Publications

Refereed archival journal papers – ALL (147 total, denotes Wang’s group students or researchers as the first authors, https://www.webofscience.com/wos/author/record/2171465 –H factor = 42, and https://scholar.google.com/citations?user=AD8PvBkAAAAJ&hl=en — H factor = 54)

 

  1. Wang, Z., H. Hu, and J. Zhou, 1996a: Dual differential absorption lidar: A new method to reduce effectively the effect of aerosols on ozone measurements. ACTA Meteorologics Sinica (in Chinese), 54, (4): 437-446.doi: 11676/qxxb1996.045 .
  2. Wang, Z., J. Zhou, H. Hu, and Z. Gong, 1996b: Evaluation of dual Differential absorption lidar based on Raman shifted Nd:YAG or KrF laser for tropospheric ozone measurements. Applied Physics, B62, 143-147.
  3. Zhou, J., Wang, J. Han and H. Hu, 1996: Variability of aerosol optical properties over Hefei during the period from September 1993 to September 1994. ACTA Meteorologica Sinica, 10, 81-95.
  4. Wang,, H. Nakane, H. Hu, and J. Zhou, 1997: Three-wavelength dual-DIAL measurements of stratospheric ozone in the presence of volcanic aerosols. Appl. Opt., 36, 1245-1252.
  5. Han, J., J. Zhou, Wang, and H. Hu, 1997: Precipitable water measurements with sun-photometer. ACTA Meteorologics Sinica, 11, 95-104.
  6. Hu, H., Wang, Y. Wu, and J. Zhou, 1998: UV-DIAL system for measurements of stratospheric ozone. Chinese Journal of Atmospheric Sciences, 21, 701-708. DOI:10.3878/j.issn.1006-9895.1998.05.04
  7. Sassen, K., G. G. Mace, Z. Wang, S. M. Sekelsky, and R. E. McIntosh, 1999: Continental stratus clouds: a case study using coordinated remote sensing and aircraft measurements. Atmos. Sci., 56, 2345-2358.
  8. Wang, Z., and K. Sassen, 2000: Ozone destruction in continental stratus clouds: An aircraft case study. Appl. Meteor., 39, 875-886.
  9. Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. Appl. Meteor., 40, 1665-1682.
  10. Sassen, K., J. M. Comstock, Wang, and G. G. Mace, 2001: Cloud and Aerosol Research at FARS: The Facility for Atmospheric Remote Sensing. Bull. Am. Meteor. Soc., 82, 1119-1138.
  11. Sassen, K., J. M. Comstock, and Wang, 2001: Parameterization of the radiative properties of midlatitude middle and high level clouds. Geophys. Res. Lett., 28, 729-732.
  12. Stephens, G. L., D. G. Vane, R. Boain, G. G. Mace, K. Sassen, Wang, A. Illingworth, E. O’Conner, W. B. Rossow, S. L. Durden, S. Miller, R. Austin, A. Benedetti, and C. Mitrescu, 2002: The CloudSat mission and the EOS constellation: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790.
  13. Wang, Z. and K. Sassen, 2002a: Cirrus cloud microphysical property retrieval using lidar and radar measurements: II midlatitude cirrus microphysical and radiative properties. Atmos. Sci., 59, 2291-2302.
  14. Sassen, K., Wang, V. I. Khvorostyanov, G. L. Stephens and A. Bennedetti, 2002: Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model. J. Appl. Meteor., 41, 620-628.
  15. Wang, Z. and K. Sassen, 2002b: Cirrus cloud microphysical property retrieval using lidar and radar measurements: I algorithm description and comparison with in situ data. Appl. Meteor., 41, 218-229.
  16. Sassen, K., W. P. Arnott, D. O’C. Starr, G. G. Mace, Wang, and M. R. Poellot, 2003: Midlatitude cirrus clouds derived from hurricane Nora: A case study with implications for ice crystal nucleation and shape. J. Atmos. Sci., 60, 873-891.
  1. Sassen, K., Wang, C. Platt, and J. Comstock, 2003: Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds. J. Atmos. Sci., 60, 428–433.
  2. Wang, Z., D. Whiteman, B. Demoz, and Veselovskii, 2004a: A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys. Res. Lett., Vol. 31, L15101, doi:10.1029/2004GL020004.
  3. Whiteman, D. N., B. Demoz, and Wang, 2004: Subtropical cirrus cloud extinction to backscatter ratios measured by Raman Lidar during CAMRX-3. Geophys. Res. Lett., doi:10.1029/2004GL020003.
  4. Wang, Z., Sassen, D. Whiteman, and B. Demoz 2004b: Studying altocumulus plus virga with ground-based active and passive remote sensors. J. Appl. Meteor.,43, 449-460.
  5. Wang, Z., M. Heymsfield, L. Li, and, A. J. Heymsfield, 2005: Retrieve optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. J. Geophys. Res., 110, D19201, doi:10.1029/2005JD005969.
