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Abstract
Spread of attention within objects has been proposed as
a mechanism for how humans group features to segment
objects. However, such a mechanism has not yet been
implemented and tested in naturalistic images. Here,
we leverage the feature maps from self-supervised vi-
sion transformers and propose a model of human object-
based attention spreading and segmentation. The atten-
tion spreads within an object through the affinity signal
between different patches of the image. We show that this
model predicts reaction time patterns of people grouping
objects in natural images by judging whether two dots are
on the same object or on two different objects.

Background
A fundamental problem that our visual system must solve is
how to group parts of the visual input together into coher-
ent whole objects (Peters & Kriegeskorte, 2021). The role
of attention in solving this problem has been experimentally
studied for decades (Treisman, 1996; Adeli, Ahn, & Zelinsky,
2022). A proposed solution is that attention can bind ob-
ject features through activation spreading within an object us-
ing lateral connectivity in retinotopic visual areas (Roelfsema,
2023). However, the modeling work in this domain has fo-
cused on bottom-up, Gestalt cues, and clear object bound-
aries for how attention can spread within an object to bind
its features (e.g. the ”growth cone” model (Jeurissen, Self,
& Roelfsema, 2016)). A compelling model of primate vision,
however, should be able to handle natural images where ob-
ject boundaries are frequently ambiguous and bottom-up cues
must be combined with prior object-specific knowledge.

Building a model of object-based attention applicable to nat-
ural images requires the modeling of lateral connectivity be-
tween image regions that can guide the spread of attention.
Recent vision transformers capture this connectivity and are
therefore well-suited to address the spreading of object-based
attention. In these models, the visual input is first divided

Figure 1: The affinity maps for select patches on the grid.

into different patches (Fig. 1 center) that are then encoded
as feature vectors called tokens (Dosovitskiy et al., 2020). At
each layer of processing, a given token representing an im-
age patch can update its value by interacting with and mix-
ing (”attending” to) the values of all other tokens that it finds
relevant. The selective nature of this mixing has motivated
naming this process ”attention” in transformers (Vaswani et
al., 2017). Recent work has shown that feature similarity
between tokens, which we refer to as ”affinity” (Chen et al.,
2022), in vision transformers trained with a self-supervised
objective (e.g., distillation (Caron et al., 2021) or masked auto-
encoding (He et al., 2022)) begins to represent object-centric
information (Wang et al., 2022), meaning the patches that
have the highest affinity to a given patch are likely to be on
the same object (Fig. 1). These dynamic pairwise interactions
may serve a role similar to that played by lateral connections
in implementing object-based attention and perceptual group-
ing (Mehrani & Tsotsos, 2023), which have also been shown
to change dynamically in the retinotopic maps of the ventral
pathway (Ramalingam, McManus, Li, & Gilbert, 2013; Roelf-
sema, 2023).
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Figure 2: A) Behavioral procedure. Subjects maintain fixation
on the center dot during the trial. B) Sample trial from all four
conditions. C) Placement of dots across conditions across all
trials. D) Mean reaction time by condition with SEM.
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Figure 3: A) 20 steps of attention spread, starting from the center dot. B) Attention spread overlaid on the image for the steps that
attention reached the second dot in the close (top) and far (bottom) conditions. C) Examples of attention spreading in objects.
D) Mean number of steps for attention to reach the second dot in the close (light bar) and far (dark bar) conditions, with SEMs.

We use a ”two-dot” paradigm (Fig. 2) to directly probe how
humans group and segment the regions of natural images
into objects. In this paradigm, two dots are placed on an im-
age and subjects are asked to indicate whether they are on
the same object or two different objects with a button press
(Fig. 2A). One of these dots is always at the center loca-
tion, and the other is at a peripheral location. The reaction
time (RT) of this button press is our primary measure. Previ-
ous works using this paradigm have been limited in scale or
have focused on simpler stimuli (Vecera, 2000; Kim, Linsley,
Thakkar, & Serre, 2019; Korjoukov et al., 2012). We selected
images from the Microsoft COCO (Common Objects in Con-
text) dataset, which has images of complex everyday scenes
depicting common objects in their natural context (Lin et al.,
2014). The images also come with object-level segmenta-
tions, which we used to generate four versions of each dis-
play, two with both dots on the same object (same condition)
and the other two with dots on different objects (different con-
dition), see Fig. 2B. Within the same and different conditions,
the peripheral dots on each trial were placed either close to
or far from the center dot (3 and 6 degrees of visual angle,
respectively, equally divided) (Fig. 2C). We generated 1024
unique experimental trials and have collected behavioral data
from 42 subjects with each performing the task for 256 trials.
Fig. 2D shows the RT data, subjects were faster to respond
when the two dots were on the same object. This same object
advantage interacted with dot distance, where we observed
the fastest RTs in the close-separation same-object condition.
This behavioral pattern is consistent with the hypothesis that
attention spreads from the center dot within the cued object,
thereby reaching the closer dot faster than the farther dot. If
the second dot is on a different object, dot separation would
not be expected to play a large role on RTs (Roelfsema, 2023).

Modeling Results
In transformers, each token is represented with three vectors:
key, query, and, value. The affinity between tokens can be
calculated using any of these feature representations (self-
attention is the dot product of one token’s key with another
token’s query). Following prior work that showed the key fea-
tures to be the most object-centric (Wang et al., 2022), we
calculate affinity by performing the dot product of each token’s
key with all the other keys that we extracted from the last trans-
former layer of the DINO model with images as input (Caron

et al., 2021) (Fig. 1 shows the affinity maps for a few patches).
The model, like the subjects, starts every trial from the patch
at the center dot location. Then, from this starting location, the
model selects all the tokens with strong affinity above a thresh-
old, causing attention to spread to a bigger segment around
the center dot (Fig. 3A top-left). At each new step, the model
identifies all the patches that have a strong affinity to the al-
ready attended segment by taking an average across all affin-
ity maps from all the tokens in the growing segment. Fig. 3A
shows the iterative spread of attention in an object over 20
steps. As the segment grows, the attention spread becomes
more conservative due to the constraint placed on the seg-
ment growth to be a single connected region and that all the
patches in the segment vote where to spread next. To counter
this conservative spread, the model reduces the threshold at
each time step. The number of steps that it takes for attention
to reach the peripheral dot becomes the model’s prediction of
the RT for that trial. Fig. 3B shows the attention spread over-
laid on the original image at steps 2 and 15, where it reached
the close (top) and far (bottom) peripheral dots (see Fig. 3C
for more examples). Focusing analyses on only the same tri-
als, we plot in Fig. 3D the average number of steps that the
model took for attention to reach the close and far dots. The
model predicts the same effect of distance on RT as we saw
in humans. While this shows that the model on average pre-
dicts the spreading of object-based attention in humans, future
work will aim to evaluate the model on predicting human be-
havior on individual trials, including on the different condition.

Discussion
Several important insights follow from our work. First, just as
Convolutional and Recurrent networks trained on object clas-
sification have been shown to predict behavior and neural ac-
tivity during visual recognition (Cadieu et al., 2014; Kriegesko-
rte, 2015), we show that transformers can provide plausible
mechanisms of visual functions beyond core object recogni-
tion, such as attention modulated perceptual grouping of fea-
tures into objects. Second, the self-supervised training objec-
tive can provide a biologically plausible feature learning mech-
anism for how the primate visual system learns to group and
perceive objects, one that does not require a huge number of
labeled samples. Lastly, this work contributes to computer vi-
sion by showing how object-based attention, a core element
of human cognition, can be integrated into an AI model.
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