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SM1: Behavioral Data Collection918

Comparable datasets of search behavior919

Figure S1 shows how COCO-Search18 compares to other920

large-scale datasets of search behavior. To our knowledge,921

there were only three such image datasets that were annotated922

with human search fixations8, 10, 23. In terms of number of923

fixations, number of target categories, and number of images,924

COCO-Search18 is far larger. The PET dataset10 collected925

search fixations for six animal target categories in 4,135 im-926

ages selected from the Pascal VOC 2012 dataset9, but the927

search task was non-standard in that participants were asked928

to “find all the animals” rather than search for a particular929

target category. This paradigm is therefore search at the super-930

ordinate categorical level, which is far more weakly guided931

than basic-level search16. Gaze fixations were also recorded932

for only 2 seconds/image, and multiple targets often appeared933

in each scene. The microwave-clock search dataset (MCS23)934

is our own work and a predecessor of COCO-Search18. In935

collecting data for the 18 target categories in COCO-Search18936

we had to start somewhere, and our first two categories were937

microwaves and clocks (although the datasets differed for938

even those two categories due to the use of different exclusion939

criteria). Until recently, perhaps the best dataset of search940

fixations was from8, but it is relatively small, limited to only941

the search for people in scenes, and is now a decade old.942

Note that, whereas there are larger datasets with respect to943

free-viewing fixations (SALICON13) or fixations collected944

using other visual tasks (POET19), these tasks were not visual945

search and therefore these datasets cannot be used to train946

models of search behavior. These collective inadequacies947

demanded the creation of a newer, larger, and higher-quality948

dataset of search fixations, enabling deep network models to949

be trained on people’s movements of attention as they pursue950

target-object goals.951

Selection of target categories and search images952

Here we more fully describe how we selected from COCO’s953

trainval dataset15 the 18 target categories and the 6,202 im-954

ages included in COCO-Search18. A goal in implementing955

our selection criteria was to elicit the behavior that we are956

trying to measure, namely, the guidance of search fixations by957

a target category. We also put care into excluding images that958

might elicit other gaze patterns that would introduce noise959

with respect to identifying the target-control signal. This sort960

of attention to detail is uncommon in datasets created for the961

training of deep network models, where the approach seems962

to be "the more images the better". But whereas this is usu- 963

ally true because more images leads to better-trained models, 964

in creating a dataset of human behavior this more-is-better 965

impulse should be tempered with some quality control to be 966

confident that the behavior is of the purported type. In the 967

current context this behavior should be search fixations that 968

are guided to the target, because search fixations that are un- 969

guided have less value as training labels. Because a standard 970

search paradigm collects behavioral responses for both TP and 971

TA images, separate selection criteria were needed. All image 972

selection was based on object labels and/or bounding boxes 973

provided by COCO. On this point, while inspecting the im- 974

ages that were ultimately selected we noticed that exemplars 975

in some categories were mislabeled, probably due to poor 976

rater agreement on that category. For instance, several chair 977

exemplars were mislabeled as couches, and vice versa. Rather 978

than attempting to correct these mislabels, which would be 979

altering COCO, we decided to keep them and tolerate a higher- 980

than-normal error rate for the affected categories. This action 981

seemed best, given our plan to discard error trials from the 982

search performance analyses in our study, but researchers in- 983

terested in interpreting button press errors in COCO-Search18 984

should be aware of this labeling issue. 985

Target-present image selection. Six criteria were imposed 986

on the selection of images to be used for target-present search 987

trials. 988

(1) Images were excluded if they depicted people or animals. 989

We did this to avoid the known biases to fixate on these 990

objects when they appear in a scene4, 14. Such biases 991

would compete with guidance from target-category fea- 992

tures, thereby distorting study of the target-bias that is 993

more central to search. 994

(2) Images were excluded if they depicted multiple instances 995

of the target. A scene showing a classroom with many 996

chairs would therefore be excluded from the “chair” tar- 997

get category because one, and only one, instance of a 998

chair would be allowed in an image. 999

(3) Images were excluded if the size of the target, measured 1000

by the area of its bounding box, was smaller than 1% or 1001

larger than 10% of the total image area. This was done 1002

to create searches that were not too hard or too easy. 1003

(4) Images were excluded if the target appeared at the image 1004

center, based on a 5×5 grid. We did this because the par- 1005

ticipant’s gaze was pre-positioned at this central location 1006

at the start of each search trial. 1007

(5) Images were excluded if their width/height ratio fell 1008

outside the range of 1.2-2.0 (based on a screen ratio 1009

of 1.6). This criterion excluded very elongated images, 1010

which we thought might distort normal viewing behavior. 1011

(6) Images, and entire image categories, were excluded if 1012

the above criteria left fewer than 100 images per object 1013

category. We did this because fewer than 100 images 1014

would likely be insufficient for training and testing a 1015

deep network model specific to that object category. 1016
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Applying these exclusion criteria left 32 object categories1017

