunji, 2012; Cisler & Koster,

2010; Papagiannopoulou, Chitty, Hermens, Hickie, & Lagopoulos, 2014)?

There might also be applications in human-computer interactive systems that

can anticipate a person’s intent and render assistance, and clear applications in

education, learning, and training environments. Because IRL imitates behav-

ior, differences can be quantified between people who have learned a highly

specialized visual skill and those who have not. How does the fixation behav-

ior of a digital pathology resident student still learning how to detect grade-

five cancer in a slide of prostate compare to the fixation behavior of a more

advanced genitourinary pathologist at a hospital who regularly sees such cases

clinically, and can the quantification of this comparison lead to better tools for

training this student? Its potential to address important problems, ranging from

diagnosing the severity of attention-related disorders to evaluating the

achievement of expertise in some visual task, is why we see IRL as a future

direction for the application of fixation-prediction models.

So what has been done so far? The current state-of-the art in predicting

the fixations made during categorical search is a study by Yang et al. (2020),

which trained IRL models using COCO-Search18. IRL was also used with

the MCS dataset (Zelinsky et al., 2020), but this dataset had only microwave

and clock target categories. COCO-Search18 extends this to 18 types of

target-object goals, thereby enabling the model to learn from a richer diver-

sity of target categories and far more search fixations. The IRL model in

this study learned a reward function and policy from people searching
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COCO-Search18, and it did this using a cumulative foveated retina similar

to what was done in Zelinsky et al. (2019, 2020) to capture the dynamic

change in visual state that occurs with each behavioral search fixation.

However, the greater technical novelty of this work was in a modeling of

the searcher’s changing state of knowledge about the objects in the image,

what they referred to as Dynamic Contextual Beliefs (DCB). The DCB rep-

resentation captures a person’s “what” and “where” understanding of a

scene as it evolves during the course of search. For example, given a partic-

ular type of kitchen scene it is highly likely that a microwave oven will

appear above the stove. This means that if a stove, a usually large object,

is detected in peripheral vision, then a model trained on a DCB represen-

tation might attach higher probability to the blurred blob above it being

a microwave. The theoretical assumption was that a visual input is parsed

into contextual belief maps based on all the visual categories in a person’s

knowledge structure. Belief maps were approximated using a panoptic seg-

mentation method (Kirillov, Girshick, He, & Dollár, 2019; Kirillov, He,

Girshick, Rother, & Dollár, 2019), which segmented an input image into

any of 80 “object” or 54 “stuff” categories from COCO (Caesar, Uijlings, &

Ferrari, 2018). Their IRL model therefore used information, not just from

a changing visual state filtered through a foveated retina, but also from a

134-dimensional contextual belief map that changed with each fixation, all

for the purpose of better imitating the behavioral search fixations. After train-

ing, this model learned a policy and reward function for pairing these percep-

tually more abstract states with sequences of search fixations, and these

functions were used to predict the search fixations in the testing dataset.

These predictions happened on a fixation-by-fixation basis, enabling a com-

parison between the cumulative probability of target fixation in the first six

eye movements made during search, among other search efficiency measures.

In extensive model comparison, the authors’ IRL model best predicted search

behavior on this gold-standard measure of target guidance, even when com-

pared against other imitation learning methods. Similarly good performance

was shown across a range of fixation measures and metrics. They speculated

that this greater predictive success was due to an alignment in the optimization

process performed during search; both the IRL model and people make fixa-

tions that maximize the accumulation of total expected reward. But perhaps

the more enduring contribution of this future-pointing study was the fact that

these reward functions included a broader object context from the DCB rep-

resentation.Note that this can result in objects being prioritized despite looking

very little like the target. As shown in Fig. 9, the stove and sink are prioritized
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despite these objects being very different in appearance from the microwave,

which was the target. This broader prioritization was interpreted as the attach-

ment of reward to an object context, enabling even non-target objects to assist

in the guidance of search fixation. The Yang et al. (2020) study, in addition to

offering the currently most predictive model of categorical search in scenes, is

therefore also the latest attempt to learn a visual context for target guidance,

significantly extending the seminal work on this topic by Ehinger et al.

(2009). We see the potential for learning contextual guidance being another

important future direction for attention control modeling.