  6. Matrosov, S. Y., A. J. Heymsfield, and Wang, 2005: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett.,32,L13816 10.1029/2005GL023210.
  7. Heymsfield, A. J, Wang, and S. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44, 1391-1412.
  8. Gochis, D., and other co-authors, 2005: Meeting summary of UCAR/NCAR junior faculty forum on future scientific directions: the water cycle across scales working group. Amer. Meteor. Soc., 86, 1743-1746.
  9. Atlas, D., Wang, and D. Duda, 2006: Contrails to Cirrus – Morphology, Microphysics, and Radiative Properties. J. Appl. Meteor.,45, 5-19.
  10. Whiteman, D. N., B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, T. Van Hove, 2006: Raman Water Vapor Lidar Measurements During the International H2O Project. I. Instrumentation and Analysis Techniques, J. Atmos. Oceanic Technol., 23, 157-169 .
  11. Whiteman, D. N., B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Wang, D. Sabatino, G. Schwemmer, B. Gentry, R-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, J. Wang, 2006: Raman Water Vapor Lidar Measurements During the International H2O Project. II. Case Studies, J. Atmos. Oceanic Technol., 23, 170-183.
  12. Whiteman, D. N., F. Russo, B. Demoz, L. M. Miloshevich, I. Veselovskii, S. Hannon, Wang, H. Vömel, F. Schmidlin, B. Lesht, P. J. Moore, A. S. Beebe, A. Gambacorta, C. Barnet, 2006: Analysis of Raman lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation. J. Geophys. Res., 111, D09S09, doi:10.1029/2005JD006429.
  13. Belay Demoz, Cyrille Flamant, Tammy Weckwerth, David Whiteman, Keith Evans, Frédéric Fabry,Paolo Di Girolamo, David Miller, Bart Geerts, William Brown, Geary Schwemmer, Bruce Gentry, Wayne Feltz, and Wang, 2006: The Dryline on 22 May 2002 during IHOP-2002: Convective-Scale Measurements at the Profiling Site, Monthly Weather Review, 134, 294-310.
  14. Comstock, J. M., et al. 2007: An Intercomparison of Microphysical Retrieval Algorithms for Upper Tropospheric Ice Clouds, Amer. Meteor. Soc., DOI:10.1175/BAMS-88-2-191.
  15. Turner, D. D., et al., 2007: Thin Liquid Water Clouds: Their Importance and Our Challenge, Amer. Meteor. Soc., DOI:10.1175/BAMS-88-2-177.
  16. Wang, Z., 2007: A refined two-channel microwave radiometer liquid water path retrieval for cold regions by using multiple-sensor measurements, IEEE Geoscience & remote sensing letters, 4, 591-595.
  17. Heymsfield, A. J., et al., 2008: Testing and Evaluation of Ice Water Content Retrieval Methods using Radar and Ancillary Measurements. Appl. Meteor., 47,153-163.
  18. Sassen, K. and Z. Wang, 2008: Early Results from CloudSat: Applying the Cloud Type Algorithm around the Globe, Res. Lett. 35, L04805, doi:10.1029/2007GL032591.
  19. Kahn, B. H., M. T. Chahine, G. L. Stephens, G. G. Mace, R. T. Marchand, Wang, A. Eldering, R. E. Holz, R. E. Kuehn, D.G. Vane and C. D. Barnet, 2008: Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount, Atmos. Chem. Phys., 8, 1231–1248, 2008.
  20. Luo, Y., K. Xu, H. Morrison, G. M. McFarquhar, Wang, and G. Zhang, 2008: Multi-Layer Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity Experiments, J. Geophys. Res., 113,D12208, doi:10.1029/2007JD00956.
  21. Wang, Z., Stephens, T. Deshler, C. Trepte., T. Parish, D. Vane, D Winker, D. Liu and L. Adhikari, 2008: The Connection of Antarctic Polar Stratospheric Clouds with Tropospheric Cloud Systems, Geophys. Res. Lett., 35, L13806, doi:10.1029/2008GL034209 .
  22. Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., Kittaka, C., Trepte, C., Wang, Z., Hostetler, C., and Winker, D. 2008a: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations, Chem. Phys., 8, 5045-5060.
  23. Liu, D., Wang, Z. Liu, D. Winker and C. Trepte, 2008b: A Height Resolved Global View of Dust Aerosols from the First Year CALIPSO Lidar Measurements, J. Geophys. Res., 113, D16214, doi:10.1029/2007JD009776.
  24. Leon, D. C., Wang, and D. Liu, 2008: Global assessment of the frequency and characteristics of drizzle from marine stratocumulus and other low clouds over the ocean using one year of data from CloudSat and CALIPSO, J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835.
  25. Sassen, K., Z. Wang, and D. Liu, 2008: The global distribution of cirrus clouds from CloudSat/CALIPSO measurements, Geophys. Res., 113,D00A12, doi:10.1029/2008JD009972.
  26. Stephens, G. L., et al., 2008: The CloudSat Mission: Performance and early science after the first year of operation, Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.
