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1. Table of Contents
• Sec. 2 provides additional analyses comparing fixations during target-absent search (TA), target-present search (TP),

and free viewing (FV).

• Sec. 3 reports the significance tests for feature map weightings.

• Sec. 4 provides additional results for classifying tasks from partial scanpaths, including an ablation study and the TP
data mentioned in Fig. 3 of the main text.

• Sec. 5 reports an ablation study on the TA search termination model and additional implementation details.

2. Additional Fixation Comparison
2.1. Fixation Density Maps (FDMs)

Figure 1 shows FDMs based on the 4th, 5th, 10th and 15th fixations. Note that too few 10th and 15th fixations were
available for analysis in TP search (explaining the absent FDMs), but even in the TA and FV comparison there were far more
10+ fixation trials in free-viewing than in search. We obtained FDMs by coding fixated image locations (over images and
participants) with 1s and non-fixated locations with 0s and then convolving this discrete fixation point map with a Gaussian
(sigma equalling one degree of visual angle, approximating the size of the fovea) to obtain the continuous FDM (see [1,2] for
additional details on FDMs). Compared to the FDMs for the first three fixations (Fig. 1 in the main text), these FDMs show
similar patterns. The fourth and fifth fixations in TP search again showed a bilateral distribution reflecting a target guidance
signal pulling gaze away from the center. This same guidance signal explains the TA FDMs, but because this guidance is
weaker in TA search it is less able to overcome the oculomotor inertia causing fixation to remain around the center. This
center bias strikingly persists even after 15 new fixations during free viewing, whereas for TA search a center bias was largely
dispersed by the target guidance signal after the same number of fixations.

2.2. Saccade Amplitude

Supplementing our analysis of fixations locations, Figure 2 shows distributions of first, second, and third saccade ampli-
tudes in TP search, TA search and free viewing. Consistent with the FDM analyses, first saccades in both TP and TA search
had overall larger amplitudes than first saccades during free viewing (which showed about a 5◦ reduction in range). Ampli-
tudes tended to decrease with subsequent fixations, with their distributions becoming increasingly positively skewed. Note
that second-saccade amplitudes in TA search remained comparatively larger than in free-viewing, which we again interpret
as evidence for a guidance signal pulling gaze to different image locations, and away from the center. Also expected were the
sharp peaks observed for second and third saccade-amplitude distributions in the case of TP search, reflecting a progressive
movement of gaze toward the target and possibly small saccades around the target for confirmation.

3. Significance Tests for Feature Map Weightings
In Table. 1 we show the results of paired t-tests on NSS scores, Bonferroni corrected, for the saliency (Sal), target (Target),

and center bias (CB) feature maps in TP search, TA search and free viewing, as discussed in Section 3.2.4 in the main paper.
All claims were based on paired t-test with a pbonferroni < .016. We see that all differences in TP Search, TA Search and
FV were significant at this level of confidence.
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Figure 1. Fixation-density maps visualized for the 4th, 5th, 10th and 15th fixations in target-present search (TP), target-absent search (TA),
and free viewing (FV) behaviors.

TP Search
Fixation Saliency-Target Saliency-Center Bias Target-Center Bias
1 t = −10.72, p < 0.001 t = 8.94, p < 0.001 t = 14.95, p < 0.001

2 t = −26.00, p < 0.001 t = 16.54, p < 0.001 t = 34.03, p < 0.001

3 t = −21.84, p < 0.001 t = 14.84, p < 0.001 t = 28.70, p < 0.001

TA Search
Fixation Saliency-Target Saliency-Center Bias Target-Center Bias
1 t = 20.73, p < 0.001 t = 8.60, p < 0.001 t = −17.58, p < 0.001

2 t = 11.34, p < 0.001 t = 10.26, p < 0.001 t = −6.02, p < 0.001

3 t = 7.51, p < 0.001 t = 8.77, p < 0.001 t = −2.50, p = 0.012

Free Viewing
Fixation Saliency-Target Saliency-Center Bias Target-Center Bias
1 t = 19.22, p < 0.001 t = −3.61, p < 0.001 t = −22.42, p < 0.001

2 t = 10.80, p < 0.001 t = 7.10, p < 0.001 t = −7.26, p < 0.001

3 t = 11.33, p < 0.001 t = 5.90, p < 0.001 t = −8.19, p < 0.001

Table 1. Student’s paired t-test results on NSS scores, Bonferroni corrected, for pairwise comparisons between saliency, target and center
bias features in TP Search (degrees of freedom, dfTP = 1223), TA Search (degrees of freedom, dfTA = 1223) and Free Viewing (degrees
of freedom, dfFV = 1175).

4. Classifying Task from Scanpaths
Figure 3 shows how our LSTM-based classification model [X;Y ;D;V ] compares to versions of the model that were

ablated by removal of one or more of its input features: 2D coordinates X ∈ R and Y ∈ R, durations D ∈ R, and
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Figure 2. Distribution of saccade amplitudes computed in degrees of visual angle for the first, second, and third fixations made during TP
search (TP), TA search (TA) and free viewing (FV).

visual features V ∈ RC . Unsurprisingly, the complete model, i.e. when we include all features in the form of [X;Y ;D;V ],
outperforms versions using only a subset of the features as inputs. This shows that each feature contributed to the classification
of TP, TA and free-viewing tasks, and how these contributions changed with partial scanpath length. Also clear from this
analysis, and reaffirming our conclusion in the main text, is the particularly important role played by visual features in
predicting task classification.