5.3 Building more brain-inspired models
It took two tries, but neural networks, now that they are deep, are here for

the foreseeable future. The accelerating use of DNN models in the visual

attention and recognition literatures gives reason for optimism about what

can be learned over the next decade. It means that researchers are converging

on a common methodology, and will therefore be able to speak the same

language in their theories. This quick pace is also good because it means that

the modeling literature should evolve quickly. But in the frenzy of modeling

studies that are sure to come it will be good to periodically ask what exactly

has been learned. The last decade has made good progress in the use of

DNNs to predict fixations, goal-directed and otherwise, but has anything

fundamental been learned about attention from all this modeling? In the case

of categorical search, one might argue that it is now possible to learn the

feature representations that guide attention to a category of target, which

is something, but the representations learned by the models discussed in this

review exist in such a high-dimensional space that it becomes unclear how

this modeling advance translates into a greater understanding of attention

Fig. 9 Prioritization by object context. Left: search image, with a microwave designated
as the target. Right: the reward map generated for this image by the IRL model. Note
that the stove and sink are prioritized because these objects carry information about the
location of a microwave.
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control. We believe the rapid embrace of DNNs by behavioral scientists is a

good thing, but the attention literature should be aware of the implications

of entering into this pact. The features of an object category learned by a

DNN will not be comprehensible in the same way as the features of a

red vertical bar. Although very promising methods exist for forming more

compact visual representations of objects (Sabour, Frosst, & Hinton, 2017),

even these will unlikely be verbalizable. Indeed, even identifying the fea-

tures of a DNN that are used for attention control is challenging, although

techniques are available to do this (e.g., as in Yu et al., 2019). If the attention

literature is sincere in its adoption of DNN methodology, it must therefore

be prepared to abandon, completely and forever, the hope of understanding

the representations of attention control using a language of simple visual fea-

tures. This shift in expectation is long overdue, and reflects the attention lit-

erature being misled into believing that these representations would be this

simple—that this promise would be delivered—when in fact there was every

reason to believe exactly the opposite. So, whereas a search future focused

on application may find the prediction of goal-directed fixations very valu-

able, the literature attempting to understand something more basic about

attention control is right to question the value of models that learn feature

representations of such complexity that they defy understanding (although it

is not obvious what “understanding” even means in this context). The com-

puter vision literature recognizes this problem, and is currently valuing

models in proportion to their degree of explainability. The attention liter-

ature will need to do the same, at least with respect to understanding the

basic nature, source, and destination of attention biases in a model.

It is as yet unclear the degree that the behavioral literature will remain

yoked to computer vision methods, assuming a continued embrace of DNNs

by attention and recognition researchers. Some degree of connection is

healthy, but these literatures must better differentiate themselves if their focus

is to remain on questions pertaining to brain and behavior. This means that

models must be trained and evaluated on behavioral and neural responses,

and promising architectures and learning rules must not be excluded if they

fail to win large-scale object-classification competitions. One way that the

behavioral literature is starting to differentiate itself from computer vision is

in the design of brain-inspired models. This has already started to occur in

models of object recognition (e.g., Dapello et al., 2020), and also for models

of attention that were not focused on fixation prediction (Lindsay, Rubin, &

Miller, 2019).With respect to the problem at hand, the direction suggested by

Yu et al. (2019) is a start, but far more work is needed. Finding themost useful
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sources of brain inspiration to build into a DNN is a challenging problem.

Using the Yu et al. (2019) study as an example, its brain-engineering focused

on kernel sizes and skip connections, but obviously absent was a role for the

recurrent connections that are known to exist in the brain (Gilbert & Li,

2013). Including these temporal interactions in some future version of VsNet

is an attainable goal over the next years. Relatedly, another form of brain

inspirationwill be the design of fixation-predictionmodels aimed at capturing

the functional connectivity between brain areas in the broader attention

network. Deep-BCN is an early example of this, which included a recurrent

process in the form of a top-down bias that it suggested might be exerted on a

ventral pathway structure for the purpose of controlling search fixations, but

this bias was implemented in a static way that lacked real brain inspiration.

DNNmodels of attentionwill need to becomemore dynamic in order to bet-

ter reflect the flow of processing and information occurring throughout the

brain. Evenmore challenging iswhenbrain inspiration extends beyondmodel

architecture and into state representations and learning rules. The study by

Yang et al. (2020) showed the potential of exploring higher-level state repre-

sentations, and Chen et al. (2020) started an effort to inform how different

types of foveated retinas might be implemented and used as state representa-

tions in the training of DNNmodels of search-fixation prediction. This work

should continue. Minimally, we should hope to find consensus in the near

future on how differences between central and peripheral visual inputs should

be represented formodel training, and the fact thatmultiple labs have begun to

explore this issue is a promising sign that progress will be made on this front

(Deza & Konkle, 2020). The attention-modeling literature must also decide

on how to integrate into DNNs the reward-based circuitry known to be used

by the brain, and think carefully about its assumptions of supervision during

training, particularly with regard towhat labels are used andwhere they come

from. The literature should brace itself for the possibility that supervised,

reward-based, and unsupervised learning might all be happening in the brain

at the same time in different architectures, making even a roughly complete

understanding of the primate attention network a question that will likely

remain open throughout the next decade.