  27. Klein, S. A., et al. 2009: Intercomparison of model simulations of mixed phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment, Part I: Single layer cloud, J. Roy. Meteor. Soc. , DOI: 10.1002/qj.416.
  28. Morrison, H., et al. 2009: Intercomparison of model simulations of mixed phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment, Part II: Multi layered cloud, J. Roy. Meteor. Soc. , DOI: 10.1002/qj.415.
  29. Pratt, K. A., Paul J. DeMott, Jeffrey R. French, Wang, Douglas L. Westphal, Andrew J. Heymsfield, Cynthia H. Twohy, Anthony J. Prenni & Kimberly A. Prather. In situ detection of biological particles in cloud ice-crystals. Nature Geoscience, 2009; DOI: 10.1038/ngeo521.
  30. Wang, Z., Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: instrument description and applications, Optics Express Vol. 17, Iss. 16, pp. 13576–13587.
  31. Sassen, K., Wang, and D. Liu, 2009: Cirrus Clouds and Deep Convection in the Tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., D00H06, doi:10.1029/2009JD011916.
  32. Hu, Y., D. Winker, M. Vaughan, B. Lin, A. Omar, C. Trepte, D. Flittner, P. Yang, S. L. Nasiri, B. Baum, W. Sun, Z. Liu,  Wang, S. Young, K. Stamnes, J. Huang, R. Kuehn, R. Holz 2009: CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, Journal of Atmospheric and Oceanic Technology, 26, 2293-2309.
  33. Zhang, D., Wang, and D. Liu, 2010: A Global View of Mid-level Liquid Layer Topped Stratiform Cloud Distributions and phase partition from CALIPSO and CloudSat Measurements, J. Geophys. Res., 115, D00H13, doi:10.1029/2009JD012143.
  34. Adhikari, L., Wang, and D. Liu, 2010: Microphysical Properties of Antarctic Polar Stratospheric Clouds and Their Dependence on Tropospheric Cloud Systems, J. Geophys. Res., 115, D00H18, doi:10.1029/2009JD012125.
  35. Pratt, K. A., C. H. Twohy, A. J. Heymsfield, S. M. Murphy, P. J. DeMott, J. G. Hudson, R. Subramanian, Wang, J. H. Seinfeld, K. A. Prather, 2010: In-situ Chemical Characterization of Aged Biomass Burning Aerosols Impacting Cold Wave Clouds, J. Atmos. Sci., 67, 2451–2468.
  36. Heymsfield, A., P. C. Kennedy, S. Massie, C. Schmitt, Wang, S. Haimov, A. Rangno, 2010: Aircraft-induced hole punch and canal clouds: inadvertent cloud seeding. BAMS, 91, 753–766. doi: 10.1175/2009BAMS2905.1
  37. Eidhammer, T., P. J. DeMott, A. J. Prenni, M. D. Petters, C. H. Twohy, D. C. Rogers, J. Stith, A. Heymsfield, Wang, K. A. Pratt, K. A. Prather, S. M. Murphy, J. H. Seinfeld, R. Subramanian, and S. M. Kreidenweis, 2010: Ice initiation by aerosol particles: measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud, J. Atmos. Sci., 67, 2417-2436.
  38. Twohy, C. H., P. J. DeMott, K. A. Pratt, R. Subramanian, G. L. Kok, S. M. Murphy, T. Lersch, K. A. Prather, A. J. Heymsfield, Wang, 2010: Relationships of Biomass Burning Aerosols to Ice in Orographic Wave Clouds, J. Atmos. Sci., 67, 2451-2468.
  39. Deng, M., G. Mace, Z. Wang, and H. Okamoto, 2010: TC4 Validation for Ice Cloud Profiling Retrieval Using CloudSat Radar and CALIPSO Lidar, J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.
  40. Atlas, D. and Wang, 2010: Contrails of small and very large optical depth, Journal of the Atmospheric Sciences, 67, P3065-3073.
  41. Zhao, M. and Wang, 2010: Comparison of Arctic clouds between ECMWF simulations and ACRF long-term observations at the NSA Barrow Site, J. Geophys. Res., 115, D23202, doi:10.1029/2010JD014285.
  42. Heymsfield, A. J., G. Thompson, H. Morrison, RM Rasmussen, P. Minnis, Wang, D. Zhang, 2011: Formation and spread of aircraft-induced holes in clouds. Science, 333, 77-81.
  43. Heymsfield, J., P. R. Field, M. Bailey, D. Rogers, J. Stith, C. Twohy, Z. Wang, S. Haimov, 2011: Ice in Clouds Experiment- layer clouds Part I: ice growth rates derived from lenticular wave growth penetrations, J. Atmos. Sci., 68, 2628–2654.doi: http://dx.doi.org/10.1175/JAS-D-11-025.1.
  44. Liu, X., et al., 2011: Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations, J. Geophys. Res., 116, D00T11, doi:10.1029/2011JD015889.
  45. Wang, Z. et al., 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. BAMS, 93, 653–766. doi: 10.1175/BAMS-D-11-00044.1.