from COCO’s original 80. Given that this left still far too1018

many images for people to practically annotate with search1019

fixations, we decided to attempt exclusion of images where1020

targets were highly occluded or otherwise difficult to recog-1021

nize. We did this out of concern that such images would1022

largely introduce noise into the search behavior. To do this,1023

we trained object detectors on cropped views of these 32 cat-1024

egories, and excluded images if the object bounding boxes1025

had a classification confidence < .99. Specifically, for these1026

32 categories we created a validation set consisting of images1027

meeting the selection criteria and a training set consisting of1028

the images that did not. The bounding box of the object, for1029

each of the 32 object classes, was then cropped in the image to1030

obtain the positive training samples. Negative samples were1031

same-sized image patches that had 25% intersection with the1032

target (area of intersection divided by area of target), mean-1033

ing that they were class-specific hard negatives. All cropped1034

patches (over 1 million) were resized to 224×224 pixels while1035

maintaining the aspect ratio using padding. The classifier was1036

a ResNet50 pre-trained on ImageNet, which we fine-tuned1037

by dilating the last fully-connected layer and re-training on1038

33 outputs (32+”Negative”). Images were excluded if the1039

cropped object patch had a classification score of less than1040

.99. This procedure resulted in 18 categories with at least 1001041

images in each category, totaling 3,131 TP images.1042

Two final exclusion criteria were implemented by manual1043

selection. First, for the clock target category we included only1044

images of analog clocks, meaning that we excluded digital1045

clocks from being clock targets. We did this because the fea-1046

tures of analog and digital clocks are highly distinct and very1047

different, and we were concerned that this would introduce1048

variability in the search behavior and reduce data quality. Five1049

images depicting only digital clocks were excluded for this1050

reason. Lastly, images from all 18 of the target categories1051

were screened for objectionable content, which we defined1052

as offensive content or content evoking discomfort or disgust.1053

The “toilet” category had the most images (17) excluded for1054

objectionable content, with a total of 25 images excluded1055

across all target categories. After implementing all exclusion1056

criteria discussed in this section, we obtained 3,101 TP images1057

from 18 categories: bottle, bowl, car, chair, (analog) clock,1058

cup, fork, keyboard, knife, laptop, microwave, (computer)1059

mouse, oven, potted plant, sink, stop sign, toilet, and tv. See1060

Figure 2 for the specific number of images in each category.1061

Target-absent image selection. To balance the selection1062

of the 3,101 TP images, we selected an equal number of TA1063

images from COCO. To do this, we kept the criteria excluding1064

images depicting people or animals, extreme width/height1065

image ratios, and images with objectionable content, all as1066

described for the TP image selection, but added two more1067

exclusion criteria that were specific to each of the 18 target-1068

object categories.1069

(1) Images were excluded if they depicted an instance of the1070

target, a prerequisite for a TA image. 1071

(2) Images were excluded if they depicted less than two 1072

instances of the target category’s siblings, a criterion 1073

introduced to discourage searchers from making TA re- 1074

sponses purely on the basis of scene type. For example, a 1075

person might be biased to make a TA response if they are 1076

searching for a toilet target and the image is a street scene. 1077

Because COCO has a hierarchical organization, parent, 1078

child, and sibling relationships can be used for image 1079

selection. For example, COCO defines the siblings of a 1080

microwave to be an oven, toaster, refrigerator, and sink, 1081

all under the parent category of appliance. By requiring 1082

that the TA scenes for a target category have at least two 1083

of that category’s siblings, we impose a sort of scene 1084

constraint that minimizes target-scene inconsistency and 1085

makes a scene appropriate to use as a TA image. A scene 1086

that has an oven and a refrigerator is very likely to be 1087

a kitchen, thereby making it difficult to answer on the 1088

basis of scene type alone whether a microwave target is 1089

present or absent. 1090

These exclusion criteria still left us with many thousands 1091

more TA images than we needed, so we sampled randomly 1092

within each of the 18 target categories to match the 3,101 TP 1093

images. 1094

Order of target-category presentation 1095

Collecting the search behavior for 6,202 images required di- 1096

viding each participant’s effort into six days of testing. Each 1097

testing session was conducted on a different day, lasted about 1098

2 hours, and consisted of about 1000 search trials, evenly 1099

divided between TP and TA. Because images from different 1100

categories can overlap (e.g., images depicting a microwave 1101

may also depict an oven), the presentation order of the target- 1102

category blocks was constrained to minimize the repetition 1103

of images in consecutive categories and consecutive sessions. 1104

For example, because 49 images satisfied the selection criteria 1105

for both the sink and microwave target categories, we pre- 1106

vented the microwave and sink categories from appearing in, 1107

not only the same session, but the sessions preceding and fol- 1108

lowing. We did this to minimize possible biases resulting from 1109

seeing the same scene in different search contexts. A heuris- 1110

tic for maximizing this distance between repeating images 1111

resulted in the following fixed target category presentation 1112

order across the six sessions: 1113

(1) tv + sink; 1114

(2) fork + chair; 1115

(3) car + bowl + potted plant + mouse; 1116

(4) knife + keyboard + oven + clock; 1117

(5) cup + laptop + toilet; 1118

(6) bottle + stop sign + microwave. 1119

Each participant viewed from Session 1 to Session 6, or 1120

from Session 6 to Session 1, with this order counterbalanced 1121

across participants. 1122
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Data-collection procedure1123