5.4 Understanding the attention-control network
What will models of spatial attention look like moving forward? In the near

future theywill likely continue the trend of usingDNNs to approximate ven-

tral visual processing in the primate brain, as already done by Deep-BCN,
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VsNet, and others. This visual component of a model is important because

here is where feature representations are learned that give a model its robust-

ness to variability in object appearance, essential to categorical search. There is

no going back from there.As forwhat thesemodelswill be able to predict, one

can only speculate, and hope. Here we sketch our hope for what future atten-

tion models will become. Fixation-prediction models will need to acknowl-

edge more consistently the fact that the visual input is from a foveated retina,

without which eye movements would be unnecessary. But aside from this

anatomical reality, each movement of a foveated retina changes the visual

input in nontrivial respects, and it is reasonable to assume that these retina-

transformed inputs affect the selection of image locations to fixate. This is

especially true for goal-directed allocations of attention, where these goals

are often objects appearing blurred due to peripheral viewing. Objects that

can be recognized accurately in cropped, high-resolution image patches,

might not be accurately recognized, or correctly recognized but at a lower

level of confidence, when seen in the blurred visual periphery. It therefore

follows that eyemovements during search aremade to increase the confidence

of goal decisions by bringing the high-resolution fovea to new locations in the

visual field. Each fixation therefore obtains a high-resolution glimpse of any

object appearing at its location, cropped by the dimensions of the fovea,

followed by another search saccade if this glimpse fails to reveal sufficient evi-

dence for the target decision. This is howTAMworked, and its articulation of

this confidence-based oculomotor dynamic during search is perhaps the

model’s greatest lasting legacy. However, with newer methods researchers

can drill deeper into this theoretical bedrock, and there are several valuable

directions to go. One direction was hinted at in the Yang et al. (2020) study,

where priority was computed at each fixation based on dynamic contextual

beliefs. Models of the future will need to explore state representations con-

sisting of spatially-localized hypotheses for the objects existing at different

locations in a retina-transformed image, and how these hypotheses dynami-

cally change as information accumulates from earlier fixations over the visual

input. A model that better captures this changing hypothesis structure, and

integrates it with a learned scene and object context, will hopefully exist

before the decade’s end. Another fruitful direction, related but also parallel

to the first, is to form stronger connections between goal-directed visual atten-

tion and other perceptual processes, with a good candidate for this being visual

object recognition.

Any understanding of visual attention will be incomplete without con-

sidering its interaction with object recognition and its precursor processes,
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and models will play an important role in understanding this attention-

recognition system in the brain. There is already an emerging literature on

unified attention-recognition models (Adeli & Zelinsky, 2018; Lindsay &

Miller, 2018) and we anticipate that this literature will grow rapidly. We

see the relationship between recognition and goal-directed attention control

being a promising future direction for this growth, and in particular a better

integration of recognition into the changing state of fixations in a search

scanpath.We also anticipate that an important bridge in this unification effort

will be the inclusion of visual grouping and figure-ground segmentation pro-

cesses into models. The segmentation of an object from a complex back-

ground is not an all-or-none thing; some can be more exact than others.

In computer vision there is a field known as object segmentation, the task

of segmenting an instance of an object category from the rest of the image,

where the assumption is that there will usually be some error with respect

to the actual global contour for that object instance. In that literature there

is even the concept of an object proposal, a region in an image that is likely

to be an object, although it is not known what kind of object. These methods

are ripe for harvest by behavioral scientists, and collectivelywith goal-directed

attention and recognition one can start to see the making of a unified system.

The spatial exactitude of object segments and proposalswill very likely depend

on how far in the visual periphery these exist. Ones forming nearer to high-

acuity central vision will obviously better delineate an object compared to

those extracted from progressively blurred eccentricities in the visual periph-

ery. This inexact object segmentation will in turn inject uncertainty in the

scene’s dynamic hypothesis structure, ultimately lessening the potential for

attention control. Under this view, the consequence of an eye movement

is to improve object recognition confidence by shifting the high-resolution

fovea to an image location, but nowwith a focus on the role that segmentation

plays in this process. The fixation of an object focuses figure-ground segmen-

tation processes on a relatively small region of space, thereby improving the

shape estimation of the centrally-viewed object and increasing its recognition

confidence, and potentially its accuracy. Assuming that the target object

must be recognized at some threshold level of confidence before commit-

ting to the manual judgment, then attention control during search may

largely be the process of selecting image locations for fixation that will

increase target recognition confidence. However, such intuitive relation-

ships mask the complexities involved in simultaneously incorporating

these attention, segmentation, and recognition processes into the dynamics

of a single DNN model. To get a handle on this problem, it may even be
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prudent in the near term to focus on simpler models that address pairwise