  46. Adhikari, L., Wang, and M. Deng, 2012:Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites, J. Geophys. Res., 117, D04202, doi:10.1029/2011JD016719.
  47. Zhao, C., et al. (2012), Toward understanding of differences in current cloud retrievals of ARM ground-based measurements, Geophys. Res., doi:10.1029/2011JD016792.
  48. Sassen, K. and Wang, 2012: The Clouds of the Middle Troposphere: Composition, Radiative Impact, and Global Distribution, Surv Geophys (2012) 33:677–691,DOI 10.1007/s10712-011-9163-x
  49. Zhang, D., Wang, A. J. Heymsfield, J. Fan, D. Liu, and M. Zhao: 2012, Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds, Geophys. Res. Lett., 39, L18805, doi:10.1029/2012GL052831.
  50. Liu, D., Y. Wang, Wang, and J. Zhou, 2012: The Three-dimensional Structure of trans-Atlantic Africa Dust transport: a new perspective from CALIPSO lidar Measurements, Advances in Meteorology, doi:10.1155/2012/850704.
  51. Deng, M., G. Mace, Z. Wang, R. P. Lawson, 2013: Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign. J. Appl. Meteor. Climatol., 52, 1014–1030.doi: http://dx.doi.org/10.1175/JAMC-D-12-054.1.
  52. Liu, B., and Wang, 2013: Improved calibration method for depolarization lidar measurement, Opt. Express, 21, 14583-14590.
  53. Zhang, X., Y. Huang, R. Rao, and Z. Wang, 2103: Retrieval of effective complex refractive index from intensive measurements of characteristics of ambient aerosols in the boundary layer, Optics Express, Vol. 21, Issue 15, pp. 17849-17862,
http://dx.doi.org/10.1364/OE.21.017849.
  54. Yin J., D. Wang, G. ZHAI, and Z. Wang 2013: Observational Characteristics of Cloud Vertical Profiles over the Continent of East Asia from the CloudSat Data. ACTA METEOROLOGICA SINICA, 27, p26-39.
  55. Adhikari, and Z. Wang, 2013: An A-train satellite based stratiform mixed-phase cloud retrieval algorithm by combining active and passive sensor measurements, British Journal of Environment and Climate Change, Vol.: 3, Issue: 4 (Oct-Dec)-Special Issue, DOI : 10.9734/BJECC/2013/3055. (http://www.sciencedomain.org/abstract.php?iid=323&id=10&aid=2532#.Uq8vjaWgPst)
  56. Luo, T., R. Yuan, and Z. Wang, 2014: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean, Atmos. Meas. Tech., 7, 173-182, doi:10.5194/5194/amt-7-173-2014.
  57. Luo, T., R. Yuan, and Wang, 2014: On Factors Controlling Marine Boundary Layer Aerosol Optical Depth, J. Geophys. Res119, doi:10.1002/2013JD020936..
  58. Zhang, D., T. Luo, D. Liu, Wang, 2014: Spatial Scales of Altocumulus Clouds Observed with Collocated CALIPSO and CloudSat Measurements, Atmospheric Research, DOI: 10.1016/j.atmosres.2014.05.023.
  59. Wang, Z., D. Liu, Wang, Y. Wang, P. Khatri, J. Zhou, T. Takamura, and G. Shi (2014), Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90°N, 117.17°E) from 2007 to 2013, J. Geophys. Res. Atmos., 119, 61286139, doi:10.1002/2014JD021500.
  60. Zhao, C., Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu (2014), A new cloud and aerosol layer detection method based on micropulse lidar measurements, Geophys. Res. Atmos., 119, 67886802, doi:10.1002/2014JD021760.
  61. Zhang, D., Z. Wang, A. Heymsfield, J. Fan, and T. Luo, 2014: Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1-D Ice Growth Model Simulations, Atmos. Sci., 71, 3613–3635.
  62. DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M., 2014: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Chem. Phys. Discuss., 14,17359-17400, doi:10.5194/acpd-14-17359-2014.
  63. Liu B., Wang, Y Cai, P Wechsler, W Kuestner, M Burkhart, W Welch, 2014: Compact airborne Raman lidar for profiling aerosol, water vapor and clouds, Optics express, 22 (17), 20613-20621.
  64. Bergmaier, T., B. Geerts, Z. Wang, Bo Liu, and Patrick C. Campbell, 2014: A Dryline in Southeast Wyoming. Part II: Airborne In Situ and Raman Lidar Observations. Mon. Wea. Rev., 142, 2961–2977. doi: http://dx.doi.org/10.1175/MWR-D-13-00314.1.
  65. Peng, L., Snider, J. R., and Wang, Z., 2014: Ice crystal concentrations in wave clouds: dependencies on temperature, D>0.5 μm aerosol particle concentration and duration of cloud processing, Chem. Phys. Discuss., 14, 26591-26618, doi:10.5194/acpd-14-26591-2014, 2014.