Participants were 10 Stony Brook University undergraduate1124

and graduate students, 6 males and 4 females, with ages rang-1125

ing from 18–30 years. All had normal or corrected to normal1126

vision, by self report, were naive with respect to task design1127

and paradigm when recruited, and were compensated with1128

course credit or money for their participation. Informed con-1129

sent was obtained from each participant at the beginning of1130

testing, in accordance with the Institutional Review Board1131

responsible for overseeing human-subjects research at Stony1132

Brook University.1133

The target category was designated to participants at the1134

start of each block. This was done using the type of display1135

shown in Figure S2 for the potted-plant and analog clock1136

categories. The name of the target category was shown in1137

text at the top, with examples of objects that would, or would1138

not, qualify as exemplars of the named category. In selecting1139

exemplars to illustrate as positive target-category members,1140

we attempted to capture key categorical distinctions at a level1141

immediately subordinate to the target category. When needed,1142

we also gave negative examples by placing a red X through1143

the object. We did this to minimize potential confusions and1144

to enable the participant to better define the target category’s1145

boundary.1146

The procedure (Figure S3) on each trial began with a fixa-1147

tion dot appearing at the center of the screen. To start a trial,1148

the participant would press the “X” button on a game-pad con-1149

troller while carefully looking at the fixation dot. An image1150

of a scene would then be displayed and the participant’s task1151

would be to answer, “yes” or “no”, whether an exemplar of the1152

target category appears in the displayed scene by pressing the1153

right or left triggers of the game-pad, respectively. The search1154

scene remained visible until the manual response. Participants1155

were told that there were an equal number of TP and TA trials,1156

and that they should make their responses as fast as possible1157

while maintaining high accuracy. No accuracy or response1158

time feedback was provided.1159

The presentation of images during the experiment was con-1160

trolled by Experiment Builder (SR research Ltd., Ottawa,1161

Ontario, Canada). Stimuli were presented to participants on1162

a 22-inch LCD monitor (1680×1050 pixel resolution) at a1163

viewing distance of 47cm from the monitor, enforced by chin1164

and head rests. These viewing conditions resulting in hori-1165

zontal and vertical visual angles of 54◦ × 35◦, respectively.1166

Participants were asked to keep their gaze on the fixation point1167

at the start of each trial, but were told that they should feel free1168

to move their eyes as they searched. Eye movements were1169

recorded throughout the experiment using an EyeLink 10001170

eye-tracker in tower-mount configuration (SR research Ltd.,1171

Ottawa, Ontario, Canada). Eye-tracker calibrations occurred1172

before every block or whenever necessary, and these 9-point1173

calibrations were not accepted unless the average calibration1174

error was ≤.51◦ and the maximal error was ≤ .94◦. The ex-1175

periment was conducted in a quiet laboratory room under dim1176

lighting conditions.1177

SM2: Behavioral evaluation of COCO-Search18 1178

Effects of set size and target eccentricity 1179

The visual search literature has done excellent work in identi- 1180

fying many of the factors that increase search difficulty (for 1181

reviews, see:6, 7, 21, 22). Larger set sizes (number of items in 1182

the search display), smaller target size, larger target eccentric- 1183

ity, and greater target-distractor similarity are all known to 1184

make search more difficult. However, most of this work was 1185

done in the context of simple stimuli, and generalization to 1186

realistic images is challenging. For example, what to consider 1187

an object in a scene is often unclear, making it difficult to de- 1188

fine a set size18. Objects in images also do not usually come 1189

annotated with labels and bounding boxes. These problems of 1190

object segmentation and identification, which largely do not 1191

exist for search studies using object arrays, become significant 1192

obstacles to research when scaled up to images of scenes. 1193

With COCO-Search18, we can begin to ask how the search 1194

for targets in images is affected by set size and target eccen- 1195

tricity. Set size is determined based on the COCO object and 1196

stuff labels, which collectively map every pixel in an image 1197

to an object or stuff category. Set size is the count of the 1198

number of these labels for a given image. Figure S4 shows 1199

the relationship between the number of fixations made on an 1200

image, averaged over participants, and the set size of that im- 1201

age, grouped by target category. Some target categories, such 1202

as laptop, oven, microwave, and potted-plant, have significant 1203

positive set size effects (r = .21 to .37, ps ≤ .01), indicating 1204

a less efficient search with more objects. A similar pattern is 1205

shown in Figure S5 for the relationship between the number of 1206

fixations on a search image and the initial visual eccentricity 1207

of the target (distance between the image center and the target 1208

bounding-box center), where for these same objects there was 1209

a decrease in search efficiency with increasing target eccen- 1210

tricity. For other target object categories, such as: stop sign, 1211

fork, and keyboard, search efficiency was unaffected by either 1212

set size or target eccentricity (ps > .05), possibly because 1213

these objects are either highly salient (stop sign) or highly 1214

constrained by scene context (keyboard). 1215

Distance between search fixations and the target 1216

How much closer does each search fixation bring gaze to 1217

the target? We analyzed this measure of search efficiency 1218

and report the results in Figure S6. Plotted is the Euclidean 1219

distance between the target location and the locations of the 1220

starting fixation (0) and the fixation locations after the first six 1221

eye movements (1-6). The most salient pattern is the rapid 1222

decrease in fixation-target distance in the first two new fix- 1223

ations, which dovetails perfectly with the steep increase in 1224

the cumulative probability of target fixation over these same 1225

eye movements reported in Figure 4A. From a starting lo- 1226

cation near the center of the image, these eye movements 1227

brought gaze steadily closer to the target. Note that because 1228

this fixation-target distance is averaged over images and partic- 1229

ipants, the roughly 5 degrees of visual angle at the bottom of 1230

these functions should not be misinterpreted as gaze being this 1231

distance from the target on a given trial. More interpretable 1232
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are the overall trends, where a steep drop in distance is fol-1233