combinations of these processes. For example, can models be developed

that learn feature representations that predict the relationship between

figure-ground segmentation and attention, such that poorer target seg-

mentation in the visual periphery leads to a greater number of eye move-

ments needed to fixate the target? Can other models be developed to show

that the features used by attention to bias gaze shifts to the target are the

same features used to recognize that object upon its fixation? This was

the suggestion from Zelinsky, Peng, Berg, et al. (2013), who indeed advo-

cated for researchers to adopt the categorical search paradigm specifically to

study the relationship between goal-directed attention and object recog-

nition. Categorical search was a paradigm created in part specifically to

study the attention-recognition interaction, but even more convincing

would be to have models that generalize across different responses using

that paradigm. Can the feature representations learned from a model pre-

dict both the fixation behavior of a monkey searching for a categorical

target and the activity of target-tuned inferotemporal neurons at each of

the fixations (similar to Sheinberg & Logothetis, 2001)? Such converging

evidence, either across responses or across paradigms (e.g., model predic-

tions generalizing from a search task to a segmentation task), would begin

to end the purely exploratory phase that the modeling literature is in now,

and start to settle on the architectures and learning rules that will define the

future modeling of visual perception.

The above-sketched relationship between visual spatial attention, rec-

ognition, and segmentation is, when put in the context of fixation behav-

ior, an observable physical implementation of biased-competition theory

(Desimone & Duncan, 1995; Tsotsos et al., 1995), and specifically what

we refer to as fixation-selective routing. We suggest that fixation-selective

routing is consistent with the core principles of biased competition theory,

only at the scale of a competition between object beliefs for overt attention

and confident recognition. The function served by search fixations under

the sketched view is very similar to the hypothesized tuning function per-

formed by selective routing under biased-competition theory. Broadly

summarized, that theory proposed that attention control is the process of

biasing a competition between feature representations of visual inputs

for the purpose of selectively routing the inputs from only one to higher

processing levels, such as those involved with object recognition. We con-

tend that the fixationsmade in the course of search are performing this exact

function. The selection of an object for fixation is itself a competition

between simultaneous object representations in an image, with the winner
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of this competition getting to have its shape features, along with all the rest,

better tuned due to their extraction from high-resolution central vision.

As a consequence of this fixation, cleaner visual inputs are selectively routed

to higher processing areas, resulting in a more confident object classifica-

tion. We believe that this fixation-selective routing happens in two feed-

forward stages. First, object-based grouping processes are used to extract

shape precursors to objects. Related work exists on the extraction of

proto-objects from images (Yu, Samaras, & Zelinsky, 2014), but significant

study is needed on how best to model these object-like entities. On this

point, we see capsule networks (Hinton, Sabour, & Frosst, 2018; Sabour

et al., 2017) as showing promise in their ability to form stable, yet still fleet-

ing, representations of shape. Second, these proto-objects are then routed

to the object classification process that will be used to control behavior,

which can be either the manual button press terminating a search or the

eye movement to the next most probable location of the target object.

Grounding fixation-prediction models in biased-competition theory is

useful, not only because it is a widely accepted framework that can serve

as a consensus theoretical platform for modelers, but also because this the-

ory has emerged as modern doctrine among neurocomputational models of

attention (Hamker, 2006; Tsotsos, 2011), increasing the likelihood that

model predictions will actually become hypotheses that are tested using

neuroscience techniques. Will such a unified model be able to predict

grouping, fixation, and recognition behavior? That is the final hope, but

we suspect that realizing this model will take some work, and may even

require veering for a period of time back to using simple stimuli for model

development. Here we see arrays of alphanumeric characters as being par-

ticularly valuable, given that they are highly familiar learned visual catego-

ries and have been used extensively in the early search and recognition

literatures. An opportunity therefore exists for some very old research to

inform new future directions. But more crucially, alphanumeric stimuli

engage core grouping, spatial attention, and recognition processes, albeit

each in highly simplified domains. We suspect this simplicity might be

needed to train the first DNNmodels of the attention-recognition system.

If such a detour occurs, the end goal should be to scale these models back up

to real-world visual complexity as soon as possible, because only at this level

might fundamental limitations become apparent. At the time of this writ-

ing, realizing such a model seems like a milestone that a future author

reviewing the next generation of goal-directed fixation-prediction models

may use to separate past from present. This was, is, and will be an exciting

time to model search fixations.
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