  66. Luo, T, Z. Wang, D. Zhang, R. Yuan, X. Liu, and Y. Wang, 2015: Global Dust Distribution from Improved Thin Dust Layer Detection using A-Train Satellite Observations, Res. Lett., 42, 620–628, 10.1002/2014GL062111.
  67. Zhang, D, et al., 2015: Aerosol Impacts on Cloud Thermodynamic Phase Change over East Asia Observed with CALIPSO and CloudSat Measurements. Geophys. Res. Atmos., 120: 1490–1501. doi: 10.1002/2014JD022630.
  68. Luo, T., R. Yuan, and Wang, D. Zhang 2015: Quantifying the Hygroscopic Growth of Marine Boundary Layer Aerosols by Satellite-base and Buoy Observations, J. Atmos. Sci., 72, 1063–1074.
  69. Huang, et al. 2015: Climatology of Cloud Water Content Associated with Different Cloud Types Observed by A-Train Satellites, J. Geophys. Res. Atmos., 120, 4196–4212. doi: 10.1002/2014JD022779.
  70. Luo T., Wang, R. A. Ferrare, C. A. Hostetler, R. Yuan, and D. Zhang. 2015: Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method. Optics Express, 23(11): 14095-14107.
  71. DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R.,Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393–409, doi:10.5194/acp-15-393-2015, 2015.
  72. Khanal, S., and Z Wang, 2015: Evaluation of the lidar-radar cloud ice water content retrievals using collocated in-situ measurements. Journal of Applied Meteorology and Climatology, 2015, 2087-2097, DOI: 10.1175/JAMC-D-15-0040.1.
  73. Wang, Z., D. Liu, Y. Wang, Wang, and G. Shi, 2015: Diurnal aerosol variations do affect daily averaged radiative forcing under heavy aerosol loading observed in Hefei, China, Atmos. Meas. Tech., 8, 2901-2907, 2015.
  74. Luo, T., Wang, Z., and Zhang, D.: Marine boundary layer structure as observed by space-based Lidar, Atmos. Chem. Phys. Discuss., 15, 34063-34090, doi:10.5194/acpd-15-34063-2015, 2015.
  75. Deng, M., G. G. Mace, Z. Wang, and E. Berry, 2015: CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region, J. Geophys. Res. Atmos., 120, 12,198–12,208, doi:10.1002/2015JD023600.
  76. Deng, M., G. Mace, and Z. Wang, 2016: Anvil Productivities of Tropical Deep Convective Clusters  and Their Regional Differences, Atmos. Sci., 73, 3467-3487,DOI: http://dx.doi.org/10.1175/JAS-D-15-0239.1.
  77. Yang, J., Wang, Z., Heymsfield, A. J., and French, J. R., 2016: Characteristics of vertical air motion in isolated convective clouds, Atmos. Chem. Phys., 16, 10159-10173, doi:10.5194/acp-16-10159-2016.
  78. Wu, D., Z. Wang, P. Wechsler, N. Mahon, M. Deng, B. Glover, M. Burkhart, W. Kuestner, and B. Heesen, 2016: Airborne compact rotational Raman lidar for temperature measurement, Opt. Express, 24, A1210-A1223. https://doi.org/10.1364/OE.24.0A1210.
  79. Yuan, R., Luo, T., Sun, J., Liu, H., Fu, Y., and Wang, Z., 2016: A new method for estimating aerosol mass flux in the urban surface layer using LAS technology, Atmos. Meas. Tech., 9, 1925-1937, doi:10.5194/amt-9-1925-2016.
  80. Luo, T., Wang, Z., Zhang, D., and Chen, B., 2016: Marine boundary layer structure as observed by A-train satellites, Atmos. Chem. Phys., 16, 5891-5903, doi:10.5194/acp-16-5891-2016.
  81. Yang, J., Z. Wang, A. Heymsfield, T. Luo, 2016: Liquid/Ice Mass Partition in Tropical Maritime Convective Clouds, Atmos. Sci73, 4959-4978,DOI: http://dx.doi.org/10.1175/JAS-D-15-0145.1.
  82. Zuidema, P., J. Haggerty, M. Cadeddu, J. Jensen, E. Orlandi, M. Mech, J.J. Vivekanandan, and Z. Wang,2016: Recommendations for Improving U.S. NSF-Supported Airborne Microwave Radiometry.  Amer. Meteor. Soc., 97, 2257–2261, doi: 10.1175/BAMS-D-15-00081.1.
  83. Zhang, D., Z. Wang, T. Luo, Y. Yin, and C. Flynn, 2017: The occurrence of ice production in slightly supercooled Arctic stratiform clouds as observed by ground-based remote sensors at the ARM NSA site, Geophys. Res. Atmos., 122, 2867–2877, doi:10.1002/2016JD026226.
  84. Schumann, U., Baumann, R., Baumgardner, D., Bedka, S. T., Duda, D. P., Freudenthaler, V., Gayet, J.-F., Heymsfield, A. J., Minnis, P., Quante, M., Raschke, E., Schlager, H., Vázquez-Navarro, M., Voigt, C., and Wang, Z.: Properties of individual contrails: A compilation of observations and some comparisons, Atmos. Chem. Phys., 17, 403-438, doi:10.5194/acp-17-403-2017, 2017.