lowed by a plateau, or even a smaller increase in distance with1234

the 5th and 6th new fixations. This small increase is likely an1235

artifact of these 5 and 6-fixation trials being the most difficult,1236

with more idiosyncratic search behavior.1237

Target-absent search fixations1238

In the main text we focused on the TP data, where the guid-1239

ance signal is clearer and the modeling goals are better defined,1240

but we conducted largely parallel analyses of the TA data. Fig-1241

ure S7A shows representative TA images with fixation data1242

from one participant, and Figure S7B shows FDMs from all1243

participants for the same images. Comparing these data with1244

the TP data from Figure 1, it is clear that people made many1245

more fixations in the absence of a target. This was expected1246

from the search literature, but it should also be noted that the1247

FDMs are still much sparser than what would be hypothesized1248

by an exhaustive search. Paralleling Figure 3, in Figure S8 we1249

report applicable analyses of the TA search behavior. These1250

are grouped by manual accuracy and response time, and the1251

mean number of fixations made before the target-absent but-1252

ton press terminating a trial. Note that accuracy was high1253

(low false positive error rate) for all of the target categories1254

except chairs and cups, with the reason for the former already1255

discussed in the context of mislabeling and the reason for the1256

latter likely reflecting an occasionally challenging category1257

distinction (e.g., some bottles can look like some cups). Also1258

note that there was an average of only five fixations made1259

during search, even on the TA search trials. As in Figure 5,1260

Figure S9 visualizes the agreement and other patterns among1261

these measures. The rows show ranked performance, with1262

dark red indicating more difficult (or least efficient) search1263

and dark blue indicating relatively easy or efficient search.1264

The columns in Figure S9A group the measures by target1265

category. Similar to the TP data, there was again good con-1266

sistency among the measures. Also consistent is the fact that1267

bottles and cups were among the most difficult target cate-1268

gories, whereas the toilet category was the easiest. There was1269

also evidence in the TA data for a speed-accuracy trade-off1270

for some target categories. For example, microwaves and stop1271

signs had relatively low error rates, but these categories were1272

searched with relatively high effort, as measured by ranked1273

response time and number of fixations. Figure S9B visualizes1274

the measures by participant instead of category, where we1275

again found individual differences between participants in1276

search efficiency.1277

Practice effects1278

Each of the participants contributing to COCO-Search181279

searched more than 6000 images, making it possible to ana-1280

lyze how their search efficiency improved with practice. Fig-1281

ure S10 shows practice effects for both response time (top)1282

and the number of fixations before the button press (bottom),1283

where we define practice effects as performance on the first1284

1/3 of the trials compared to performance on the last 1/3 of the1285

trials for each target category. Practice effects were larger for1286

TA trials (right) than for TP trials (left), noting the differences 1287

in y-axes scales, and that considerable differences existed 1288

across categories. Some categories, such as bottles, showed 1289

large practice effects, while other categories, such as analog 1290

clocks, showed none at all. We speculate that this difference is 1291

due to some categories requiring more exemplars to fully learn 1292

compared to others. For example, analog clock was perhaps 1293

the most well defined of COCO-Search18’s categories, and 1294

bottle certainly one of the least well defined, creating greater 1295

opportunity to better learn the bottle category with practice 1296

over trials. 1297

Search fixation durations 1298

Figures S11 and S12 show density histograms of the search 1299

fixation durations for the TP and TA data, respectively, plot- 1300

ted for each of the target categories. Fixation durations are 1301

plotted across the x-axes with a bin size of 50ms, and y-axes 1302

show the normalized probability density at each fixation. Of 1303

note in the TP data is that the mode initial fixation durations 1304

(blue lines) were a bit longer than the mode duration of the 1305

rest (averaged mode difference = 63ms), consistent with the 1306

very strong guidance observed in the initial eye movements, 1307

and they tended to have more bi-modal distributions. The 1308

main peak was at ∼250 ms, with a smaller and very short- 1309

latency peak at ∼50 ms that is likely a truncation artifact of 1310

fixation duration being measured relative to the onset of the 1311

search display. In contrast, the distributions of second fixa- 1312

tions (orange lines) were consistently shorter, even relative to 1313

the subsequent fixations. Speculatively, this may be due to 1314

a greater proportion of the first new fixations being “off ob- 1315

ject”24, which are often followed by short-latency corrective 1316

saccades that bring gaze accurately to an object. This inter- 1317

pretation is consistent with the high probability of the target 1318

being fixated by the second eye movement (Figure 4A). As 1319

for the subsequent fixations, they tended to be short (∼200ms) 1320

and not highly variable in their durations. The TA fixations 1321

showed similar trends, except for the durations of the second 1322

fixations no longer differing from the rest. 1323

Saccade amplitudes 1324

We also analyzed the distribution of saccade amplitudes dur- 1325

ing visual search, defined here as the Euclidean distance be- 1326

tween consecutive fixations in visual angle. Figure S13 and 1327

Figure S14 show the distributions of saccade amplitudes in 1328

the TP and TA data, respectively. In the TP data, saccade 1329

amplitudes were larger in some categories (toilet and stop 1330

sign) than others (bottle and potted plant), likely because eas- 1331

ier target categories could be identified from farther in the 1332

visual periphery. There was also evidence for bimodality in 1333

the amplitude distributions, shown most clearly for clocks, 1334

forks, stop signs, and tvs. We speculate that this bimodal- 1335

ity reflects larger-amplitude exploratory saccades mixed with 1336

smaller-amplitude saccades used in the verification of an ob- 1337

ject category. Mean saccade amplitudes in the TA data were 1338

clearly larger than for the TP data (t(17) = 11.79, p < .001), 1339

and this difference was consistent across target categories (all 1340
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ps ≤ .001). We attribute this to the relatively large viewing1341