Figure 4 shows the probabilities of predicting the three tasks from partial scanpath data. The left and middle panels re-plot
these probabilities from the main text (Fig. 3c and 3d) for the TA and FV data, respectively. The rightmost plot shows the TP
data for comparision, which was not included in the main text. In contrast to the very poor classification of a FV task from
the others when partial scanpath lengths were small (about .2 in Figure 4c), our model is capable of predicting TP search
even on small partial scanpaths (about .75 in Figure 4a). This suggests that TP scanpaths can be easily separated from TA
search and free viewing scanpaths, with the feature responsible for this distinctiveness corresponding to what we being to be
the target guidance signal. In the TA data (Figure 4b), where this signal is weaker, an intermediate data pattern is found.

We did minimal hyperparameter tuning on different combinations of input features for the models tested. For those models
containing visual features V , the LSTM network contained 3 layers with the hidden layer size of the LSTM cells set to 20.
For configurations not containing visual features V , the LSTM network contained 2 layers with hidden layer size of the
LSTM cells set to 6. For all models, batch size was set to 128, learning rate of Adam optimizer [4] was set to 3e-4, dropout
probability in the LSTM cells was set to 0.2 and dropout probability of the last MLP layer was set to 0.3. To ensure that we
are able to batch process scanpath samples while ignoring padding, we use a length mask that enables us to recover the final
time step for each sample in a batch. The architecture is trained using categorical cross-entropy loss averaged over each time
step within the scanpath.



2 4 6
Partial Scanpath Length

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

[X;Y;D;V]
[V]
[D]
[X;Y]

2 4 6
Partial Scanpath Length

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

[X;Y;D;V]
[X;Y;V]
[X;Y;D]
[D;V]

Figure 3. Classification accuracy as a function of partial scanpath length for models using either fixation location (X,Y ), fixation duration
(D), or visual features at the fixated location (V ) as inputs (left plot) or a pairwise combination of inputs (right plot). For comparision,
tThe complete model, [X;Y ;D;V ], is shown by the solid blue line in both plots. Note that two plots are used instead of one simply to
avoid clutter.
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Figure 4. Model predictions for classifying TP scanpaths, of variable length, as coming from either a TP search, TA search, or free-viewing
task.

5. Termination Prediction
5.1. Label Foveation

Figure 5 gives an overview of our label foveation process. Our aim is to generate a continuous “retina” mask where
the target likelihood of the target pixels and non-target pixels decreases and increases as a function of retinal eccentricity,
respectively. To this end, we first create a six-level pyramid of the label maps from P0 to P5, where P0 is the ground-truth
binary target mask (1 for the target pixels and 0 for the non-target pixels). From P1 to P5, the values for the target and
non-target pixels linearly decrease or increase, respectively. Formally,

P j
i =

{
1− αi if j is a target pixel
αi if j is a non-target pixel,

where i ∈ {0, · · · , 5} and j indicates the pixel location. We use a linear slope α = 0.1 in our experiments. Hence, P5 is 0.5
everywhere, meaning that the target is utterly indistinguishable from the background if viewed from the furthest peripheral
vision. To generate the final continuous label map, we follow the foveation algorithm in [3,5,6] and create a gaze-contingent
resolution map to combine all of the label maps in the pyramid. For multiple fixations, we follow the cumulative foveation
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Figure 5. Overview of the label foveation process.

algorithm at [6] and take the element-wise maximum at the resolution maps to produce the final resolution map used to fuse
the label pyramid.

5.2. Further Implementation Details

We considered two different training paradigms: one in which we jointly trained a foveated target detector and a termina-
tion predictor and another in which we treated these as two separate stages. We adopted the two-stage training approach after
finding that joint training led to a performance drop (the average precision fell from 0.462 to 0.386), which is likely caused by
difficulty in finding a trade-off to balance the two factors. In the first stage of training, we train the foveated target detector on
the TP image training set from COCO-Search18 with randomly generated scanapths having a maximum scanpath length of
5. We do this to learn a target signal, which is best done on TP images. In the second stage, we train the termination predictor
with the training TA trials from COCO-Search18. We use the trained foveated target detector to compute the detection map
that is used as input to the termination predictor. Note that the parameters of the foveated target detector are fixed during the
second stage. To compute the precision, recall, and f1-score for our model and the DCB-based model, we use the decision
threshold having the maximum f1-score in the validation set and report the results on the testing set. All models were trained
using Adam optimizer [4] with a learning rate of 10−4, a decay rate of 10−8, and a batch size of 128, until the validation loss
plateaued.

5.3. Ablation Study

In an ablation study we systematically removed each of the components in our model, which included the history fixation
map, subject ID, and task ID. The precision, recall, and f1-score of the different ablated models in provided in Table 2.
Removing any one of the components incurs a non-negligible performance drop relative to the intact model. However, among
the three considered components removing subject ID impacted the model the most, reducing the F1-score from 0.462 to
0.326. This result suggests that different searchers employ different stopping criteria, because knowing the searcher’s identity
helped most to predict the termination of a search. Interestingly, removing target ID incurred the least cost, suggesting that
knowing the category of search target was relatively unimportant to the stopping behavior compared to the other components.
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