  85. Geerts, D., and Coauthors,2017: The 2015 Plains Elevated Convection at Night (PECAN) field project. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00257.1.
  1. Su, H., J. H. Jiang, J. D. Neelin, T. J. Shen, C. Zhai, Q.Y., Z. Wang, L. Huang, Y. Choi, G. L. Stephens, Y. L. Yung, 2017: Tightening of Hadley ascent and tropical high 1 cloud region key to precipitation change in a warmer climate, Nature Communications, 8:15771 | DOI: 10.1038/ncomms15771.
  2. Liu, Yinghui et al. 2017: Cloud vertical distribution from combined surface and space radar/lidar observations at two Arctic atmospheric observatories, acp-2016-1132.
  3. Snider, R.,D. Leon, and Z. Wang, 2017: Droplet concentration and spectral broadening in southeast Pacific stratocumulus clouds. J. Atmos. Sci.74, 719–749, https://doi.org/10.1175/JAS-D-16-0043.1.
  4. Mueller, D., B. Geerts, Z. Wang, M. Deng, and C. Grasmick, 2017: Evolution and Vertical Structure of an Undular Bore Observed on 20 June 2015 during PECAN. Wea. Rev., 145, 3775-3794, DOI: 10.1175/MWR-D-16-0305.1.
  1. Deng, M., G.G. Mace, Z. Wang, F. Li, and Y. Luo, 2018: Partitioning Ice Water Content from Retrievals and Its Application in Model Comparison. Atmos. Sci, https://doi.org/10.1175/JAS-D-17-0017.1.
  2. Korolev,,G. McFarquhar,P. R. Field, C. Franklin, P. Lawson, Z. Wang, E. Williams, S. J. Abel, D. Axisa, S. Borrmann, J. Crosier, J. Fugal, M. Krämer, U. Lohmann, O. Schlenczek, M. Schnaiter, and M. Wendisch, 2017: Mixed-Phase Clouds: Progress and Challenges. Meteorological Monographs 58, 5.1-5.50. https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.
  3. Zhang, D., Wang, Z., Kollias, P., Vogelmann, A. M., Yang, K., and Luo, T., 2018: Ice Particle Production in Mid-level Stratiform Mixed-phase Clouds Observed with Collocated A-Train Measurements, Atmos. Chem. Phys., 18, 4317–4327, https://doi.org/10.5194/acp-18-4317-2018.
  4. Wang, Y., X. Liu, D. Zhang, and Z. Wang, 2018: Distinct Contributions of Ice Nucleation, Large-Scale Environment, and Shallow Cumulus Detrainment to Cloud Phase Partitioning with NCAR CAM5, Journal of Geophysical Research: Atmospheres, DOI: 10.1002/2017JD027213.
  5. Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wang, Y., 2018: Negative aerosol-cloud re relationship from aircraft observations over Hebei, China. Earth and Space Science, 5. https://doi.org/10.1002/2017EA000346.
  1. Luo, T., Wang, Z., Li, X., Deng, S., Huang, Y., & Wang, Y., 2018: Retrieving the polar mixed-phase cloud liquid water path by combining CALIOP and IIR measurements. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1002/2017JD027291.
  2. Lv, M., Wang, Z., Li, Z., Luo, T., Ferrare, R., Liu, D., et al., 2018: Retrieval of cloud condensation nuclei number concentration profiles from lidar extinction and backscatter data. Journal of Geophysical Research: Atmospheres, 123, 6082–6098. https://doi.org/10.1029/2017JD028102.
  1. Yang, J., Z. Wang, and A. Heymsfield: 2018: On the Freezing Time of Supercooled Drops in Developing Convective Clouds over Tropical Ocean, Atmospheric Research, 211, 30–37, https://doi.org/10.1016/j.atmosres.2018.04.023.
  • Jiang, J. H., H. Su, L. Huang, Y. Wang, S. Massie, B. Zhao, A. Omar, Z. Wang, 2018: Contrasting effects on deep convective clouds by different types of aerosols, Nature Communications, 9, Article number: 3874(2018), DOI: 10.1038/s41467-018-06280-4.
  1. Khanal, S., & Wang, Z., 2018: Uncertainties in MODIS-based cloud liquid water path retrievals at high latitudes due to mixed-phase clouds and cloud top height inhomogeneity. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2018JD028558.
  2. Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The Relation between Nocturnal MCS Evolution and Its Outflow Boundaries in the Stable Boundary Layer: An Observational Study of the 15 July 2015 MCS in PECAN. Wea. Rev., 146, 3203-3226, https://doi.org/10.1175/MWR-D-18-0169.1
  1. Zheng,, D. Liu, Z. Wang, and Y. Wang, 2018: Differences among three types of tropical deep convective clusters observed from A-Train satellites, J. Quantitative Spectroscopy & Radiative Transfer 217 (2018) 253–261. https://doi.org/10.1016/j.jqsrt.2018.05.006.
