Machine Learning for Materials Characterization Using X-ray Absorption Spectroscopy

Our group has been developing machine learning -based methods for characterizing functional materials . The main idea is based on the concept of “descriptors” of the material’s structure and/or electronic properties that are encoded in its spectrum. Based on that initial approach, the following publications summarize its extension to multiple systems and processes:

Patent:
System and method for structural characterization of materials by supervised machine learning-based analysis of their spectra. A. I. Frenkel and J. Timosenko.
US Patent 11193884

Using XANES for decoding the coordination numbers of monometallic nanoparticles:

  1. J. Timoshenko, D. Lu, Y. Lin, A. I. Frenkel
    Supervised machine learning-based determination of three-dimensional structure of metallic nanoparticles
    J. Phys. Chem. Lett., 8, 5091-5098 (2017)
  2. J. Timoshenko, A. I. Frenkel
    “Inverting” X-ray Absorption Spectra of catalysts by machine learning in search for activity descriptors
    ACS Catalysis (Perspective) 9, 10192-10211 (2019)
  3. J. Timoshenko, S. Roese, H. Hovel, A. I. Frenkel
    Silver clusters shape determination from in-situ XANES data
    Radiat. Phys. Chem. 175, 108049 (2020)
  4. E. T. Dias, S. K. Gill, Y. Liu, P. Halstenberg, S. Dai,  J. Huang, J. Mausz, R. Gakhar, W. C. Phillips, S. Mahurin, S. M. Pimblott,  J. F. Wishart, A. I. Frenkel
    Radiation-assisted formation of metal nanoparticles in molten salts
    J. Phys. Chem. Lett. 12, 157-164 (2021)

Using XANES for decoding the coordination numbers of bimetallic nanoparticles:

  1. N. Marcella, Y. Liu, J. Timoshenko, E. Guan, M. Luneau, T. Shirman, A. M. Plonka, J. E. S. v. der Hoeven, J. Aizenberg, C. M. Friend, A. I. Frenkel
    Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy
    Phys. Chem. Chem. Phys. 22, 18902-18910 (2020)
  2. N. Marcella, J. S. Lim, A. M. Plonka, G. Yan, C. J. Owen, J. E. S. van der Hoeven, A. C. Foucher, H. T. Ngan, S. B. Torrisi, N. S. Marinkovic, E. A. Stach, J. F. Weaver, J. Aizenberg, P. Sautet, B. Kozinsky, A. I. Frenkel
    Decoding reactive structures in dilute alloy catalysts
    Nature Commun. 13, 832 (2022)

Using XANES for decoding the coordination numbers of mono- and bimetallic clusters:

  1. J. Timoshenko, A. Halder, B. Yang, S. Seifert, M. Pellin, S. Vajda, A. I. Frenkel
    Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning
    J. Phys. Chem. C 122, 21686-21693 (2018)
  2. Y. Liu, A. Halder, S. Seifert, N. Marcella, S. Vajda, A. I. Frenkel
    Probing active sites in Cu_xPd_y cluster catalysts by machine – learning – assisted X-ray absorption spectroscopy
    ACS Appl. Mater. Interf. 13, 53363-53374 (2021)

Using XANES for extracting the structure of metal oxide clusters:

  1. Y. Liu, N. Marcella, J. Timoshenko, A. Halder, B. Yang, L. Kolipaka, M. J. Pellin, S. Seifert, S. Vajda, P. Liu, A. I. Frenkel
    Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
    J. Chem. Phys. 151, 164201 (2019) 

Using XANES for decoding the structure of “single-atom” catalysts:

  1. S. Xiang, P. Huang, J. Li, Y. Liu, N. Marcella, P. K. Routh, G. Li, A. I. Frenkel
    Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis
    Phys. Chem. Chem. Phys. 24, 5116-5124 (2022)

Using XANES for decoding the structure of bimetallic nanoparticles with elements that are neighbors in periodic table:

  1. M. Xie, R. Shimogawa, Y. Liu, L. Zhang, A. C. Foucher, P. K. Routh, E. A. Stach, A. I. Frenkel, M. R. Knecht
    Biomimetic control over bimetallic nanoparticle structure and activity via peptide capping ligand sequence
    ACS Nano 18, 3286-3294 (2024)
  2. Y. Liu, M. Xie, N. Marcella, A. C. Foucher, E. A. Stach, M. R. Knecht, A. I. Frenkel
    Z-contrast enhancement in Au-Pt nanocatalysts by correlative X-ray absorption spectroscopy and electron microscopy: Implications for composition determination
    ACS Appl. Nano Mater. 5, 8775-8782 (2022)

Using EXAFS for extracting partial radial distribution function from bulk materials (bcc-fcc transition in Fe):

  1. J. Timoshenko, A. Anspoks, A. Cintins, A. Kuzmin, J. Purans, A. I. Frenkel
    Neural network approach for characterizing structural transformations by X-ray absorption fine structure spectroscopy
    Phys. Rev. Lett. 120, 225502 (2018)

Using EXAFS for extracting partial radial distribution function from mono- and bimetallic nanoparticles:

  1. J. Timoshenko, C. J. Wrasman, M. Luneau, T. Shirman, M. Cargnello, S.  R. Bare, J. Aizenberg, C. M. Friend, A. I. Frenkel
    Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning
    Nano Letters 19, 520-529 (2019)

Using EXAFS for extracting partial radial distribution function from metal complexes in molten salts:

  1. N. Marcella, S. Lam, V. Bryantsev, S. Roy, A. I. Frenkel
    Neural network based analysis of multimodal bond distributions using their extended X-ray absorption fine structure spectra
    Phys. Rev. B 109, 104201 (2024)
  2. K. Zheng, N. Marcella, A. L. Smith, A. I. Frenkel
    Decoding the pair distribution function of uranium in molten fluoride salts from X-ray absorption spectroscopy data by machine learning
    J. Phys. Chem. C 128, 7635-7642 (2024)

Using latent space of autoencoders for analysis of information content in X-ray absorption spectra:

  1. P. K. Routh, Y. Liu, N. Marcella, B. Kozinsky, A. I. Frenkel
    Latent representation learning for structural characterization of catalysts
    J. Phys. Chem Lett. (Perspective) 12, 2086-2094 (2021)

Using XANES for performing speciation of heterogeneous mixtures of metal species:

  1. P. K. Routh, N. Marcella, A. I. Frenkel
    Speciation of nanocatalysts by X-ray absorption spectroscopy assisted by machine learning
    J. Phys. Chem. C (Perspective) 127, 5653-5662 (2023)