angle of the search displays (54 × 35 degrees of visual angle)1342

creating a greater need for exploration, but this is also specula-1343

tion. The distributions of saccade amplitudes were also more1344

consistent across categories in the TA data, with there being1345

weaker evidence of bi-modality.1346

SM3: Model Methods1347

Training and testing datasets1348

Model success depends on the training dataset being an accu-1349

rate reflection of the test dataset. When the training dataset1350

includes a behavioral annotation, as does COCO-Search18, it1351

is therefore important to know that similar patterns exist in1352

the training and testing search behavior. The analyses shown1353

in Figure 5A included images from all of COCO-Search18,1354

which recall were randomly split into 70% for training, 10%1355

for validation, and 20% for testing. Figure S15 replots the1356

data from Figure 5A, but divides it into the training/validation1357

(left) and testing (right) datasets. Note the high agreement1358

between the testing and train/val datasets across this battery1359

of behavioral performance measures.1360

Inverse Reinforcement Learning1361

The specific inverse-reinforcement learning (IRL) method1362

that we used was generative adversarial imitation learning1363

(GAIL12) with proximal policy optimization (PPO)20. The1364

model policy is a generator that aims to create state-action1365

pairs that are similar to human behavior. The reward function1366

(the logarithm of the discriminator output) maps a state-action1367

pair to a numeric value. The generator and discriminator are1368

trained within an adversarial optimization framework to obtain1369

the policy and reward functions. The discriminator’s task is1370

to distinguish whether a state-action pair was generated by1371

a person (real) or by the generator (fake), with the generator1372

aiming to fool the discriminator by maximizing the similarity1373

between its state-action pairs and those from people. The1374

reward function and policy that are learned from the fixation-1375

annotated images during training are then used to predict new1376

search fixations in the unseen test images.1377

SM4: Performance metrics and model evaluation1378

Metrics for comparing search efficiency and scanpaths1379

We considered five metrics for quantifying search efficiency1380

and comparing search scanpaths (Table 1). Two metrics for1381

quantifying search efficiency follow directly from the group1382

target-fixation probability (TFP) function shown in Figure 4.1383

The first of these computes the area under the TFP curve, a1384

metric we refer to as TFP-auc. Second, and relatedly, we1385

compute the sum of the absolute differences between the hu-1386

man and model target-fixation-probabilities in a metric that1387

we refer to as Probability Mismatch. A third metric for quan-1388

tifying overt search efficiency is Scanpath Ratio. It is the1389

Euclidean distance between the initial fixation location and1390

the target divided by the summed Euclidean distances between1391

the fixation locations in the search scanpath11. It is an effi-1392

ciency metric because an initial saccade that lands directly1393

on the target would give a Scanpath Ratio of 1, meaning that 1394

the distance between starting fixation and the target would 1395

be the same as the summed saccade distance. These three 1396

metrics emphasize target-fixation efficiency by penalizing ei- 1397

ther the number of fixations or the saccade-distance traveled 1398

to achieve the target goal. The final two metrics focus on 1399