  2. Lin, G., Geerts, Z. Wang, C. Grasmick, X. Jing, and J. Yang, 2019: Interactions Between a Nocturnal MCS and the Stable Boundary Layer, as Observed by an Airborne Compact Raman Lidar During PECAN. Mon. Wea. Rev., 147, 3169–3189, https://doi.org/10.1175/MWR-D-18-0388.1
  3. Zhang, D., Vogelmann, A., Kollias, P., Luke, E., Yang, F., Lubin, D., & Wang, Z. (2019). Comparison of Antarctic and Arctic single‐layer stratiform mixed‐phase cloud properties using ground‐based remote sensing measurements. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2019JD030673.
  4. Wu, M., Liu, X., Yang, K., Luo, T., Wang, Z., Wu, C., 2019: Modeling dust in East Asia by CESM and sources of biases. Journal of Geophysical Research: Atmospheres, 124, 8043–8064. https://doi.org/10.1029/2019JD030799.
  1. Zhang,, Liu, X., Diao, M., D’Alessandro, J. J., Wang, Y., Wu, C., D. Zhang, Z. Wang, and S. Xie, 2019: Impacts of representing heterogeneous distribution of cloud liquid and Ice on phase partitioning of Arctic mixed‐phase clouds. Journal of Geophysical Research: Atmospheres, 124, 13,071–13,090. https://doi.org/10.1029/2019JD030502.
  2. L’Ecuyer, T. S., Y. Hang, A. V. Matus, and Z. Wang, 2019: Reassessing the effect of cloud type on Earth’s energy balance in the age of active spaceborne observations. Part I: Top of atmosphere and J. Climate, 32, 6197–6217, https://doi.org/10.1175/JCLI-D-18-0753.1.
  3. Hang, Y, T. S. L’Ecuyer, D. S. Henderson, A. V. Matus, and Z. Wang, 2019: Reassessing the effect of cloud type on Earth’s energy balance in the age of active spaceborne observations.Part II: Atmospheric heating. J. Climate, 32, 6219–6236, https://doi.org/10.1175/JCLI-D-18-0754.1.
  4. Yang J., Z. Wang, A. Heymsfield, P. J. DeMott, C. H. Twohy, K. J. Suski, and D. W. Toohey, 2020: High ice, concentration observed in tropical maritime stratifrom mixed-phase clouds with top temperature warmer than -8C, Atmospheric Research, 233, https://doi.org/10.1016/j.atmosres.2019.104719.
  5. Butterworth, B. J, 2021: CONNECTING LAND-ATMOSPHERE INTERACTIONS TO SURFACE HETEROGENEITY IN CHEESEHEAD19, BAMS, E421–E445,DOI:https://doi.org/10.1175/BAMS-D-19-0346.1.
  6. Wu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., Darmenov, A., Wu, C., Wang, Z., Luo, T., Feng, Y., and Ke, Z.: Understanding processes that control dust spatial distributions with global climate models and satellite observations, Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020, 2020.
  7. Khanal,, Zhien Wang, Jeffrey R. French,2020: Improving middle and high latitude cloud liquid water path measurements from MODIS, Atmospheric Research, Volume 243, https://doi.org/10.1016/j.atmosres.2020.105033.
  8. Wang,, and Massimo Menenti, 2021: Challenges and Opportunities in Lidar Remote Sensing, Front. Remote Sens., doi: 10.3389/frsen.2021.641723.
  9. Lin, G., C. Grasmick, B. Geerts, Z. Wang, and M. Deng, 2021: Convection initiation and bore formation following the collision of mesoscale boundaries over a developing stable boundary layer: a case study from PECAN Wea. Rev., 150,2351-2367, https://doi.org/10.1175/MWR-D-20-0282.1.
  10. Shin, H. H., Xue, L., Li, W., Firl, G., D’Amico, D. F., Mu.oz-Esparza, D., et al. (2021). Large-scale forcing impact on the development of shallow convective clouds revealed from LASSO large-eddy simulations. Journal of Geophysical Research: Atmospheres,126, e2021JD035208. https://doi.org/10.1029/2021JD035208
  11. Xie, H., Z. Wang, T. Zhou, K. Yang, X.Liu, Q. Fu, D. Zhang, and M. Deng, 2021: Afterpulse correction for micro-pulse lidar to improve middle and upper tropospheric aerosol measurements, Opt. Express29, 43502-43515. https://doi.org/10.1364/OE.443191.
