Our group has been developing machine learning -based methods for characterizing functional materials . The main idea is based on the concept of “descriptors” of the material’s structure and/or electronic properties that are encoded in its spectrum. Based on that initial approach, the following publications summarize its extension to multiple systems and processes:
Patent:
System and method for structural characterization of materials by supervised machine learning-based analysis of their spectra. A. I. Frenkel and J. Timosenko.
US Patent 11193884
Using XANES for decoding the coordination numbers of monometallic nanoparticles:
- J. Timoshenko, D. Lu, Y. Lin, A. I. Frenkel
Supervised machine learning-based determination of three-dimensional structure of metallic nanoparticles
J. Phys. Chem. Lett., 8, 5091-5098 (2017) - J. Timoshenko, A. I. Frenkel
“Inverting” X-ray Absorption Spectra of catalysts by machine learning in search for activity descriptors
ACS Catalysis (Perspective) 9, 10192-10211 (2019) - J. Timoshenko, S. Roese, H. Hovel, A. I. Frenkel
Silver clusters shape determination from in-situ XANES data
Radiat. Phys. Chem. 175, 108049 (2020) - E. T. Dias, S. K. Gill, Y. Liu, P. Halstenberg, S. Dai, J. Huang, J. Mausz, R. Gakhar, W. C. Phillips, S. Mahurin, S. M. Pimblott, J. F. Wishart, A. I. Frenkel
Radiation-assisted formation of metal nanoparticles in molten salts
J. Phys. Chem. Lett. 12, 157-164 (2021)
Using XANES for decoding the coordination numbers of bimetallic nanoparticles:
- N. Marcella, Y. Liu, J. Timoshenko, E. Guan, M. Luneau, T. Shirman, A. M. Plonka, J. E. S. v. der Hoeven, J. Aizenberg, C. M. Friend, A. I. Frenkel
Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy
Phys. Chem. Chem. Phys. 22, 18902-18910 (2020) - N. Marcella, J. S. Lim, A. M. Plonka, G. Yan, C. J. Owen, J. E. S. van der Hoeven, A. C. Foucher, H. T. Ngan, S. B. Torrisi, N. S. Marinkovic, E. A. Stach, J. F. Weaver, J. Aizenberg, P. Sautet, B. Kozinsky, A. I. Frenkel
Decoding reactive structures in dilute alloy catalysts
Nature Commun. 13, 832 (2022)
Using XANES for decoding the coordination numbers of mono- and bimetallic clusters:
- J. Timoshenko, A. Halder, B. Yang, S. Seifert, M. Pellin, S. Vajda, A. I. Frenkel
Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning
J. Phys. Chem. C 122, 21686-21693 (2018) - Y. Liu, A. Halder, S. Seifert, N. Marcella, S. Vajda, A. I. Frenkel
Probing active sites in Cu_xPd_y cluster catalysts by machine – learning – assisted X-ray absorption spectroscopy
ACS Appl. Mater. Interf. 13, 53363-53374 (2021)
Using XANES for extracting the structure of metal oxide clusters:
- Y. Liu, N. Marcella, J. Timoshenko, A. Halder, B. Yang, L. Kolipaka, M. J. Pellin, S. Seifert, S. Vajda, P. Liu, A. I. Frenkel
Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
J. Chem. Phys. 151, 164201 (2019)
Using XANES for decoding the structure of “single-atom” catalysts:
- S. Xiang, P. Huang, J. Li, Y. Liu, N. Marcella, P. K. Routh, G. Li, A. I. Frenkel
Solving the structure of “single-atom” catalysts using machine learning – assisted XANES analysis
Phys. Chem. Chem. Phys. 24, 5116-5124 (2022)
Using XANES for decoding the structure of bimetallic nanoparticles with elements that are neighbors in periodic table:
- M. Xie, R. Shimogawa, Y. Liu, L. Zhang, A. C. Foucher, P. K. Routh, E. A. Stach, A. I. Frenkel, M. R. Knecht
Biomimetic control over bimetallic nanoparticle structure and activity via peptide capping ligand sequence
ACS Nano 18, 3286-3294 (2024) - Y. Liu, M. Xie, N. Marcella, A. C. Foucher, E. A. Stach, M. R. Knecht, A. I. Frenkel
Z-contrast enhancement in Au-Pt nanocatalysts by correlative X-ray absorption spectroscopy and electron microscopy: Implications for composition determination
ACS Appl. Nano Mater. 5, 8775-8782 (2022)
Using EXAFS for extracting partial radial distribution function from bulk materials (bcc-fcc transition in Fe):
- J. Timoshenko, A. Anspoks, A. Cintins, A. Kuzmin, J. Purans, A. I. Frenkel
Neural network approach for characterizing structural transformations by X-ray absorption fine structure spectroscopy
Phys. Rev. Lett. 120, 225502 (2018)
Using EXAFS for extracting partial radial distribution function from mono- and bimetallic nanoparticles:
- J. Timoshenko, C. J. Wrasman, M. Luneau, T. Shirman, M. Cargnello, S. R. Bare, J. Aizenberg, C. M. Friend, A. I. Frenkel
Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning
Nano Letters 19, 520-529 (2019)
Using EXAFS for extracting partial radial distribution function from metal complexes in molten salts:
- N. Marcella, S. Lam, V. Bryantsev, S. Roy, A. I. Frenkel
Neural network based analysis of multimodal bond distributions using their extended X-ray absorption fine structure spectra
Phys. Rev. B 109, 104201 (2024) - K. Zheng, N. Marcella, A. L. Smith, A. I. Frenkel
Decoding the pair distribution function of uranium in molten fluoride salts from X-ray absorption spectroscopy data by machine learning
J. Phys. Chem. C 128, 7635-7642 (2024)
Using latent space of autoencoders for analysis of information content in X-ray absorption spectra:
- P. K. Routh, Y. Liu, N. Marcella, B. Kozinsky, A. I. Frenkel
Latent representation learning for structural characterization of catalysts
J. Phys. Chem Lett. (Perspective) 12, 2086-2094 (2021)
Using XANES for performing speciation of heterogeneous mixtures of metal species:
- P. K. Routh, N. Marcella, A. I. Frenkel
Speciation of nanocatalysts by X-ray absorption spectroscopy assisted by machine learning
J. Phys. Chem. C (Perspective) 127, 5653-5662 (2023)