scanpath comparison, and specifically comparing the search 1400

scanpaths between people and the models. The first of these 1401

scanpath-comparison metrics computes a Sequence Score by 1402

first converting a scanpath into a string of fixation cluster IDs, 1403

and then using a string matching algorithm17 to measure the 1404

similarity between the two strings. Figure S16 shows exam- 1405

ples of behavioral and model scanpaths and their sequence 1406

scores to develop an intuition for this metric. Lastly, we use 1407

MultiMatch1, 5 to measure the scanpath similarity at the pixel 1408

level. MultiMatch measures five aspects of scanpath simi- 1409

larity: shape, direction, length, position, and duration. We 1410

excluded the duration measure from our use of this metric 1411

because the models in our comparison group did not predict 1412

fixation duration. See Table S3 for the results of statistical 1413

tests comparing predictions from each pair of models. 1414

Comparing predicted and behavioral fixation-density 1415

maps (FDMs) 1416

Search has a temporal dynamic, making a metric for capturing 1417

the spatio-temporal sequence of fixations preferred over ones 1418

that compare only FDMs, where this temporal component is 1419

disregarded. However, the prediction of FDMs is common 1420

for free-viewing tasks, and because there is no technical rea- 1421

son why FDM metrics cannot be applied to search we do so 1422

here in the hope that the visual saliency literature finds this 1423

comparison useful. Models generated scanpaths having a max- 1424

imum length of 6 new fixations, but FDMs were constructed 1425

only from those fixations leading up to the first fixation on 1426

the target, just as FDMs were constructed from the behav- 1427

ioral fixations. We used three widely accepted metrics for 1428

comparing predicted against observed FDMs. Area Under 1429

the Receiver Operating Characteristic Curve (AUC) uses a 1430

predicted priority map as a binary classifier to discriminate 1431

behavioral fixation locations from non-fixated locations. Nor- 1432

malized Scanpath Saliency (NSS) finds the model predictions 1433

at each of the behavioral fixation locations, then averages and 1434

normalizes these values. Lastly we computed a Pearson’s 1435

Correlation Coefficient (CC) between the predicted and be- 1436

havioral FDMs, although this metric reflects only the degree 1437

of linear relationship between predicted and behavioral FDMs 1438

(for additional discussion, see: Borji & Itti2; Bylinskii et al.3). 1439

Table S2 reports the results of an evaluation comparing model 1440

predictions of search FDMs to behavioral search FDMs using 1441

each of these metrics. The findings that we report in the main 1442

text in the context of scanpath prediction also hold in the case 1443

of FDM prediction. Specifically, the IRL-Hi-Low-C model 1444

outperformed the others, and did so for all three metrics. Ad- 1445

ditionally, the Detector-Hi model also performed relatively 1446

well in all the metrics, supporting our conclusion that a simple 1447

detector does a relatively good job in predicting fixations in 1448

5



visual search.1449
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Figure S1. Comparisons between COCO-Search18 and other large-scale datasets of search behavior. COCO-Search18 is the largest in
terms of number of fixations (∼300,000), number of target categories (18), and number of images (6,202).

Figure S2. Examples of target-designation displays, shown for the potted-plant and analog clock targets, that preceded the block of trials for
a given target category.