  12. Yang, K., and others, 2022: The Formation of Northern Hemisphere Upper Troposphere “Dust Belt”, Nature Commun Earth Environ3,24 (2022). https://doi.org/10.1038/s43247-022-00353-5
  13. Deng, M., R. M. Volkamer, Z. Wang, J. R Snider, N. Kille, and L. J. Romero-Alvarez, 2022: Wildfire Smoke Observation in Western US from Airborne Wyoming Cloud Lidar During the BB-FLUX Project. Part II: Vertical Structure and Plume Injection Height. Journal of Atmospheric and Oceanic Technology, DOI:1175/JTECH-D-21-0093.1
  14. Deng, M., Z. Wang, R. Volkamer, L. Oolman, J. Snider, D. M. Plummer, N. Kille, K. J. Zarzana, C. F. Lee, T. Campos, N. Ryan Mahon, B. Glover1, M. D. Burkhart1, and A.Morgan, 2022: Wildfire Smoke Observations in the Western U.S. from the Airborne Wyoming Cloud Lidar during the BB-FLUX Project. Part I: Data Description and Methodology. JTECH, DOI:https://doi.org/10.1175/JTECH-D-21-0092.1.
  15. Deng, M., J. French, L. Oolman, B. Geerts, S. Haimov, D. Plummer, and Z. Wang, 2022, Orographic snow microphysics and vertical motion retrieval from airborne WCR measurements during the SNOWIE project, JTECH, DOI:https://doi.org/10.1175/JTECH-D-21-0085.1.
  16. Chu, , Z. Wang, L. Xue, M. Deng, G. Lin, H. Xie, H. H. Shin, W. Li, G. Firl, D. F. D’Amico, D. Liu, and Y. Wang, 2022: Characterizing Warm Atmospheric Boundary Layer Over Land by Combining Raman and Doppler Lidar Measurements, Opt. Express30, 11892-11911, 2022. https://doi.org/10.1364/OE.451728
  17. Jing,, J. Yang,T. Li, J. Hu, C. He, Y. Yin, P. J. DeMott, Z. Wang, H. Jiang, K. Chen, 2022: Pre-Activation of Ice Nucleating Particles in Deposition Nucleation Mode: Evidence From Measurement Using a Static Vacuum Water Vapor Diffusion Chamber in Xinjiang, China, GRL, https://doi.org/10.1029/2022GL099468.
  18. Yang, J. Y. Zhang, Z. Wang, D. Zhang, 2022: Cloud Type and Life Stage Dependency of Liquid-Ice Mass Partitioning in Mixed-Phase Clouds. Remote Sens. 2022, 14(6), 1431. https://doi.org/10.3390/rs14061431.
  19. Zhang, D.; J. Comstock, H. Xie, Z. Wang, 2022: Polar Aerosol Vertical Structures and Characteristics Observed with a High Spectral Resolution Lidar at the ARM NSA Observatory. Remote Sens. 2022, 14, 4638. https://doi.org/10.3390/rs14184638.
  20. Xie, H.; Wang, Z.; Luo, T.; Yang, K.; Zhang, D.; Zhou, T.; Yang, X.; Liu, X.; Fu, Q. Seasonal Variation of Dust Aerosol Vertical Distribution in Arctic Based on Polarized Micropulse Lidar Measurement. Remote Sens. 2022, 14, 5581. https://doi.org/10.3390/rs14215581.
  21. Yang, K., Z. Wang, M. Deng, and B. Dettmann, 2023: Combining CloudSat/CALIPSO and MODIS measurements to reconstruct tropical convective cloud structure, Remote Sensing of Environment,Vol. 287,113478, https://doi.org/10.1016/j.rse.2023.113478.
  22. Lin, G., Z. Wang, C. Ziegler, X.-M. Hu, M. Xue, B. Geerts, and Y. Chu, 2023: A comparison of convective storm inflow moisture variability between the Great Plains and the southeastern United States using multiplatform field campaign observations. Atmos. Ocean Tech., DOI: https://doi.org/10.1175/JTECH-D-22-0037.1.
  1. Zhang, D., Vogelmann, A., Yang, F., Luke, E., Kollias, P., Wang, Z., Wu, P., Gustafson Jr., W., Mei, F., Glienke, S., Tomlinson, J., and Desai, N.: Evaluation of Four Ground-based Retrievals of Cloud Droplet Number Concentration in Marine Stratocumulus with AircraftIn SituMeasurements, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1364, 2023.
  2. Philip; Doppler
  3. Lin, G., et al., 2023: Airborne Measurements of Scale-Dependent Latent Heat Flux Impacted by Water Vapor and Vertical Velocity over Heterogeneous Land Surfaces During the CHEESEHEAD19 Campaign, JGR: Atmospheres (Revision submitted).
  4. Hosek, M. J., C. L. Ziegler, M. I. Biggerstaff, T. Murphy, and Z. Wang, 2023: Relation Between Baroclinity, Horizontal Vorticity, and Mesocyclone Evolution in the 6-7 April 2018 Monroe, LA Tornadic Supercell During VORTEX-SE, Monthly Weather Review, DOI:https://doi.org/10.1175/MWR-D-22-0313.1.
  5. Carvalho, L. M. V., 2024: The Sundowner Winds Experiment (SWEX) in Santa Barbara, CA: Advancing Understanding and Predictability of Downslope Windstorms in Coastal Environments, Amer. Meteor. Soc., (in press).