M. Hassan Arbab, Trevor C. Dickey, Dale P. Winebrenner, Antao Chen, Mathew B. Klein, and Pierre D. Mourad


Abstract

We present sub-millimeter wave reflectometry of an experimental rat skin burn model obtained by the Terahertz Time-Domain Spectroscopy (THz-TDS) technique. Full thickness burns, as confirmed by histology, were created on rats (n = 4) euthanized immediately prior to the experiments. Statistical analysis shows that the burned tissue exhibits higher reflectivity compared to normal skin over a frequency range between 0.5 and 0.7 THz (p < 0.05), likely due to post-burn formation of interstitial edema. Furthermore, we demonstrate that a double Debye dielectric relaxation model can be used to explain the terahertz response of both normal and less severely burned rat skin. Finally, our data suggest that the degree of conformation between the experimental burn measurements and the model for normal skin can potentially be used to infer the extent of burn severity.

Read/Download