Initial Fixation Search display

“target present”
or

“target absent"

Response

Figure S3. Example of the search procedure. Each trial began with a fixation dot appearing at the center of the screen. Participants would
start a trial by pressing a button on a game-pad controller while carefully looking at the fixation dot. An image of a scene would then be
displayed and the participant’s task was to make a speeded “yes” or “no” target-presence judgment by pressing the right or left triggers,
respectively, of a game-pad controller.
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Figure S4. Number of fixations made on the target-present images plotted as a function of the set sizes of those images (using COCO object
and stuff labels), averaged over participants and grouped by target category.
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Figure S5. Number of fixations made on the target-present images plotted as a function of initial target eccentricity (using the center of the
COCO bounding-box), averaged over participants and grouped by target category.
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Figure S6. Averaged Euclidean distance (in visual angle) between gaze and the target’s center (using COCO bounding-box labels) over the
first 6 saccades, grouped by target category.
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A

B

Figure S7. (A). Examples of a target-absent image for each of the 18 target categories. Yellow lines and numbered discs indicate a
representative search scanpath from a single participant. From left to right, top to bottom: bottle, bowl, car, chair, (analog) clock, cup, fork,
keyboard, knife, laptop, microwave, mouse, oven, potted plant, sink, stop sign, toilet, tv. (B). Examples of fixation density maps for the same
target-absent images.
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Figure S8. COCO-Search18 analyses for all 18 target categories in target-absent trials. Top: number of images in each category (gray), and
response accuracy (ACC). Bottom: reaction time (RT) and number of fixations made before the button press (NumFix). Values are means
over 10 participants, and error bars represent standard errors.

A B

Figure S9. (A). Target-absent data, ranked [1-18] by target category (columns) and averaged over participants, shown for multiple
performance measures (rows). These include: response error, reaction time (RT), and number of fixations (NumFix). Redder color indicates
higher rank and harder search targets, bluer color indicates lower rank and easier search. (B) Target-absent data, now ranked by participant
[1-10] and averaged over target category (columns). Performance measures and color coding are the same as in (A).
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Figure S10. Practice effects, visualized as the difference in search performance between the red (first 1/3 of the trials) and the blue (last 1/3
of the trials) bars, grouped by the 18 target categories. The top row shows response time, and the bottom row shows the number of fixations
before the button press. Target-present data are shown on the left, target-absent data are shown on the right. Only correct trials were included.
*: p < .05, **: p < .01
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Figure S11. Density distributions of target-present fixation durations, plotted for each of the target categories (bin size = 50ms). The color
lines refer to the initial fixation durations (0, blue), followed by the first four new fixations (1-4).
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Figure S12. Density distributions of target-absent fixation durations, plotted for each of the target categories (bin size = 50ms). The color
lines refer to the initial fixation durations (0, blue), followed by the first four new fixations (1-4).
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Figure S13. Density distributions of target-present saccade amplitudes (in visual angle), plotted by target category. Red vertical lines
indicate median amplitudes. Dark blue lines represent Gaussian kernel density estimates.
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Figure S14. Density distributions of target-absent saccade amplitudes (in visual angle), plotted by target category. Red vertical lines
indicate median amplitudes. Dark blue lines represent Gaussian kernel density estimates.
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Figure S15. Target-present data, ranked by target category (1-18, columns) and shown for multiple performance measures (rows) in the
trainval (top) and test (bottom) COCO-Search18 datasets. Redder color indicates higher rank and harder search targets, bluer color indicates
lower rank and easier search. Measuers include: response error, reaction time (RT), number of fixations (NumFix), time to target (T2T),
number of fixations to target (NumFix2T), time from first target fixation until response (TTFix2R), time spent fixating the target (TonT), and
the number of target re-fixations (ReVisitT).

18



Figure S16. Left: cumulative distribution of average sequence scores computed between each scanpath generated by the IRL model and
each behavioral scanpath for the test images of COCO-Search18. Right: Examples illustrating the scanpaths producing four different
sequence scores. Behavioral scanpaths are colored in yellow, and the IRL-generated scanpaths are in green. Sequence scores for the four
illustrated examples are 0.33, 0.40, 0.50, and 0.75, from top to bottom. Note that these results are from a slightly different version of the IRL
model than the one reported here.
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A

Participants Error RT (ms) NumFix T2T (ms) NumFix2T TTFix2R (ms) TonT (ms) ReVisitT

1 0.06 993.91 2.92 372.81 1.73 769.90 717.79 1.05
2 0.09 878.03 2.81 355.50 1.88 625.61 584.05 0.75
3 0.09 780.30 2.41 349.16 1.76 651.39 622.66 0.58
4 0.10 783.61 2.49 329.89 1.96 489.23 441.90 0.45
5 0.10 761.47 2.63 308.09 1.80 544.66 525.32 0.74
6 0.07 811.03 2.96 352.92 2.12 490.26 460.37 0.71
7 0.08 633.56 2.15 310.47 1.65 429.51 415.33 0.44
8 0.07 713.69 2.44 331.08 1.79 494.28 465.60 0.60
9 0.08 1027.95 2.97 404.65 2.08 564.27 495.76 0.61
10 0.05 825.27 2.37 391.44 1.79 528.57 504.68 0.49

Mean 0.08 820.88 2.61 350.60 1.86 558.77 523.35 0.64

B

Participants TA Error TA RT (ms) TA NumFix

1 0.07 1834.48 5.83
2 0.08 1384.30 4.91
3 0.07 961.80 3.07
4 0.08 1119.09 3.80
5 0.07 954.97 3.21
6 0.06 1336.61 4.92
7 0.07 897.78 2.99
8 0.05 1016.36 3.48
9 0.09 2652.84 8.02

10 0.10 2919.68 9.98

Mean 0.07 1507.79 5.02

Table S1. (A): Detailed behavioral data for 10 participants on 8 measures in target-present (TP) images. (B): Detailed behavioral data for 10
participants on 3 measures in target-absent (TA) images.
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AUC ↑ NSS ↑ CC ↑
Human 0.675 3.396 0.356

Random 0.531 0.280 0.039
Detector-Hi 0.605 1.210 0.163
Detector-Hi-Low 0.575 0.792 0.105
Deep Search-Hi 0.620 1.122 0.153
Deep Search-Hi-Low 0.598 0.864 0.118
IRL-ReT-C 0.595 1.601 0.214
IRL-Hi-Low-C 0.628 1.806 0.246
IRL-Hi-Low 0.621 1.728 0.235

Table S2. Results from models (rows) predicting behavioral fixation-density maps (FDMs) using three spatial comparison metrics
(columns), applied to the COCO-Search18 test images. “Human” refers to an oracle method whereby the FDM from half of the searchers was
used to predict the FDM from the other half of the searchers. See the supplemental text for additional details about the spatial fixation
comparison metrics.

Compared Models TFP-
AUC

Probability
Mismatch

Scanpath
Ratio

Sequence
Score

MultiMatch
shape direction length position

IRL-ReT-C vs. IRL-Hi-Low-C n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-ReT-C vs. IRL-Hi-Low n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-ReT-C vs. Detector-Hi n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-ReT-C vs. Detector-Hi-Low .0017 <.001 <.001 n.s. .005 .0686 <.001 .0039
IRL-ReT-C vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. <.001 n.s. n.s.
IRL-ReT-C vs. Deep Search-Hi-Low <.001 <.001 <.001 .0587 n.s. <.001 n.s. n.s.
IRL-Hi-Low-C vs. IRL-Hi-Low n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-Hi-Low-C vs. Detector-Hi n.s. n.s. .0653 n.s. n.s. n.s. .0235 n.s.
IRL-Hi-Low-C vs. Detector-Hi-Low <.001 <.001 <.001 n.s. <.001 .0515 <.001 <.001
IRL-Hi-Low-C vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. <.001 n.s. n.s.
IRL-Hi-Low-C vs. Deep Search-Hi-Low <.001 <.001 <.001 .0559 .0298 <.001 n.s. .0110
IRL-Hi-Low vs. Detector-Hi n.s. n.s. .0151 n.s. n.s. n.s. .0206 n.s.
IRL-Hi-Low vs. Detector-Hi-Low <.001 <.001 <.001 n.s. <.001 .0539 <.001 <.001
IRL-Hi-Low vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. <.001 n.s. n.s.
IRL-Hi-Low vs. Deep Search-Hi-Low <.001 <.001 <.001 .0506 n.s. <.001 n.s. .0029
Detector-Hi vs. Detector-Hi-Low .0019 <.001 .0086 n.s. n.s. n.s. n.s. .0150
Detector-Hi vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. .0013 <.001 n.s.
Detector-Hi vs. Deep Search-Hi-Low <.001 <.001 <.001 .0755 n.s. <.001 <.001 n.s.
Detector-Hi-Low vs. Deep Search-Hi n.s. n.s. n.s. n.s. <.001 n.s. <.001 <.001
Detector-Hi-Low vs. Deep Search-Hi-Low n.s. .0275 n.s. n.s. .0446 n.s. <.001 .0511
Deep Search-Hi vs. Deep Search-Hi-Low n.s. n.s. n.s. n.s. n.s. n.s. n.s. .0778

Table S3. P values from post-hoc t-tests (Bonferroni corrected) comparing predictive models (rows), averaged across the 18 target
categories, for multiple scanpath metrics (columns). All dfs = 34. For decisively significant comparisons, the more predictive model is
indicated in boldface.

21


	References
	References

